) Northeastern

Contribution

We explore the correlation between CUBIN regis-
ter pressure and PTX register pressure.

We evaluate two different optimizations that at-
tempt to reduce register pressure and increase
hardware occupancy.

Building Process

cuda
compile-time

[host compiler]

CXC run-time

Y

[driver]

v
cubin

The process of compiling a CUDA program into an
executable is the following:

At compile-time, the CUDA front-end (cudate)
splits the program into the host code and the GPU
code.

The GPU code is compiled by Open64 into an in-
termediate language called Parallel Thread Execu-
tion (PTX).

The PTX code is included by the host code as a
device descriptor.

The host code (including the descriptor) is com-
piled and linked with the CUDA libraries into an
executable file.

At run-time, the executable calls the driver and
passes it the device descriptor. The driver com-
piles the PTX code in the descriptor into a CUDA
binary (CUBIN).

Improving the Open64 Backend for GPUs

Rodrigo Dominguez, David R. Kaell

Dept. of Electrical and Computer Engineering Dept. of Computer and Information Science

Northeastern University, Boston, MA
{rdomingu,kaeli}@ece.neu.edu

Register Rematerialization

e)
ld.param %r1, [matrixA]

_)

Control Flow
Graph

v

~
qd.param %r1, [matrixA]

add %r32, %r32, %rl
L)

e We rematerialize memory operations for loading

parameters and special registers (e.g. threadld,

blocklId).

Instruction Scheduling

| |

/def %rl \ /def %rl \

def %r2

use %rl

use %orl def %r2

Qse %ri / Qse %1‘2l j

We implemented a backward list scheduler that
reorders instructions within a basic block.

We start by doing a liveness analysis and building
a data dependence graph.

The scheduler iterates through the ready list, eval-
uating a cost function that consider the number
of live registers and the use-defs associated with
each instruction.

University of Delaware, Newark, DE

John Cavazos

cavazos@cis.udel.edu

Results

We evaluated the optimizations on an NVIDIA Tesla
C870 GPU and a 64-bit Intel Xeon @ 1.6GHz CPU
with 4MB of L2 cache running Linux 2.6 (Fedora
Core 10). We used the applications included in the
NVIDIA SDK 2.2. The speedup results were collected
using the CUDA Profiler. We compiled 52 bench-
marks, containing a total of 748 kernels. We found
that the correlation coetficient between PTX register

35 +—
before
30 +—
P
B uopt
> P
@A 25
%)
»
. 20 +—
<P
~
o
e 15
o>
o
10 +— —
il I I
O B | | |
nbody<true> nbody<false> dxtc.compress dwtHaarlD histogram256

Benchmark

Future Work

e Evaluate a selective rematerialization algorithm
that targets the basic blocks with higher register
pressure.

e Consider a bigger set of applications from differ-
ent fields and with different execution times and
kernel sizes.

e Measure the performance impact of the optimiza-
tions on the benchmarks that showed negative im-
provements (higher register pressure).

e Quantify side effects like additional number of
dynamic instructions, uncoalesced memory oper-
ations, etc.

Acknowledgments

Mike Murphy
NVIDIA Corporation
mmurphy@nvidia.com

code.google.com/soc

pressure and CUBIN register pressure is 0.94 for the
selected applications. In our experiments, 294 (39%)
kernels showed less register pressure, 364 (49%) expe-
rienced no change, and only 90 (12%) had more reg-
ister pressure due to our optimizations. For the Haar
Wavelet Decomposition benchmark we achieved a 4%
speedup.

4.0%
dwtHaarlD
3.5%
3.0% /
2.5%
. 00 //
1.5% /
1.0%

0.5%

Speedup
S

0.0%

17 MB 34 MB 68 MB 136 MB 271 MB

Input Size

References

[1] M. Murphy. NVIDIA’s Experience with Open64.
In Open64 Workshop at CGO, April 2008.

2] K. Wilken, J. Liu, and M. Heffernan. Optimal
Instruction Scheduling Using Integer Program-
ming. In PLDI, May 2000.

[3] I. Baev, R. Hank, and D. Gross. Prematerializa-
tion: Reducing Register Pressure for Free. In

PACT, 2006.

4] C. M. Chang, C. M. Chen, and C. T. King. Us-
ing Integer Linear Programming for Instruction
Scheduling and Register Allocation in Multi-

issue Processors. In Computer and Mathematics
with Applications, 1997.

5] A. Aleta, J. M. Codina, A. Gonzalez, and D.
Kaeli. Demystitying on-the-fly spill code. In
PLDI, June 2005.

This work was supported by Google through the Google Summer of Code program. We would also like
to thank NVIDIA for their generous hardware donations to Northeastern University that included the Tesla

GPU systems used in this work.

