

GPU Computing in Tomorrow's Automobiles

Pinar Muyan-Özçelik * Vladimir Glavtchev * †

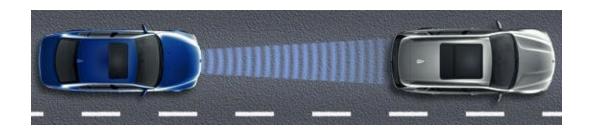
*UC Davis, †BMW Group Technology Office in Palo Alto

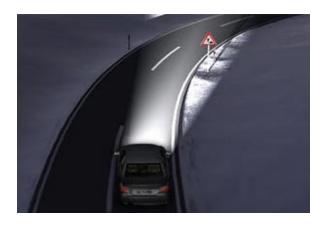
NVISION 08

San Jose, CA

automotive apps need compute

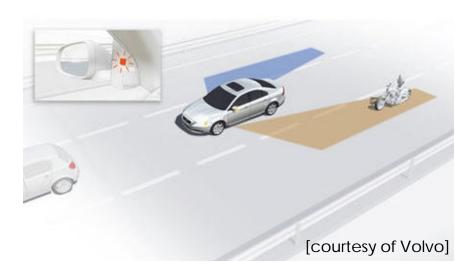
- Today's cars provide many features with compute requirements.
 - e.g. BMW 7 Series have over a hundred digital systems


 Future apps will require even more compute!


Some of the current advanced tech:

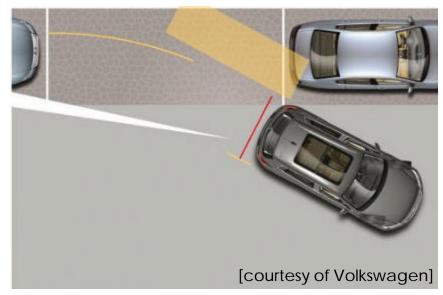
active cruise control

- active cruise control
- adaptive headlights


- active cruise control
- adaptive headlights
- lane departure warning system

- active cruise control
- adaptive headlights
- lane departure warning system
- blind spot information system

- active cruise control
- adaptive headlights
- lane departure warning system
- blind spot information system
- night vision



GP CD

Some of the current advanced tech:

- active cruise control
- adaptive headlights
- lane departure warning system
- blind spot information system
- night vision

parallel park assistance

- active cruise control
- adaptive headlights
- lane departure warning system
- blind spot information system
- night vision

- parallel park assistance
- head-up display

- active cruise control
- adaptive headlights
- lane departure warning system fingerprint
- blind spot information system
- night vision

- parallel park assistance
- head-up display
- fingerprint entry/ignition/personalization

- active cruise control
- adaptive headlights
- lane departure warning system
 fingerprint
- blind spot information system
- night vision

- parallel park assistance
- head-up display
- fingerprint entry/ignition/personalization
- infotainment & telematic apps

Some of the upcoming tech:

Internet connection

Some of the upcoming tech:

- Internet connection
- e-mailing with speech recognition/synthesis

Some of the upcoming tech:

- Internet connection
- e-mailing with speech recognition/synthesis
- driver fatigue recognition

Some of the upcoming tech:

- Internet connection
- e-mailing with speech recognition/synthesis
- driver fatigue recognition
- car-to-car communication

Some of the upcoming tech:

- Internet connection
- e-mailing with speech recognition/synthesis
- driver fatigue recognition
- car-to-car communication

In the long run:

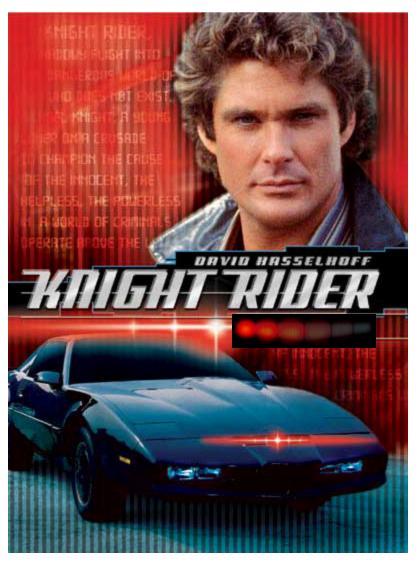
- active pedestrian avoidance

Some of the upcoming tech:

- Internet connection
- e-mailing with speech recognition/synthesis
- driver fatigue recognition
- car-to-car communication

In the long run:

- active pedestrian avoidance
- active crash prevention and stabilization
- communication with infrastructure:
 - Traffic lights
 - Cameras
 - Speed signs



...and even maybe...

...get a ride with Knight Rider's KITT, which can:

- see, learn, think
- communicate
- have a personality

in "terms" of Computer Science:

- computer vision/pattern recognition
 speed limit recognition, lane departure warning system, blind spot information system, parallel park assistance.
 - blind spot information system, parallel park assistance, fingerprint apps, driver fatigue recognition, active cruise control, active crash avoidance/stabilization
- signal processing speech recognition, night vision
- graphics infotainment apps, head-up display
- networking
 - car-to-car communication, telematic apps, communication with infrastructure, Internet connection

GPUs are good fit for...

computer vision/pattern recognition>

speed limit recognition, lane departure warning system, blind spot information system, parallel park assistance, fingerprint apps, driver fatigue recognition, active cruise control, active clash avoidance/stabilization

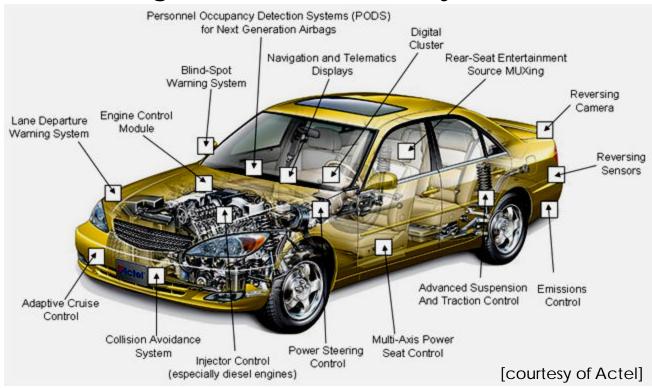
signal processing

with GPU computing, also good at tasks with data-level parallelism

speech recognition, night vision

• graphics naturally good at infotainment apps, head-up display

networking not suited for


car-to-car communication, telematic apps, communication with infrastructure, Internet connection

GPU vs others

- Today's vehicles use dozens of:
 - Automobile Specific Integrated Circuits (ASICs)
 - Application Specific Standard Products (ASSPs),
 - Programmable Logic Devices (PLDs)
 - Field Programmable Gate Arrays (FPGAs)

GPU vs others

- Today's vehicles use dozens of:
 - Automobile Specific Integrated Circuits (ASICs)
 - Application Specific Standard Products (ASSPs),
 - Programmable Logic Devices (PLDs)
 - Field Programmable Gate Arrays (FPGAs)
- GPUs allow consolidation:
 - simplify vehicle design

GPU vs others

- Today's vehicles use dozens of:
 - Automobile Specific Integrated Circuits (ASICs)
 - Application Specific Standard Products (ASSPs),
 - Programmable Logic Devices (PLDs)
 - Field Programmable Gate Arrays (FPGAs)
- GPUs allow consolidation:
 - simplify vehicle design
- Due to economies of scale:
 - adding a GPU to the production line is cheap
- With its programmability, GPUs offer ability to:
 - rapidly prototype
 - improve functionality with software updates

our project

- We focus on three tasks:
 - computer vision techniques for recognizing traffic signs
 - augmented display techniques for enhancing the visual aids
 - speech recognition techniques for controlling the body electronics
 - => GPUs are good fit for above
- Will use CUDA, NVIDIA GPU and a host CPU.

speed sign recognition

 We are investigating the use of parallel algorithms to detect speed signs with GPUs.

 Here are details from Vladimir, who worked on this project over the summer at BMW Group Technology Office in Palo Alto...

Innovation at the BMW Group.

BMW Technology Office - Palo Alto CA

EU Speed Limit Detection Vladimir Glavtchev

BMW Group

EU Speed Limit Sign Recognition. The Problem

Can a G86 be used as an embedded processor in a vehicle to perform speed limit sign recognition in real-time?

What algorithms are best suited for parallelization (e.g. can be done in CUDA)?

EU Speed Limit Sign Recognition.

Challenges

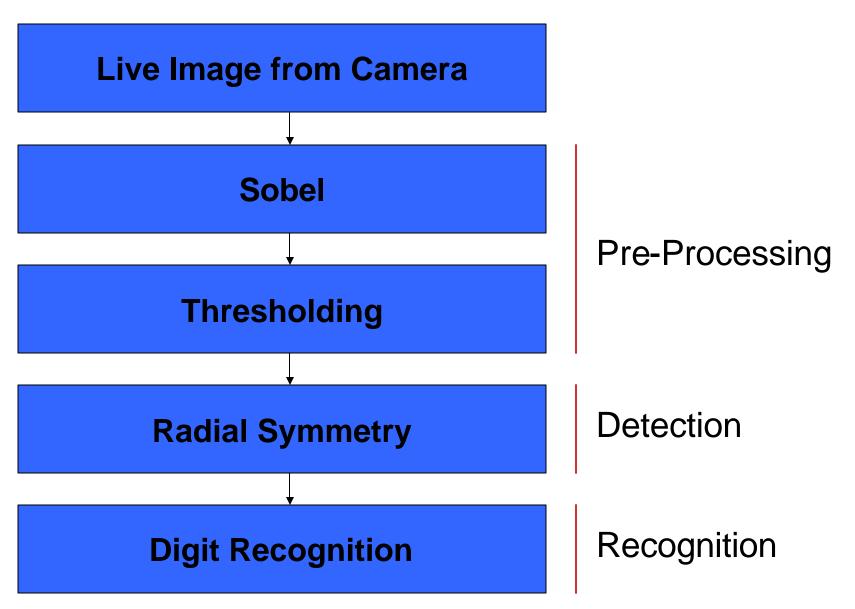
Real-time constraints

Embedded hardware requirements

Robustness

EU Speed Limit Sign Recognition.

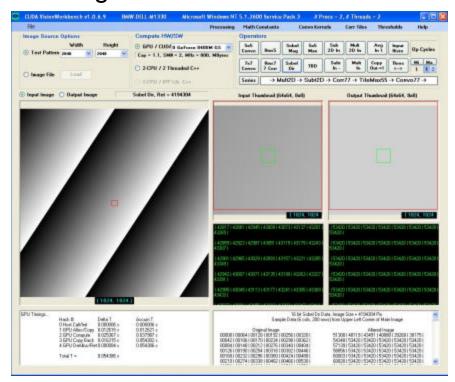
Built-in GPU hardware advantages



Line interpolation
Image resizing
Triangle rasterization
Large available memory – for storing vertex arrays
Tons and tons of compute power!

EU Speed Limit Sign Recognition.

A GPU-oriented solution



EU Speed Limit Sign Recognition.

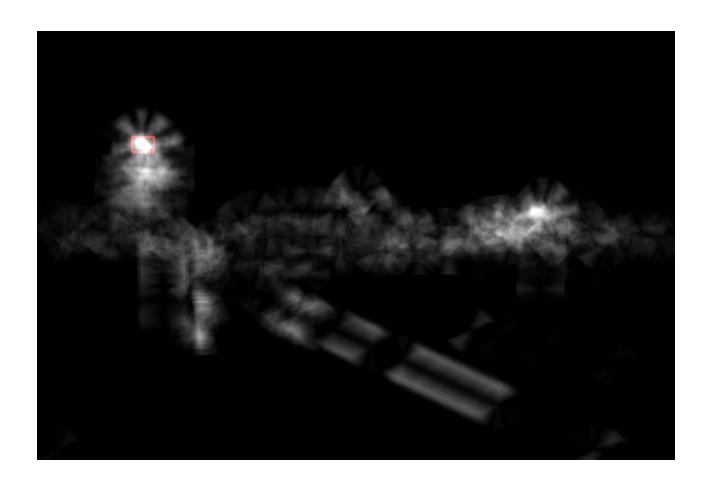
Project Structure

- Project interface:
 - Integrate into CUDA VisionWorkbench (CVWB) from John Roberts / Joe Stam
 - Use CVWB graphic user interface
 - Use the existing Sobel and add simple thresholding

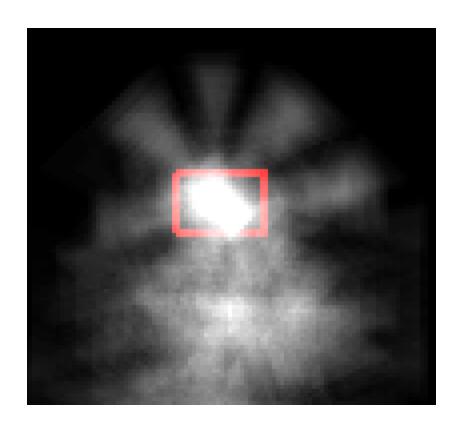
Credit: nVidia (John Roberts, Joe Stam, James Fung)

EU Speed Limit Sign Recognition.

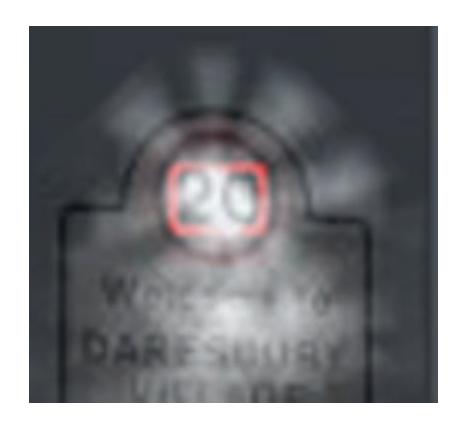
Original Image: EU speed limit sign


EU Speed Limit Sign Recognition.

Pre-Processing: Sobel with thresholding



EU Speed Limit Sign Recognition.


Detection: Radial Symmetry

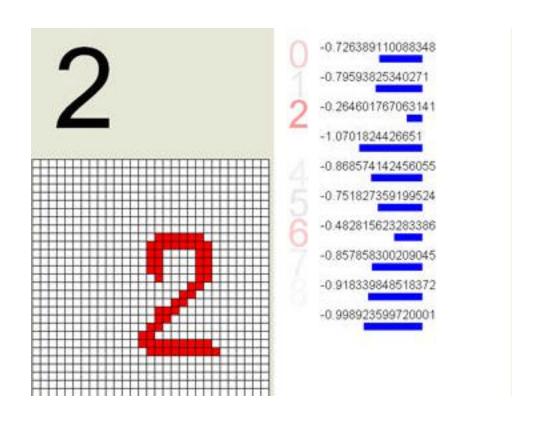
EU Speed Limit Sign Recognition. Detection: Radial Symmetry voting

EU Speed Limit Sign Recognition. Detection: Region of interest isolation

EU Speed Limit Sign Recognition.

Recognition: Digit recognition

EU Speed Limit Sign Recognition.


Recognition: Digit isolation

EU Speed Limit Sign Recognition.

Identification: Digit probability output

standardization efforts

- No APIs exist for apps we focus on
- We would like to create a common platform:
 - have data-parallel embedded computing interface for automotive apps
 - allow multiple vendors to compete and give auto manufacturers more choice
 - allow reuse of the algorithms we developed

challenges

- Allowing the GPU to multitask between the three tasks we focus in our project
- Delivering real-time performance guarantees
- Dealing with embedded system constraints
- Integrating CPU-GPU

our group

- IDAV at UC Davis :
 - Pinar Muyan-Özçelik, Vladimir Glavtchev,
 Dr. John D. Owens
- BMW Group Technology Office in Palo Alto:
 - Vladimir Glavtchev, Jeff Ota
- NVIDIA Corporation in Santa Clara :
 - Joe Stam

Thank you! Questions?

