
© 2008 NVIDIA Corporation.

Ian Williams – Manager, PSG Applied Engineering

HD is now 8MP & HDR

© 2008 NVIDIA Corporation.

• Intro – Quadro® Solutions
• High Resolution & HDR Displays and

Implications
• Stereo
• HDR
• Display Port
• Implications of Multiple display channels
• Addressing Multiple GPUs
• SLI® Mosaic mode
• Combining Technologies

Agenda

© 2008 NVIDIA Corporation.

Quadro Solutions

Images courtesy of Softimage Co. and Avid Technology Inc., model provided by Acony Games.

Mobile Desktop Power Desk Side

Remote Desktop Blades Remote Graphics Servers

© 2008 NVIDIA Corporation.

Enabling Industry Solutions

NVIDIA
SLI

NVDIA
G-Sync

NVIDIA
HD SDI

NVIDIA
Quadro Plex VCS

© 2008 NVIDIA Corporation.

• Quality
• Detail
• Pixel real estate
• Collaboration
• Immersive experience
• Industry specific needs
• …….

Why use High Resolution &
HDR Displays?

© 2008 NVIDIA Corporation.

• Panels
• Industry focused – e.g. medical, video

• Projectors

• Multiple Panels

• Multiple Projectors

High Resolution and HDR
Display Technologies

Images courtesy of HP, Sony, Barco, Mechdyne,

© 2008 NVIDIA Corporation.

• Performance
• Stereo
• “Mechanics” of >8bit per component
• Multiple display channels

• OS impact
• Synchronization
• Clustering

Implications of High Resolution
and HDR

© 2008 NVIDIA Corporation.

• GPU memory
• 3840x2160 desktop at 16x FSAA ~400MB of

framebuffer.

• Performance
• Fill-rate
• Window system implications

• Texture size & depth
• 16 bit per component

• ……..

Performance Implications of
High resolutions & HDR

© 2008 NVIDIA Corporation.

• OpenGL Quad Buffered Stereo
• Application has explicit control of the

stereo image

• Consumer Stereo Drivers
• Infers stereo separation from single

stream

• Active
• Passive

Stereo

L, R, L, R, L, R, ……

L, L, L, L, L, L, ……

R, R, R, R, R, R, ……

© 2008 NVIDIA Corporation.

OpenGL QuadBuffered Stereo

Front Buffer

Back bufferL R

Buffer Swap

Draw Loop:
Set draw buffer to back left
Load left eye view Matrix
Draw Scene
Set draw buffer to back right
Load right eye view Matrix
Draw Scene
Swap buffers

© 2008 NVIDIA Corporation.

• Possible using both DVI or Display Port
• Display Port much easier

• Textures etc. need to be >8bit per
component
• FP16, I16 (G8x GPUs and beyond)
• RGBA, LA, L

“Mechanics” of >8bit per
component

© 2008 NVIDIA Corporation.

• Full screen only
• Desktop, GUI, etc will not be correctly displayed

• Format specific to display device
• Outline:

• Configure double-wide desktop
• Significantly easier if exported by the EDID

• Create full-screen window
• Render to off-screen context

• E.g. OpenGL FBO

• Draw a textured quad
• Use fragment program to pack pixels - display device specific
• G8x GPUs (and beyond) implement bitwise fragment operations as

well as fixed point textures

Implementing HDR over DVI

© 2008 NVIDIA Corporation.

Implementing HDR over DVI
- cont

16 bit per component

R G B R G B

R G B

8 bits 2 bits 8 bit per component

Specific packing format is Display Specific

Off-screen buffer

Full-Screen Window

© 2008 NVIDIA Corporation.

• Requires native Display Port GPU

• Desktop will be display correctly (in 8bit)

• Outline:
• Open 10bit per component Pixel Format/Visual
• Render

Implementing HDR over
Display Port

© 2008 NVIDIA Corporation.

• All lanes carry data (no dedicated clock lane)
• Link rate: either 2.7Gbps or 1.62Gbps per lane,

based on link quality
• Flexible number of lanes, 1, 2, or 4, depending on

device capability
• Link capacity for 4 lanes, 10.8 Gbit/sec (2.2x

bandwidth of DVI for an equal number of wires)
• Freely trade pixel depth with resolution and frame

rate

Display Port

© 2008 NVIDIA Corporation.

• 1Mbit/sec bi-directional auxiliary channel
• Low power and low EMI
• Support for long cables (15m) and a latching

connector
• Full support of a variety of audio formats as

optional feature
• Robust content protection system as optional

feature

Display Port
- Cont.

© 2008 NVIDIA Corporation.

Display Port Compared to DVI
** Reproduced from VESA
Presentation

DisplayPort DVI

of high-speed pairs
1680x1050@18bpp
1600x1200@30bpp
2048x1536@36bpp

(Dynamically changes)
1 pair
2 pairs
4 pairs

(Dynamically Changes)
3 Data + 1 Clk pair
6 Data + 1 Clk pair
N/A

Bit rate, per pair 2.7Gbits/sec, fixed rate
(1.62Gbps option available)

Up to 1.65Gbps

Total raw capacity per
4-differential pair single link

10.8Gbits/sec 4.95Gbits/sec

AC-coupled for process migration
(65nm ~ 0.35um)

Yes No

Color Depth Supported 6/8/10/12/16 bpc 8 bpc only

Aux. channels 1Mbps AUX CH, 500us max. latency DDC, No max. latency limit

Channel Coding ANSI8B/10B (Open) TMDS (Proprietary)

HDCP/DPCD optional HDCP/DPCD Optional HDCP optional

Protocol Micro-Packet-based; extensible in
future to add features.

Digitized and serialized analog video
raster

Internal connection Included in first release of spec No TMDS-based standards

EMI reduction method No clock channel
Reduced number of pairs
Data scrambling
Spread spectrum

Transition minimized coding during
display active period

© 2008 NVIDIA Corporation.

Why multiple display channels?

• Resolutions becoming larger than channel
bandwidths

• Sony 4K projector
• Barco 56” panel
• …….

Multiple Display Channels

© 2008 NVIDIA Corporation.

First a couple of questions:

• Which OS - Windows or Linux?

• Level of application transparency:
• Driver does everything?
• Application willing to do some work?

Implications of Multiple
Display Channels

© 2008 NVIDIA Corporation.

• Attach Multiple Monitors using Display Properties
• Extend the Desktop to each GPU
• Ensure ordering is correct for desired layout
• Adjust Resolutions and Refresh Rates
• Displays using Refresh Rates <48Hz can be

problematic
• Synchronizing displays requires Gsync card

Multiple Displays - Windows

© 2008 NVIDIA Corporation.

Multiple Displays - Windows

© 2008 NVIDIA Corporation.

Multiple Displays - Windows

Things you don’t intend
are also possible

© 2008 NVIDIA Corporation.

Things to note:

• Windows can be opened anywhere on (and off) the complete
desktop

• Windows can span display boundaries
• However maximizing will lock to one display

• The where the window centroid is located

• Likewise full screen windows
• WGL Desktop size is considered outer rectangle spanning all

displays
• Driver will typically send data to all GPUs (in case window is

moved, etc.)
• GPU Affinity solves this

Multiple Displays - Windows

© 2008 NVIDIA Corporation.

DISPLAY_DEVICE lDispDev;
DEVMODE lDevMode;
lDispDev.cb = sizeof(DISPLAY_DEVICE);

if (EnumDisplayDevices(NULL, 0, &lDispDev, NULL)) {
EnumDisplaySettings(lDispDev.DeviceName, ENUM_CURRENT_SETTINGS, &lDevMode);

}

g_hWnd1 = createWindow(hInstance, lDevMode.dmPosition.x, lDevMode.dmPosition.y, X0, Y0);

if (!g_hWnd1) {
MessageBox(NULL, "Unable to create first window(s).", "Error", MB_OK); return E_FAIL;

}

if (EnumDisplayDevices(NULL, 1, &lDispDev, NULL)) {
EnumDisplaySettings(lDispDev.DeviceName, ENUM_CURRENT_SETTINGS, &lDevMode);

}

g_hWnd2 = createWindow(hInstance, lDevMode.dmPosition.x, lDevMode.dmPosition.y, X1, y1);

if (!g_hWnd2) {
MessageBox(NULL, "Unable to create second window(s).", "Error", MB_OK); return E_FAIL;

}

Multiple Displays - Windows

Verify first display exists and get display settings

Create Window on first display

Verify second display exists and get display settings

Create Window on second display

© 2008 NVIDIA Corporation.

• Two traditional approaches depending on desired
level of application transparency or behavior:

• Separate X screens
• 3D Windows can’t span Xscreen boundaries
• Location of context on GPU allows driver to send data to

only that GPU
• Xinerama

• One large virtual desktop
• 3D Windows can span Xscreen boundaries
• Will typically result in driver sending all data to all GPUs (in

case window moves)

Multiple Displays - Linux

© 2008 NVIDIA Corporation.

• Nvidia-settings provides full featured control panel
for Linux

• Use nvidia-xconfig to create Xorg.conf the
customize

• Drivers can capture EDID
• Useful when display device hidden behind KVM or optical

cable

• Synchronizing multiple displays requires gsync card

Multiple Displays - Linux

© 2008 NVIDIA Corporation.

• WGL extension, core OpenGL not touched
• GLX definition in the works

• Application creates affinity-DC
• HDC wglCreateAffinityDCNV(const HGPUNV

*phGpuList);

• Special DC that contain list of valid GPUs -> affinity mask
• Affinity mask is immutable

• Application creates affinity context from affinity-DC
• As usual with RC = wglCreateContext(affinityDC);
• Context inherits affinity-mask from affinity-DC

• Application makes affinity context current
• As usual using wlgMakeCurrent()
• Context will allow rendering only to GPU(s) in its affinity-mask

Addressing Multiple GPUs
GPU Affinity

© 2008 NVIDIA Corporation.

• Affinity context can be made current to:
• Affinity DC

• Affinity mask in DC and context have to be the same
• There is no window associated with affinity-DC. Therefore:

• Render to pBuffer
• Render to FBO

• DC obtained from window (regular DC)
• Rendering only happens to the sub-rectangle(s) of the window that overlap

the parts of the desktop that are displayed by the GPU(s) in the affinity mask
of the context.

• Sharing OpenGL objects across affinity contexts
only allowed if affinity mask is the same
• Otherwise wglShareLists will fail

Addressing Multiple GPUs cont.

GPU Affinity

© 2008 NVIDIA Corporation.

• Enumerate all GPUs in a system
• BOOL wglEnumGpusNV(int iGpuIndex, HGPUNV *phGpu);
• Loop until function returns false

• Enumerate all display devices attached to a GPU
• BOOL wglEnumGpuDevicesNV(HGPUNV hGpu,

int iDeviceIndex, PGPU_DEVICE lpGpuDevice);
• Returns information like location in virtual screen space
• Loop until function returns false

• Query list of GPUs in an affinity-mask
• BOOL wglEnumGpusFromAffinityDCNV(HDC hAffinityDC,

int iGpuIndex, HGPUNV *hGpu);
• Loop until function returns false

• Delete an affinity-DC
• BOOL wglDeleteDCNV(HDC hdc);

Addressing Multiple GPUs cont.

GPU Affinity

© 2008 NVIDIA Corporation.

#define MAX_GPU 4

int gpuIndex = 0;
HGPUNV hGPU[MAX_GPU];
HGPUNV GpuMask[MAX_GPU];
HDC affDC;
HGLRC affRC;

while ((gpuIndex < MAX_GPU) && wglEnumGpusNV(gpuIndex, &hGPU[gpuIndex])) {
gpuIndex++;

}

GpuMask[0] = hGPU[0];
GpuMask[1] = NULL;

affDC = wglCreateAffinityDCNV(GpuMask);

<Set pixelformat on affDC>

affRC = wglCreateContext(affDC);
wglMakeCurrent(affDC, affRC);

<Create a FBO>

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, b);

<now render>

Addressing Multiple GPUs cont.

GPU Affinity – Render to Off-screen FBO

Create list of the first MAX_GPUs in the system

Create an affinity-DC associated with first GPU

Make the FBO current to render into it

© 2008 NVIDIA Corporation.

• Requires Gsync
• Syncrhonize vertical retrace
• Synchronize stereo field
• Enables swap barrier

• OpenGL Extensions
• Windows: WGL_NV_Swap_Group
• Linux: GLX_NV_Swap_Group

Synchronizing Multiple
Displays

© 2008 NVIDIA Corporation.

Name

NV_swap_group

Dependencies

WGL_EXT_swap_control affects the definition of this extension.
WGL_EXT_swap_frame_lock affects the definition of this extension.

Overview

This extension provides the capability to synchronize the buffer swaps
of a group of OpenGL windows. A swap group is created, and windows are
added as members to the swap group. Buffer swaps to members of the swap
group will then take place concurrently.

This extension also provides the capability to sychronize the buffer
swaps of different swap groups, which may reside on distributed systems
on a network. For this purpose swap groups can be bound to a swap barrier.

This extension extends the set of conditions that must be met before
a buffer swap can take place.

Issues

An implementation can not guarantee that the initialization of the swap
groups or barriers will succeed because the state of the window system may
restrict the usage of these features. Once a swap group or barrier has
been sucessfully initialized, the implementation can only guarantee to
sustain swap group functionality as long as the state of the window system
does not restrict this. An example for a state that does typically not
restrict swap group usage is the use of one fullscreen sized window per
windows desktop.

WGL_NV_Swap_Group
BOOL wglJoinSwapGroupNV(HDC hDC,

GLuint group);

BOOL wglBindSwapBarrierNV(GLuint group,
GLuint barrier);

BOOL wglQuerySwapGroupNV(HDC hDC,
GLuint *group);
GLuint *barrier);

BOOL wglQueryMaxSwapGroupsNV(HDC hDC,
GLuint *maxGroups,
GLuint *maxBarriers);

BOOL wglQueryFrameCountNV(HDC hDC,
GLuint *count);

BOOL wglResetFrameCountNV(HDC hDC);

© 2008 NVIDIA Corporation.

Name

NV_swap_group

Overview

This extension provides the capability to synchronize the buffer swaps
of a group of OpenGL windows. A swap group is created, and windows are
added as members to the swap group. Buffer swaps to members of the swap
group will then take place concurrently.

This extension also provides the capability to sychronize the buffer
swaps of different swap groups, which may reside on distributed systems
on a network. For this purpose swap groups can be bound to a swap barrier.

This extension extends the set of conditions that must be met before
a buffer swap can take place.

Issues

An implementation can not guarantee that the initialization of the swap
groups or barriers will succeed because the state of the window system may
restrict the usage of these features. Once a swap group or barrier has
been sucessfully initialized, the implementation can only guarantee to
sustain swap group functionality as long as the state of the window system
does not restrict this. An example for a state that does typically not
restrict swap group usage is the use of one fullscreen sized window per
desktop.

GLX_NV_swap_group
Bool glxJoinSwapGroupNV(Display *dpy,

GLXDrawable drawable, GLuint group);

Bool glxBindSwapBarrierNV(Display *dpy,
GLuint group,
GLuint barrier);

Bool glxQuerySwapGroupNV(Display *dpy,
GLXDrawable drawable, GLuint *group);
GLuint *barrier);

Bool glxQueryMaxSwapGroupsNV(Display *dpy,
GLuint screen, GLuint *maxGroups,
GLuint *maxBarriers);

Bool glxQueryFrameCountNV(Display *dpy,
GLuint *count);

Bool glxResetFrameCountNV(Display *dpy);

© 2008 NVIDIA Corporation.

Swap Group Usage Example
display(void)
{

............
/* refresh the current frame counter */
frameCount = updateFrameCounter();
.............

/* adjust the width of the bars determine the current position
of the bars depending on the frame counter */

horiz_width = (windowWidth / 12) + 1;
vert_width = (windowHeight / 9) + 1;
horiz_left = frameCount % (windowWidth - horiz_width);
vert_top = frameCount % (windowHeight - vert_width);

glClear(GL_COLOR_BUFFER_BIT);

/* draw the vertical and horizontal bars as rectangles */
glColor3f(1, 0, 0);
glRecti(horiz_left, windowHeight, horiz_left + horiz_width, 0);
glColor3f(0, 1, 0);
glRecti(0, vert_top, windowWidth, vert_top + vert_width);

/* display frame counter if enabled */
if (displayCounter) {

char counterString[16] = ""; sprintf(counterString, "%d", frameCount);
glColor3f(1, 1, 0); printStr(10, 10, counterString);

}

/* swap buffers to display current frame */
glutSwapBuffers();

}

static void toggleSwapGroup()
{

if (hasSwapGroupNV)
{

swapGroup = (swapGroup == 0) ? 1 :0;
wglJoinSwapGroupNV(hDC, swapGroup);
glutPostRedisplay();

}
}

static void toggleSwapBarrier()
{

if (hasSwapGroupNV && swapGroup > 0)
{

if (swapBarrier > 0) {
swapBarrier = 0;
wglBindSwapBarrierNV(swapGroup, swapBarrier);

} else {
hasSwapBarrierNV = initSwapBarrierNV();

}
glutPostRedisplay();

}
}

© 2008 NVIDIA Corporation.

Recommendations:

• Control Panel will cause regular CPU contention
• Polls hardware status

• Currently implementing interrupt API
• Return upon events

• Synchronize clients periodically in addition to
swapbarrier

Using Gsync

© 2008 NVIDIA Corporation.

• Enables transparent use of multiple GPUs on multiple
displays

• Enables a Quadro Plex (multiple GPUs) to be seen as one logical
GPU by the operating system

• Applications ‘just work’ across multi GPUs and multi displays

• Zero or minimal performance impact for 2D and 3D

applications compared with a single GPU per single display

SLI Mosaic Mode

Multiple Displays made easy

© 2008 NVIDIA Corporation.

• Quadro Plex only
• Operating System support

• Windows XP, Linux, 32bit and 64bit
• Vista (in future)

• Maximum desktop size = 8k X 8k
• Pay attention to some FSAA modes

• Compatible with G-sync
• Clustering tiled displays

• Phase 2
• Stereo
• More configs

SLI Mosaic Mode

Details

© 2008 NVIDIA Corporation.

SLI Mosaic Mode

Configurations

© 2008 NVIDIA Corporation.

NVIDIA Quadro Plex –
Roadmap

2 G80 GPUs
1.5GB/GPU
4 Dual Link DVI
G-Sync II
PCI-E Gen1

Quadro Plex Model IV

Maximum GPU
Performance

Series 1000 2000

2 G100 GPUs
Double Precision
4GB/GPU
4 Dual Link DVI + 2 DP
G-Sync II
PCI-E Gen2

Quadro Plex 2200 D2

Max. # GPU
and/or

Channels

4 G71 GPUs
512MB/GPU
8 Dual Link DVI
G-Sync
PCI-E Gen1

4 G92 GPUs
1GB/GPU
8 Dual Link DVI
G-Sync II
PCI-E Gen2

Quadro Plex Model II Quadro Plex 2100 D4

© 2008 NVIDIA Corporation.

• Gsync necessary to synchronize GPUs
• Certain configurations work
• Other configurations don’t work

• Ambiguity in configurations
• Mainly due to control panel configuration

• SLI Mosaic Phase 2 will include stereo

Combining Technologies –
Stereo and Multiple Displays

© 2008 NVIDIA Corporation.

• Mechanics of >8bit per component can
works with multiple channels
• With same limitations
• And Mosaic mode

Combining Technologies –
HDR and Multiple Displays

© 2008 NVIDIA Corporation.

• Currently Mosaic will assume/consume all
GPUs
• Phase 2 aims to address this

• Being driven by quality and performance
demands of large venue display
• Quality + Performance

• More capabilities will appear over time
• Nvscale + Mosaic

Combining Technologies –
SLI Mosaic Mode and GPUs

© 2008 NVIDIA Corporation.

• High Resolution Displays are becoming de-
facto for collaborative and large venue
installations

• Bandwidth requirements of current displays
will still require multiple channels, even
with Display Port

• Leading edge high resolution displays are
HDR capable

Summary

© 2008 NVIDIA Corporation.

• Demand for High Resolution & HDR
technologies are being driven by
economics
• E.g. Digital Prototypes significantly less

expensive than physical prototypes

• Current solutions can take advantage
of High Resolution & HDR
• Opportunity for high-value, high-margin

applications

Summary – cont.

© 2008 NVIDIA Corporation.

• Feedback & Questions.

Thank You!

