
San Jose (CA) | September 23rd, 2010
Christopher Dyken, SINTEF Norway
Gernot Ziegler, NVIDIA UK 

GPU-accelerated data expansion 
for the Marching Cubes algorithm



Agenda

 Motivation & Background

 Data Compaction and Expansion

— Histogram Pyramid algorithm and its variations

— Optimizations and benchmark results

 Marching Cubes based on Histogram Pyramids

— Mapping and performance considerations

— Benchmark results

 Visualization of SPH simulation results

— Videos



Motivation: Fast SPH visualization

 Smoothed-particle Hydrodynamics (SPH)

— Meshless Lagrangian method:

 Nodes (particles) are not connected

 Node position varies with time

— Models fluid and solid mechanics

— Nodes form a density field

 High-quality visualization:

1. Approximate density field

2. Marching Cubes

3. Render iso-surface SPH simulation nodes

Surface Visualization



Extract iso-surface via Marching Cubes

 Scalar field is sampled over 3D grid

 Marching Cubes [Lorensen87]

— Marches through a regular 3D grid of cells

1. Each MC cell spans 8 samples

2. Label corners as inside or outside iso-value

3. Eight in/out labels give 256 possible cases

4. Each case has a tessellation template

— Devised such that tessellations of adjacent cells match

— Vertices lie on lattice edges

 positioned using linear interpolation

— De-facto standard algorithm for this problem



1. For each cell: 

Determine MC case and # vertices of template

2. Determine total # vertices and 

output index of each MC cell's vertices

3. During vertex output: calculate actual positions

Example: Marching Cubes in 2D 

Input: A scalar field

(gray=scalar field)

(red=iso-surface)

Upper left MC cell,

case = %0001 = 1

(pink=outside,blue=inside)

Upper left MC cell,

produce

template tessellation 1

Upper left MC cell,

calculate vertex positions

Upper left MC cell,

Output:

A line segment

 Data-parallel!

 Data-parallel!

Not trivially data-parallel!



Step 2 is Data Compaction & Expansion

We want to answer:

— How many triangles to draw?

— What is the mapping between input and output?

 Classic: At which output position j shall MC cell i write vertex k?

 Put differently: Which MC cell i and vertex k does output position j belong to?

 Data compaction & expansion provide answers:

— Data compaction:

 Extract all cells that produce geometry

— Data expansion:

 Each cell that produces geometry issues 3-15 vertices



Data Compaction and Expansion

 Problem definition

— We start with n input elements.

— Input element j produces

aj output elements.

— Discard all elements where aj = 0.

 An important algorithmic pattern!

— Trivial implementation in serial implementation (e.g. CPU).

— Non-trivial on data-parallel architectures (e.g. GPU)!

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 2 2 2 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 3 10 10 11 14

Input

Output



Input or Output-centric solutions

 Input-centric solution:

— For every input element

 Compute output offsets

 Scatter relevant input to output

 Typical serial solution and Data-Parallel Scan

 Output-centric solution:

— For every output element

 Determine input element from output index

 Histogram Pyramid (HistoPyramid): Reduction-based search structure

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 2 2 2 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 3 10 10 11 14

Input

Output



HistoPyramid: Stages of Algorithm

 Input is Baselevel

— For each input element, init with number of output elements

 Level Buildup

— Build further levels through reduction

 HistoPyramid Traversal

— For each output index:

Find corresponding input index (via HistoPyramid traversal)

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base level:

Input element index:



HistoPyramid Buildup

 Build further levels from baselevel

— Add two elements (reduction)

 Number of elements 

halves each iteration

 log2 n iterations

— Each iteration half the size of

the previous iteration

— Data-Parallel algorithm

 Top element equals number of output elements (Step 2A)

 Data of all reduction levels: 2:1 HistoPyramid

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7



Output Allocation

 Output size is known from top element of HP

 Allocate output

 Start one thread per output element

 Each thread knows its output index

 Now use HistoPyramid as 

search structure for finding corresponding input element



HistoPyramid Traversal

 Each thread handles one output element

 key : variable, initially output index

 Binary Search through HP,

from top-level to base-level

— Reduction inputs x and y form

key ranges [0, x) and [x, x+y)

— Choose fitting range for key

— Subtract chosen range's start from key

 Note: For aj > 1, several output threads will end up at same 

input element: key remainder is index within this set

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3

0 3 1

3 4

7
key = 4

key=key-3=1

Key=key-0=1

key=key-0=1

Key=key-0=1

key  remainder = 1



HistoPyramid Traversal

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

0 3 1

3 4

7

key=key-3=1

key=key-0=1

key=key-0=1

Key=key-0=1

Input pos=10, key  remainder = 1

key = 4
0...2 3..6

0..2 3

X 0...2

0...1 2

0...6 Entry: key = Output position =  4



More observations on HP traversal

— Fully data-parallel algorithm (HP is read-only in traversal)

— Traversal steps/Data dependency: log2(n)

 Note: A pyramid has less latency

— Traversal path follows roughly a line

 Adjacent output elements

have very similar traversal paths

— Good cache coherence

 Large chunks of output elements

have identical paths from top

— Good for many-thread broadcast

— Some elements are never visited

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7

key = 4

3 ≤ key, choose right, key=key-3=1

key ≤ 3, choose left

0 ≤ key, choose right, key=key-0=1

key ≤ 2, choose left

key = 1



Optimization 1: Discard some partial sums

 Observation:

 In traversal, after build-up has finished:

 Only the left nodes are important

 The right nodes needn't be read!

 We can discard all the right nodes

 Note: Number of all left nodes

equals number of

input elements

 Similarities to the Haar-transform!

0 1 0 2 0 0 0 0 0 0 2 1 0 0 1 1

1 2 0 0 0 3 0 1

3 0 3 1

3 4

7

key = 4

key=key-3=1

key =key-0=1

key=key-0=1

key=key-0=1

key = 1



Optimization 2: k-to-1 reductions

 Reduction does not have to be 2-to-1 

 Example: 4-to-1 reduction is also possible

— Fewer levels of reductions -> fewer levels of traversal : log4(n)

— Better for hardware (can fetch up to 4 values at once, 

reduce overall latency with fewer traversal steps)

— HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)

— Output extraction for consecutive elements 

follows space-filling curve in base level

— Traversal: Adjacent HP levels accessed in mipmap-like fashion

— Excellent texture cache behaviour



HP5 (5-to-1 HistoPyramid)

 Combines two previous optimizations:

— Buildup: Every reduction adds five elements into one output, BUT:

 Only four of the reduction elements are stored!

 Fifth reduction element goes to computational sideband 

— only acts as temporary data during reduction

 Traversal requires only first four elements

— Fifth element is directly deducted during top-down path. 

 Advantage of HP5:

— Less data storage

— more efficient traversal



The HP5 reduction

 For each group of 5 elements in input stream or sideband:

— First 4 elements into HP5 level

— The sum of the 5 elements into sideband

— Done in parallel, level by level

— Last sideband: total number of elements

0 1 0 2 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 1

3 0 4 1 9

0 1 0 2 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 13 0 4 1

Input

Sideband 1

Sideband 2

HP5 Base-Level

HP5 Level 2



The HP5 traversal

 Given a key, traverse from top maintaining an index

— Fetch 4 adjacent values x, y, z, and w from HP5 level

— Build key ranges

 [0,x)

 [x,x+y)

 [x+y,x+y+z)

 [x+y+z,x+y+z+w)

 [x+y+z+w, ∞)

— Check range,

adjust key and index.

0 1 0 2 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 1

3 0 4 1

0 1 0 2 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0

Range 4:  3 ≤ key < ∞

index = 5*index + 4 = 14

key = key – 3 = 0

Range 2:  3 ≤ key < 7

index = 5*index + 2 = 2

key = key – 3 = 3

index = 0

key = 6

index = 14

key = 0

9



HistoPyramid performance

 Data compaction: CUDA 3.2 SDK, Tesla C2050 

2 million input elements, 

whereof N% retained 

Scan Atomic 

Ops

HP 4-to-1 HP 5-to-1

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)

10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)

25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)

50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)



HistoPyramid performance

 Data compaction: CUDA 3.2 SDK, Tesla C2050 

2 million input elements, 

whereof N% retained 

Scan Atomic 

Ops

HP 4-to-1 HP 5-to-1

1% retained 0.70 ms 0.37 ms 0.34 ms 0.28 ms (2.5x)

10% retained 0.80 ms 3.04 ms 0.47 ms 0.38 ms (2.1x)

25% retained 0.81 ms 7.47 ms 0.63 ms 0.53 ms (1.53x)

50% retained 0.83 ms 14.89 ms 0.93 ms 0.81 ms (1.02x)

90% retained 0.85 ms 26.75 ms 1.40 ms 1.25 ms (0.60x)



Explanation: HistoPyramids vs. Scan

 Scan is input-centric

— Efficiently computes output offset for all input elements

— Uses one thread per input elements to write output (scatter)

— For few relevant input elements:

 Redundantly computes output offsets for all input elements

 Starts superfluous threads for all, and many irrelevant, input elements

 HistoPyramids is output-centric

— Minimal amount of computations per input element

— Uses one thread per output element to write output (gather)

 But: requires HP traversal instead of a simple array look-up.



HistoPyramid-based Marching Cubes

 Recall the 3-step subdivision of marching cubes:

1. For each cell, determine case and find required # vertices

 Embarrassingly parallel 

 Performed in CUDA

2. Find total number of vertices and output-input index mapping

 Build 5-to-1 HistoPyramid

 Performed in CUDA

3. For each vertex, calculate positions

 Embarrassingly parallel 

 Performed directly in an OpenGL vertex shader



Step 1: Cell MC Case and Vertex Count

 Adjacent MC cells share corners

— Let a CUDA warp sweep through a 32x5x5 chunk of MC cells

 Process XZ-slices slice by slice:

— Check in/out state of 6 corners along Z,

(1 state per cell)

— exchange for cells processed by this thread

(2 states per cell)

— Pull results from previous slice,

(4 states per cell)

— Exchange results across warps (X-axis),

(8 states per cell)

— Use a 256-byte table to find number of vertices required for cell

 Recycles scalar field fetches and in-out classifications

— 32x5x5 MC cases in 33x6x6 fetches = 1.5 fetches per cell



Step 2: HistoPyramid 5-way Reduction

 HistoPyramid built level by level, from bottom to top 

— Reduction kernel uses 160 threads (5 warps)

— All five warps fetch input sideband element as uint’s into shmem

 Adjacent shared memory writes, no bank conflicts

— Synchronize

— One single warp sums and stores results in global mem

 Each thread reads 5 adjacent elements from shared mem

— Fetches with stride = 5, no bank conflicts

 Output 4 elements to HistoPyramid Level ( as uint4’s )

 Store sum of the 5 elements in HistoPyramid sideband (as single uint’s)



Optimizing the HistoPyramid Reduction

 Reduce global mem traffic:

— Sidebands are streamed through global mem between reductions

 Combine two reductions into one kernel

— Requires 800+160 uint’s of shmem (3.8 K), free of bank conflicts

 Combine three reductions into one kernel

— Requires 800+800 uint’s in shmem (6.3 K), free of bank conflicts

 Combine step 1 and three reductions into one kernel

— Each warp processes 32x5x5 = 800 MC cells, 4000 per block

— Shares shared mem with reduction, no extra shared mem required

 Reduce kernel invocation overhead

— Build the apex of the HistoPyramid using a single kernel

 Reduces the number of kernel invocations



Step 3: Extract output vertices

 Performed directly on the fly in OpenGL vertex shader:

— No input attributes

— gl_VertexID is used as key for HistoPyramid traversal

 Terminates in corresponding MC cell

 MC case gives template tessellation

 Key remainder specifies lattice edge for vertex in template tessellation

— Vertex position found by sampling scalar field at edge end points

 Uses OpenGL 4’s indirect draw

— Number of vertices to render fetched from buffer object

— No CPU-GPU synchronization needed



Results: MC Implementation Approaches

— NVIDIA Compute SDK’s MC sample uses CUDPP

— HPMC library [http://www.sintef.no/hpmc]: 

HistoPyramids (4:1) in OpenGL GPGPU approach

— Our new development of HPMC uses CUDA HistoPyramid (5:1)

 Key characteristics:

— Most often: 0 triangles per cell

— Maximally: 5 triangles per cell (=15 vertices)

— On average: 0.05 - 0.15 triangles per cell

 Input (#cells) grows with cube of lattice grid resolution

 Output (#triangles) grows with square of lattice grid resolution

http://www.sintef.no/hpmc


Smooth Cayley (iso=0.5)

Triangles 445 522 (0.027 tris/cell)

NV SDK sample 72 fps (1201 mvps)

OpenGL HP4MC 113 fps (1868 mvps)

CUDA-OpenGL HP5MC 301 fps (4985 mvps)

Speedup 2.6x / 4.2x

Bumpy Cayley (iso=0.5)

Triangles 643 374 (0.039 tris/cell)

NV SDK sample 66 fps (1098 mvps)

OpenGL HP4MC 102 fps (1689 mvps)

CUDA-OpenGL HP5MC 242 fps (4006 mvps)

Speedup 2.4x / 3.6x

Superbumpy and layered Cayley (iso=0.5)

Triangles 3 036 608 (0.183 tris/cell)

NV SDK sample 34 fps (571 mvps)

OpenGL HP4MC 47 fps (774 mvps)

CUDA-OpenGL HP5MC 72 fps (1199 mvps)

Speedup 1.5x / 2.1x



Backpack (iso=0.4) (www.volvis.org)

Size 512x512x373 (187 mb)

Triangles 3 745 320 (0.039 tris/cell)

OpenGL HP4MC 13 fps (1291 mvps)

CUDA-OpenGL HP5MC 43 fps (4129 mvps)

Speedup 3.2x

Head aneuyrism (iso=0.4) (www.volvis.org)

Size 512x512x512 (256 mb)

Triangles 583 610 (0.004 tris/cell)

OpenGL HP4MC 15 fps (2034 mvps)

CUDA-OpenGL HP5MC 78 fps (10399 mvps)

Speedup 5.1x

Christmas tree (iso=0.05) (TU Wien)

Size 512x499x512 (250 mb)

Triangles 5 629 532 (0.043 tris/cell)

OpenGL HP4MC 10 fps (1358 mvps)

CUDA-OpenGL HP5MC 28 fps (3704 mvps)

Speedup 2.7x



CUHP5 Marching Cubes Showcase Video

http://www.youtube.com/watch?v=WS95KjUS_Ww

http://www.youtube.com/watch?v=WS95KjUS_Ww


Summary

 Our SPH visualization approach is based on Marching Cubes

— Requires high performance data compaction and expansion

— Output size is considerably smaller than input size

 5:1 HistoPyramid buildup and traversal

— Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem 

— Performance comparison for typical input-output ratio of 1-10%

 Implementing Marching Cubes

— Implementation details

— Performance

 Fastest Marching Cubes in the world ? 



CUHP5 Marching Cubes

Thank you! 

Questions?

Chris Dyken <christopher.dyken@sintef.no>

Gernot Ziegler <gziegler@nvidia.com>



CUHP5 Marching Cubes

BONUS SLIDES



Build a scalar field from the SPH nodes

We approximate using a quadratic tensor-product B-spline

— Simple and runs well on a GPU

— Spline space size controls blurring versus detail

— A quasi-interpolant builds the spline

 Contribution equals basis at position

— Scatter contributions using atomic adds

— No need to solve a linear system!

100x100x100 200x200x200 300x300x300


