arumem CONFERENCE

GPU-accelerated data expansion for the Marching Cubes algorithm

San Jose (CA) I September 23rd, 2010
Christopher Dyken, SINTEF Norway
Gernot Ziegler, NVIDIA UK

Agenda

- Motivation \& Background
- Data Compaction and Expansion
- Histogram Pyramid algorithm and its variations
- Optimizations and benchmark results
- Marching Cubes based on Histogram Pyramids
- Mapping and performance considerations
- Benchmark results
- Visualization of SPH simulation results
- Videos

Motivation: Fast SPH visualization

- Smoothed-particle Hydrodynamics (SPH)
- Meshless Lagrangian method:
- Nodes (particles) are not connected
- Node position varies with time
- Models fluid and solid mechanics
- Nodes form a density field
- High-quality visualization:

1. Approximate density field
2. Marching Cubes
3. Render iso-surface

Extract iso-surface via Marching Cubes

- Scalar field is sampled over 3D grid
- Marching Cubes [Lorensen87]
- Marches through a regular 3D grid of cells

1. Each MC cell spans 8 samples
2. Label corners as inside or outside iso-value
3. Eight in/out labels give 256 possible cases
4. Each case has a tessellation template

- Devised such that tessellations of adjacent cells match
- Vertices lie on lattice edges
- positioned using linear interpolation
- De-facto standard algorithm for this problem

PRESENTED BY
nVIDIA.

Example: Marching Cubes in 2D

Input: A scalar field (gray=scalar field) (red=iso-surface)

Upper left MC cell, case = \%0001 = 1
(pink=outside,blue=inside)

Upper left MC cell, produce
template tessellation 1

Upper left MC cell, calculate vertex positions

Upper left MC cell, Output: A line segment

1. For each cell:

Determine MC case and \# vertices of template
\checkmark Data-paralle!!
2. Determine total \# vertices and output index of each MC cell's vertices

Not trivially data-paralle!!
3. During vertex output: calculate actual positions
\checkmark Data-paralle!! presented by @ IVID/A. (9) SINTEF

Step 2 is Data Compaction $\mathbb{\&}$ Expansion

- We want to answer:
- How many triangles to draw?
- What is the mapping between input and output?
- Classic: At which output position j shall MC cell i write vertex k ?
- Put differently: Which MC cell i and vertex k does output position j belong to?
- Data compaction $\&$ expansion provide answers:
- Data compaction:
- Extract all cells that produce geometry
- Data expansion:
- Each cell that produces geometry issues 3-15 vertices

Data Compaction and Expansion

- Problem definition
- Discard all elements where $a_{j}=0$.
- An important algorithmic pattern!
- Trivial implementation in serial implementation (e.g. CPU).
- Non-trivial on data-parallel architectures (e.g. GPU)!

Input or Output-centric solutions

- Input-centric solution:
- For every input element
- Compute output offsets
- Scatter relevant input to output
- Typical serial solution and Data-Parallel Scan
- Output-centric solution:
- For every output element
- Determine input element from output index
- Histogram Pyramid (HistoPyramid): Reduction-based search structure

HistoPyramid: Stages of Algorithm

- Input is Baselevel
- For each input element, init with number of output elements

\section*{| Input element index: | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |}

- Level Buildup
- Build further levels through reduction
- HistoPyramid Traversal
- For each output index:

Find corresponding input index (via HistoPyramid traversal)

HistoPyramid Buildup

- Build further levels from baselevel
- Add two elements (reduction)
- Number of elements halves each iteration
- $\log _{2} n$ iterations
- Each iteration half the size of the previous iteration

- Data-Parallel algorithm
- Top element equals number of output elements (Step 2A)
- Data of all reduction levels: 2:1 HistoPyramid

Output Allocation

- Output size is known from top element of HP
- Allocate output
- Start one thread per output element
- Each thread knows its output index
- Now use HistoPyramid as search structure for finding corresponding input element

HistoPyramid Traversal

- Each thread handles one output element
- key : variable, initially output index
- Binary Search through HP, from top-level to base-level
- Reduction inputs x and y form key ranges $[0, x$) and $[x, x+y$)
- Choose fitting range for key
- Subtract chosen range's start from key
- Note: For $a_{j}>1$, several output threads will end up at same input element: key remainder is index within this set

HistoPyramid Traversal

More observations on HP traversal

- Fully data-parallel algorithm (HP is read-only in traversal)
- Traversal steps/Data dependency: $\log _{2}(n)$
- Note: A pyramid has less latency
- Traversal path follows roughly a line
- Adjacent output elements have very similar traversal paths
- Good cache coherence
- Large chunks of output elements have identical paths from top
- Good for many-thread broadcast

- Some elements are never visited

Optimization 1: Discard some partial sums

- Observation:
- In traversal, after build-up has finished:
- Only the left nodes are important

$$
k e y=4
$$

- The right nodes needn't be read!
- We can discard all the right nodes
- Note: Number of all left nodes equals number of input elements
- Similarities to the Haar-transform!

Optimization 2: k-to-1 reductions

- Reduction does not have to be 2-to-1
- Example: 4-to-1 reduction is also possible
- Fewer levels of reductions -> fewer levels of traversal : $\log 4(n)$
- Better for hardware (can fetch up to 4 values at once, reduce overall latency with fewer traversal steps)
- HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)
- Output extraction for consecutive elements follows space-filling curve in base level
- Traversal: Adjacent HP levels accessed in mipmap-like fashion
- Excellent texture cache behaviour

HP5 (5-to-1 HistoPyramid)

- Combines two previous optimizations:
- Buildup: Every reduction adds five elements into one output, BUT:
- Only four of the reduction elements are stored!
- Fifth reduction element goes to computational sideband
- only acts as temporary data during reduction
- Traversal requires only first four elements
- Fifth element is directly deducted during top-down path.
- Advantage of HP5:
- Less data storage
- more efficient traversal

The HP5 reduction

- For each group of 5 elements in input stream or sideband:
- First 4 elements into HP5 level
- The sum of the 5 elements into sideband

The HP5 traversal

- Given a key, traverse from top maintaining an index
- Fetch 4 adjacent values x, y, z, and w from HP5 level
- Build key ranges
- [0, x)
- $[\mathrm{x}, \mathrm{x}+\mathrm{y})$
- $[x+y, x+y+z)$

- $[x+y+z, x+y+z+w)$
- $[\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{W}, \infty)$

- Check range, adjust key and index.

HistoPyramid performance

- Data compaction: CUDA 3.2 SDK, Tesla C2050

2 million input elements, whereof N\% retained	Scan	Atomic Ops	HP 4-to-1	HP 5-to-1
1% retained	0.70 ms	0.37 ms	0.34 ms	$0.28 \mathrm{~ms}(2.5 \mathrm{x})$
10% retained	0.80 ms	3.04 ms	0.47 ms	$0.38 \mathrm{~ms}(2.1 \mathrm{x})$
25% retained	0.81 ms	7.47 ms	0.63 ms	$0.53 \mathrm{~ms}(1.53 \mathrm{x})$
50% retained	0.83 ms	14.89 ms	0.93 ms	$0.81 \mathrm{~ms}(1.02 \mathrm{x})$
90% retained	0.85 ms	26.75 ms	1.40 ms	$1.25 \mathrm{~ms}(0.60 \mathrm{x})$

HistoPyramid performance

- Data compaction: CUDA 3.2 SDK, Tesla C2050

2 million input elements, whereof N\% retained	Scan	Atomic Ops	HP 4-to-1	HP 5-to-1
1\% retained	0.70 ms	0.37 ms	0.34 ms	$0.28 \mathrm{~ms}(2.5 \mathrm{x})$
10% retained	0.80 ms	3.04 ms	0.47 ms	$0.38 \mathrm{~ms}(2.1 \mathrm{x})$
25\% retained	0.81 ms	7.47 ms	0.63 ms	$0.53 \mathrm{~ms}(1.53 \mathrm{x})$
50% retained	0.83 ms	14.89 ms	0.93 ms	$0.81 \mathrm{~ms}(1.02 \mathrm{x})$
90% retained	0.85 ms	26.75 ms	1.40 ms	$1.25 \mathrm{~ms}(0.60 \mathrm{x})$

Explanation: HistoPyramids vs. Scan

- Scan is input-centric
- Efficiently computes output offset for all input elements
- Uses one thread per input elements to write output (scatter)
- For few relevant input elements:
- Redundantly computes output offsets for all input elements
- Starts superfluous threads for all, and many irrelevant, input elements
- HistoPyramids is output-centric
- Minimal amount of computations per input element
- Uses one thread per output element to write output (gather)
- But: requires HP traversal instead of a simple array look-up.

HistoPyramid-based Marching Cubes

- Recall the 3 -step subdivision of marching cubes:

1. For each cell, determine case and find required \# vertices

- Embarrassingly parallel
- Performed in CUDA

2. Find total number of vertices and output-input index mapping

- Build 5-to-1 HistoPyramid
- Performed in CUDA

3. For each vertex, calculate positions

- Embarrassingly parallel
- Performed directly in an OpenGL vertex shader

Step 1: Cell MC Case and Vertex Count

- Adjacent MC cells share corners

- Let a CUDA warp sweep through a $32 \times 5 \times 5$ chunk of MC cells
- Process XZ-slices slice by slice:
- Check in/out state of 6 corners along Z, (1 state per cell)
- exchange for cells processed by this thread (2 states per cell)
- Pull results from previous slice,
 (4 states per cell)
- Exchange results across warps (X-axis), (8 states per cell)
- Use a 256 -byte table to find number of vertices required for cell
- Recycles scalar field fetches and in-out classifications
$-32 \times 5 \times 5$ MC cases in $33 \times 6 \times 6$ fetches $=1.5$ fetches per cell

Step 2: HistoPyramid 5-way Reduction

- HistoPyramid built level by level, from bottom to top
- Reduction kernel uses 160 threads (5 warps)
- All five warps fetch input sideband element as uint's into shmem
- Adjacent shared memory writes, no bank conflicts
- Synchronize
- One single warp sums and stores results in global mem
- Each thread reads 5 adjacent elements from shared mem
- Fetches with stride $=5$, no bank conflicts
- Output 4 elements to HistoPyramid Level (as uint4's)
- Store sum of the 5 elements in HistoPyramid sideband (as single uint's)

Optimizing the HistoPyramid Reduction

- Reduce global mem traffic:
- Sidebands are streamed through global mem between reductions
- Combine two reductions into one kernel
- Requires $800+160$ uint's of shmem (3.8 K), free of bank conflicts
- Combine three reductions into one kernel
- Requires $800+800$ uint's in shmem (6.3 K), free of bank conflicts
- Combine step 1 and three reductions into one kernel
- Each warp processes $32 \times 5 \times 5=800$ MC cells, 4000 per block
- Shares shared mem with reduction, no extra shared mem required
- Reduce kernel invocation overhead
- Build the apex of the HistoPyramid using a single kernel
- Reduces the number of kernel invocations

Step 3: Extract output vertices

- Performed directly on the fly in OpenGL vertex shader:
- No input attributes
- gl_VertexID is used as key for HistoPyramid traversal
- Terminates in corresponding MC cell
- MC case gives template tessellation
- Key remainder specifies lattice edge for vertex in template tessellation
- Vertex position found by sampling scalar field at edge end points
- Uses OpenGL 4's indirect draw
- Number of vertices to render fetched from buffer object
- No CPU-GPU synchronization needed

Results: MC Implementation Approaches

- NVIDIA Compute SDK's MC sample uses CUDPP
- HPMC library [http://www.sintef.no/hpmc]: HistoPyramids (4:1) in OpenGL GPGPU approach
- Our new development of HPMC uses CUDA HistoPyramid (5:1)
- Key characteristics:
- Most often:

0 triangles per cell

- Maximally: 5 triangles per cell (=15 vertices)
- On average: 0.05-0.15 triangles per cell
- Input (\#cells) grows with cube of lattice grid resolution
- Output (\#triangles) grows with square of lattice grid resolution

CUHP5 Marching Cubes Showcase Video

Summary

- Our SPH visualization approach is based on Marching Cubes
- Requires high performance data compaction and expansion
- Output size is considerably smaller than input size
- 5:1 HistoPyramid buildup and traversal
- Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem
- Performance comparison for typical input-output ratio of 1-10\%
- Implementing Marching Cubes
- Implementation details
- Performance
- Fastest Marching Cubes in the world ?

CUHP5 Marching Cubes

Thank you!

Questions?

Chris Dyken christopher.dyken@sintef.no Gernot Ziegler gziegler@nvidia.com

CUHP5 Marching Cubes

BONUS SLIDES

Build a scalar field from the SPH nodes

- We approximate using a quadratic tensor-product B-spline
- Simple and runs well on a GPU
- Spline space size controls blurring versus detail

- A quasi-interpolant builds the spline
- Contribution equals basis at position
- Scatter contributions using atomic adds
- No need to solve a linear system!

