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Pipeline of automated image analysis.
(Microscope, multi cell image, segment image, feature values, classification)
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List of parallel computing kernel functions 
executing on the GPU

Initialisation part

Function 0A generate index / gray level lookup tables

Function 0B clear co-occurrence matrices

Function 0C compute co-occurrence matrices

Function 0D normalize co-occurrence matrices

Part 1, read from co-occurrence matrices

Function 1A compute f1

Function 1B compute f5

Function 1C compute f6

Function 1D compute P

Function 1E compute P|x-y|

Function 1F compute Px+y

Part 2, read from P

Function 2A compute mean

Function 2B compute var

Function 2C compute H

Part 3, read from P|x-y|

Function 3A compute f2

Function 3B compute f11

Function 3C compute MacP|x-y|

Function 3D compute f10

Part 4, read from Px+y

Function 4A compute f6

Function 4B compute f8

Function 4C compute f7

Part 5, read from co-occurrence matrix

Function 5A compute Pij and f3

Function 5B compute f4

Function 5C compute HXY1, f12, read from P

Function 5D compute HXY2, f13, read from P only

Dependency graph of the Haralick 
Texture Features used to derive 
the optimal order of computation

Results of various implementations of the 
Haralick Texture Feature algorithm with seed up factors

Haralick Texture Features (Features) we used and simplified 
for symmetrical Co-Matrices

Parallel Feature computation on
many Co-Matrices Each Co-Matrix
is associated to one CUDA Block.

Sparse filled Co-Matrices
Left a full Co-Matrix (64 MBytes) and
right a packed Co-Matrix (75 kBytes)
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Computing

time (s)

Factor

to 1. 

Factor

to 2.

Factor

to 3.

1. Original feature algorithm 2378 1x - -

2. Software optimized version 214 11x 1x -

3. GPU version I (8800 GTX) 11.1 214x 19x 1x

4. GPU version I (GTX 280) 6.6 360x 32x 1.7x

5. GPU version II (GTX 280) 4.65 511x 46x 2.4x
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Conclusions
The GPU implementation reduced the computational time from half a year to around 9
hours of an un-optimized software and to 4 days of an optimized software version.
Our latest optimizations could further increase the computational speed by a factor of
1.4 compared on the same graphics card. This increase in performance was the result
of solving memory bandwidth limiting bottle necks discovered with the profiler tool.
We conclude that avoiding the use of shared memory and barrier synchronization in
small and simple kernel functions gives better results on the latest architecture.
The speedup of the GPU versions scales with the memory bandwidth. 

Abstract
This poster presents the speedup of the computation of
co-occurrence matrices (co-matrices) and Haralick Texture
Features (features), as used for analyzing microscope
images of biological cells, by general-purpose graphics
processing units (GPUs).
In a pipeline of automated image analysis algorithms the
feature computation is the most costly computing part.
The computing time of the algorithm without acceleration
amounts to several months. Hence, a massive speedup is
required.
Analyzing the features results in a graph showing the
dependency of the feature computations on intermediate

results and on other features. With the dependency graph
the optimal order of the feature computation could be
determined which saved costly double computations.
Analysation of co-matrices showed that they are sparsely
filled, and for a highly parallel approach they consume too
much memory. We reduced the size of a full co-matrix by
removing all rows and columns filled with zeros. This
reduction strategy allowed us to keep up to two hundred
co-matrices in the memory of an ordinary graphics card
with direct memory access.
For each single cell image 20 co-matrices with different
orientations are generated. Altogether, the features of 8
cells can be computed in parallel, requiring the calculation

of 160 co-matrices. To reduce the complexity of the
feature computation 24 kernel functions are used on the
GPU and each one maps all co-matrices to the parallel
computing architecture of the GPUs.
On a single node of a cluster, a speedup of 500 was
obtained compared to an unoptimized software version,
and a speedup of 46 was obtained compared to an
optimized software version.
The GPU implementation reduces the computational time
from half a year to around 9 hours, which opens up a new
research application in the field of biological image
analysis.

Pseudo-code
of the parallel
GPU program
structure

C=8, AD=20 ->
160 CUDA blocks

each cell AD co-matrices
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