Advanced CUDA
Optimizing to Get 20x Performance
Brent Oster
Motivation for Optimization

- 20-50X performance over CPU-based code
- Tesla 10-series chip has 1 TeraFLOPs compute
- A Tesla workstation can outperform a CPU cluster

Demos
- Particle Simulation
- Finite Difference
- Molecular Dynamics

Need to optimize code to get performance
- Not too hard – 3 main rules
Tesla 10-Series Architecture

- Massively parallel general computing architecture
- 30 Streaming multiprocessors @ 1.45 GHz with 4.0 GB of RAM
 - 1 TFLOPS single precision (IEEE 754 floating point)
 - 87 GFLOPS double precision

© NVIDIA Corporation 2008
10-Series Streaming Multiprocessor

- 8 SP Thread Processors
 - IEEE 754 32-bit floating point
 - 32-bit float and 64-bit integer
 - 16K 32-bit registers
- 2 SFU Special Function Units
- 1 Double Precision Unit (DP)
 - IEEE 754 64-bit floating point
 - Fused multiply-add
- Scalar register-based ISA
- Multithreaded Instruction Unit
 - 1024 threads, hardware multithreaded
 - Independent thread execution
 - Hardware thread scheduling
- 16KB Shared Memory
 - Concurrent threads share data
 - Low latency load/store
10-series DP 64-bit IEEE floating point

- IEEE 754 64-bit results for all DP instructions
 - DADD, DMUL, DFMA, DtoF, FtoD, Dtol, ItoD, DMAX, DMIN
 - Rounding, denorms, NaNs, +/- Infinity
- Fused multiply-add (DFMA)
 - D = A*B + C; with no loss of precision in the add
 - DDIV and DSQRT software use FMA-based convergence
- IEEE 754 rounding: nearest even, zero, +inf, -inf
- Full-speed denormalized operands and results
- No exception flags
- Peak DP (DFMA) performance 87 GFLOPS at 1.45 GHz
- Applications will almost always be bandwidth limited before limited by double precision compute performance?
Optimizing CUDA Applications For 10-series Architecture

(GeForce GT280, Tesla C1060 & C1070, Quadro 5800)
General Rules for Optimization

- Optimize memory transfers
 - Minimize memory transfers from host to device
 - Use shared memory as a cache to device memory
 - Take advantage of coalesced memory access

- Maximize processor occupancy
 - Optimize execution configuration

- Maximize arithmetic intensity
 - More computation per memory access
 - Re-compute instead of loading data
Data Movement in a CUDA Program

Host Memory
Device Memory
[Shared Memory]
COMPUTATION
[Shared Memory]
Device Memory
Host Memory
Newtonian mechanics on point masses:

```c
struct particleStruct{
    float3 pos;
    float3 vel;
    float3 force;
};
```

```
pos = pos + vel*dt
vel = vel + force/mass*dt
```
Particle Simulation Applications

- Film Special Effects
- Game Effects
- Monte-Carlo Transport Simulation
- Fluid Dynamics
- Plasma Simulations
1 million non-interacting particles
Radial (inward) and Vortex (tangent) force per particle
Expected Performance

- **1 Million Particles**
 - Pos, Vel = 36 bytes per particle = 36MB total

- **Host to device transfer (PCI-e Gen2)**
 - $2 \times 36\text{MB} / 5.2 \text{ GB/s} \rightarrow 13.8 \text{ ms}$

- **Device memory access**
 - $2 \times 36\text{MB} / 80 \text{ GB/s} \rightarrow 0.9 \text{ ms}$

- **1 TFLOPS / 1 million particles**
 - Compute Euler Integration $\rightarrow 0.02\text{ms}$
Measured Performance

- Host to device transfer (PCI-e Gen2)
 - 15.3 ms (one-way)
- Integration Kernel (including device memory access)
 - 1.32 ms
Host to Device Memory Transfer

Host Memory

Device Memory

Shared Memory

COMPUTATION

Shared Memory

Device Memory

Host Memory
Host to Device Memory Transfer

- `cudaMemcpy(dst, src, nBytes, direction)`
 - Can only go as fast as the PCI-e bus
- Use page-locked host memory
 - Instead of `malloc(...)`, use `cudaMallocHost(…)`
 - Prevents OS from paging host memory
 - Allows PCI-e DMA to run at full speed
- Use asynchronous data transfers
 - Requires page-locked host memory
- Copy all data to device memory only once
 - Do all computation locally on T10 card
Asynchronous Data Transfers

- Use asynchronous data transfers
- Requires page-locked host memory

```c
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernell <<<grid, block, 0, stream1>>>(...);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernell <<<grid, block, 0, stream2>>>(...);
```
OpenGL Interoperability
Rendering directly from device memory

- OpenGL buffer objects can be mapped into the CUDA address space and then used as global memory
 - Vertex buffer objects
 - Pixel buffer objects

- Allows direct visualization of data from computation
 - No device to host transfer with Quadro or GeForce
 - Data stays in device memory – very fast compute / viz
 - Automatic DMA from Tesla to Quadro (via host for now)

- Data can be accessed from the kernel like any other global data (in device memory)
Graphics Interoperability

- **Register a buffer object with CUDA**
 - `cudaGLRegisterBufferObject(GLuint buffObj);`
 - OpenGL can use a registered buffer only as a source
 - Unregister the buffer prior to rendering to it by OpenGL

- **Map the buffer object to CUDA memory**
 - `cudaGLMapBufferObject(void **devPtr, GLuint buffObj);`
 - Returns an address in global memory
 - Buffer must be registered prior to mapping

- **Launch a CUDA kernel to process the buffer**

- **Unmap the buffer object prior to use by OpenGL**
 - `cudaGLUnmapBufferObject(GLuint buffObj);`

- **Unregister the buffer object**
 - `cudaGLUnregisterBufferObject(GLuint buffObj);`
 - Optional: needed if the buffer is a render target

- **Use the buffer object in OpenGL code**
Moving Data to/from Device Memory

Host Memory
Device Memory
Shared Memory
COMPUTATION
Shared Memory
Device Memory
Host Memory
Device and Shared Memory Access

- SM’s can access device memory at 80 GB/s
- But, with hundreds of cycles of latency!
- Pipelined execution hides latency
- Each SM has 16KB of shared memory
 - Essentially a user managed cache
 - Latency comparable to registers
- Reduces load/stores to device memory
- Threads cooperatively use shared memory
- Best case – multiple memory access per thread, maximum use of shared memory

© NVIDIA Corporation 2008
Parallel Memory Sharing

- **Thread Registers**: per-thread
 - Private per thread
 - Auto variables, register spill
- **Block Shared Memory**: per-block
 - Shared by threads of block
 - Inter-thread communication
- **Device Memory**: per-application
 - Shared by all threads
 - Inter-Grid communication

Grids in Time:
- Grid 0
- Grid 1

Sequential Grids in Time
Shared memory as a cache

\[
P[\text{idx}].\text{pos} = P[\text{idx}].\text{pos} + P[\text{idx}].\text{vel} \times \text{dt}; \\
P[\text{idx}].\text{vel} = P[\text{idx}].\text{vel} + P[\text{idx}].\text{force} / \text{mass};
\]

- Data is accessed directly from device memory in this usage case.
- \(\text{vel} \) is accessed twice (6 float accesses).
- Hundreds of cycles of latency each time.
- Make use of shared memory?
Shared memory as a cache

__shared__ float3 s_pos[N_THREADS];
__shared__ float3 s_vel[N_THREADS];
__shared__ float3 s_force[N_THREADS];

int tx = threadIdx.x;
idx = threadIdx.x + blockIdx.x*blockDim.x;

s_pos[tx] = P[idx].pos;
s_vel[tx] = P[idx].vel;
s_force[tx] = P[idx].force;

s_pos[tx] = s_pos[tx] + s_vel[tx] * dt;
s_vel[tx] = s_vel[tx] + s_force[tx] / mass;

P[idx].pos = s_pos[tx];
P[idx].vel = s_vel[tx];
NVIDIA Parallel Execution Model

Thread:
- Runs a kernel program and performs the computation for 1 data item.
- Thread Index is a built-in variable
- Has a set of registers containing its program context
NVIDIA multi-tier data parallel model

Warp:
- 32 Threads executed together
- Processed in SIMT on SM
- All threads execute all branches

Half Warp:
- 16 Threads
- Coordinated memory access
- Can coalesce load/stores in batches of 16 elements

© NVIDIA Corporation 2008
NVIDIA multi-tier data parallel model

Thread

Warp = 32 Threads

Block of Threads

Block:
- 1 or more warps running on the same SM
- Different warps can take different branches
- Can synchronize all warps within a block
- Have common shared memory for extremely fast data sharing
Coalesced Device Memory Access

- When half warp (16 threads) accesses contiguous region of device memory
- 16 data elements loaded in one instruction
 - int, float: 64 bytes (fastest)
 - int2, float2: 128 bytes
 - int4, float4: 256 bytes (2 transactions)
- Regions aligned to multiple of size
- If un-coalesced, issues 16 sequential loads
Particle Simulation Example
Worst Case for Coalescing!

```c
struct particleStruct{
    float3 pos;
    float3 vel;
    float3 force;
};
```

<table>
<thead>
<tr>
<th>Thread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load pos.x</td>
<td>0</td>
<td>36</td>
<td>72</td>
<td>108</td>
<td>...540</td>
</tr>
<tr>
<td>Load pos.y</td>
<td>4</td>
<td>40</td>
<td>76</td>
<td>112</td>
<td>...544</td>
</tr>
<tr>
<td>Load pos.z</td>
<td>8</td>
<td>44</td>
<td>80</td>
<td>118</td>
<td>...548</td>
</tr>
</tbody>
</table>
Coalesced Memory Access

- Use structure of arrays instead
 - float3 pos[nParticles]
 - float3 vel[nParticles]
 - float3 force[nParticles]
- Accesses coalesced within a few segments

<table>
<thead>
<tr>
<th>Thread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load pos[idx].x</td>
<td>0</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>...180</td>
</tr>
<tr>
<td>Load pos[idx].y</td>
<td>4</td>
<td>16</td>
<td>28</td>
<td>40</td>
<td>...184</td>
</tr>
<tr>
<td>Load pos[idx].z</td>
<td>8</td>
<td>20</td>
<td>32</td>
<td>44</td>
<td>...188</td>
</tr>
</tbody>
</table>

- Only using 1/3 bandwidth - Not ideal
Better Coalesced Access
Option 1 – Structure of Arrays

- Have separate arrays for pos.x, pos.y,…

  ```
  float posx[nParticles];
  float posy[nParticles];
  float posz[nParticles];
  ```

<table>
<thead>
<tr>
<th>Thread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>…15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load posx[idx]</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>…60</td>
</tr>
<tr>
<td>Load posy[idx]</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>…124</td>
</tr>
<tr>
<td>Load posz[idx]</td>
<td>128</td>
<td>132</td>
<td>136</td>
<td>140</td>
<td>…188</td>
</tr>
</tbody>
</table>

All threads of warp within 64byte region – 2x
Better Coalesced Access
Option 2 - Typecasting

Load as array of floats (3x size), then typecast to array of float3 for convenience

float fdata[16*3]

<table>
<thead>
<tr>
<th>Thread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load fdata[i+0]</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>...60</td>
</tr>
<tr>
<td>Load fdata[i+16]</td>
<td>64</td>
<td>68</td>
<td>72</td>
<td>76</td>
<td>...124</td>
</tr>
<tr>
<td>Load fdata[i+32]</td>
<td>128</td>
<td>132</td>
<td>136</td>
<td>140</td>
<td>...188</td>
</tr>
</tbody>
</table>

float3* pos = (float3*)&fdata
Shared Memory and Computation

Host Memory
Device Memory
Shared Memory
COMPUTATION
Shared Memory
Device Memory
Host Memory

© NVIDIA Corporation 2008
Details of Shared Memory

- Many threads accessing memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth

- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks

- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized
Bank Addressing Examples

No Bank Conflicts

- **Linear addressing**
 - stride == 1

 - Thread 0 → Bank 0
 - Thread 1 → Bank 1
 - Thread 2 → Bank 2
 - Thread 3 → Bank 3
 - Thread 4 → Bank 4
 - Thread 5 → Bank 5
 - Thread 6 → Bank 6
 - Thread 7 → Bank 7

No Bank Conflicts

- **Random 1:1 Permutation**

 - Thread 0 → Bank 0
 - Thread 1 → Bank 1
 - Thread 2 → Bank 2
 - Thread 3 → Bank 3
 - Thread 4 → Bank 4
 - Thread 5 → Bank 5
 - Thread 6 → Bank 6
 - Thread 7 → Bank 7

© NVIDIA Corporation 2008
Bank Addressing Examples

2-way Bank Conflicts
Linear addressing stride == 2

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

... Thread 8
Thread 9
Thread 10
Thread 11

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 15

8-way Bank Conflicts
Linear addressing stride == 8

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

... Thread 15

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 15
Shared memory bank conflicts

- Shared memory access is comparable to registers if there are no bank conflicts
- Use the visual profiler to check for conflicts
 - warp_serialized signal can usually be used to check for conflicts

The fast case:
- If all threads of a half-warp access different banks, there is no bank conflict
- If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)

The slow case:
- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2008
Arrays of float3 in shared memory

float3 s_pos[N_THREADS]

Do any threads of a half-warp access same bank?

<table>
<thead>
<tr>
<th>Thread</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_pos.x</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>39</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>bank</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

No bank conflicts 😊
Always true when stride is a prime of 16
Optimizing Computation

- Execution Model Details
- SIMT Multithread Execution
- Register and Shared Memory Usage
- Optimizing for Execution Model
- 10-series Architecture Details
- Single and Double Precision Floating Point
- Optimizing Instruction Throughput
SIMT Multithreaded Execution

- **SIMT**: Single-Instruction Multi-Thread
- **Warp**: the set of 32 parallel threads that execute a SIMT instruction
- Hardware implements zero-overhead warp and thread scheduling
- Deeply pipelined to hide memory and instruction latency
- SIMT warp diverges and converges when threads branch independently
- Best efficiency and performance when threads of a warp execute together

Single-Instruction Multi-Thread instruction scheduler

<table>
<thead>
<tr>
<th>Time</th>
<th>Warp 8 Instruction 11</th>
<th>Warp 1 Instruction 42</th>
<th>Warp 3 Instruction 95</th>
<th>Warp 8 Instruction 12</th>
<th>Warp 3 Instruction 96</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
</tr>
</tbody>
</table>

© NVIDIA Corporation 2008
Register and Shared Memory Usage

Registers
- Each block has access to a set of registers on the SM
- 8-series has 8192 32-bit registers
- 10-series has 16384 32-bit registers
- Registers are partitioned among threads
- Total threads * registers/thread should be < number registers

Shared Memory
- 16KB of shared memory on SM
- If blocks use <8KB, multiple blocks may run on one SM
- Warps from multiple blocks
Optimizing Execution Configuration

- Use maximum number of threads per block
 - Should be multiple of warp size (32)
 - More warps per block, deeper pipeline
 - Hides latency, gives better processor occupancy
 - Limited by available registers

- Maximize concurrent blocks on SM
 - Use less than 8KB shared memory per block
 - Allows more than one block to run on an SM
 - Can be a tradeoff for shared memory usage
Maximize Arithmetic Intensity

- Particle simulation is still memory bound
- How much more computation can we do?
 - Answer is almost unbelievable – 100x!
- DEMO: 500+ GFLOPS!

- Can use a higher-order integrator?
 - More complex computationally
 - Can take much larger time-steps
 - Computation vs memory access is worth it!
1M particles x 100 fields
Executes in 8ms on GTX280
1M particles x 100 collision spheres executes in 20ms on GTX280
Particle Simulation
Optimization Summary

- Page-lock host memory
- Asynchronous host-device transfer
- Data stays in device memory
- Using shared memory vs. registers
- Coalesced data access
- Optimize execution configuration
- Higher arithmetic intensity
Finite Differences Example

Solving Poisson equation in 2D on fixed grid

\[\Delta u = f \]

\[u = u(x,y) \]

\[f = f(x,y) \]

Gauss-Seidel relaxation

5 – point stencil
Usual Method

Solve sparse matrix problem:

\[A \cdot u = -f \quad \text{(use } -f \text{ so } A \text{ is pos-def)} \]

\[
\begin{vmatrix}
4 & -1 & 0 & -1 & \cdots & 0 & 0 & 0 \\
-1 & 4 & -1 & 0 & -1 & \cdots & 0 & 0 \\
0 & -1 & 4 & -1 & 0 & -1 & \cdots & 0 \\
0 & 0 & 0 & -1 & \cdots & 0 & -1 & 4 \\
\end{vmatrix}
\]

\[|u| = |-f| \]

\[
\begin{vmatrix}
4 & -1 & 0 & -1 & \cdots & 0 & 0 & 0 |
\end{vmatrix}
\]
Bottlenecks by Memory Throughput

- Matrix is $N \times N$, where N is $N_x \times N_y$
- Even a sparse representation is $N \times M$
- u and f are of size N
- Memory throughput = $N \times (M + 2)$ per frame
- For a 1024x1024 grid, $N = 1$ million
- For a 2nd order stencil, $M = 5$
- For double precision: $1M \times 8 \times (5+2) = 56$MB
- Host to device memory transfer takes 10.7ms
- Device memory load/store time 0.7ms?
Improving Performance

- Transfer data host to device once at start
 - 56MB easily fits on a 10-series card
- Iterate to convergence in device memory
- Use shared memory to buffer u
 - 4x duplicated accesses per block
- Use constant memory for stencil? (no matrix)
- Use texture memory for ρ? (read-only)
Using Shared Memory
Finite Difference Example

- Load sub-blocks into shared memory
 - 16x16 = 256 threads
 - 16x16x8 = 2048 KB shared memory
 - Each thread loads one double

- Need to synchronize block boundaries
 - Only compute stencil on 14x14 center of cell
 - Load ghost cells on edges
 - Overlap onto neighbor blocks
 - Only 2/3 of threads computing?
512x512 grid, Gauss-Seidel
Executes in 0.23ms on GTX280
Constant Memory

- Special section of device memory
 - Read only
 - Cached
- Whole warp, same address - one load
- Additional load for each different address
- Constant memory declared at file scope
- Set by cudaMemcpyToSymbol(…)

© NVIDIA Corporation 2008
Using Constant Memory
Finite Difference Example

 Declare the stencil as constant memory

```c
__constant__ double stencil[5] = {4, -1, -1, -1, -1};
```

Diagram: A 5x5 stencil with the following weights:
-4, -1, -1, -1, -1
-1, 4, -1, -1, -1
-1, -1, 4, -1, -1
-1, -1, -1, 4, -1
-1, -1, -1, -1, 4
Texture Memory

- Special section of device memory
 - Read only
 - Cached by spatial location (1D, 2D, 3D)
- Best performance
 - All threads of a warp hit same cache locale
 - High spatial coherency in algorithm
- Useful when coalescing methods are impractical
Using Texture Memory
Finite Difference Example

Declare a texture ref
- texture<float, 1, ...> fTex;

Bind f to texture ref via an array
- cudaMemcpy2DToArray(fArray, f, ...);
- cudaMemcpy2DToArray(fTex, x, y);
- cudaMemcpy2DToArray(fTex, fArray, ...);
- cudaBindTextureToArray(fTex, fArray, ...);

Access with array texture functions
- f[x,y] = tex2D(fTex, x,y);
Finite Difference
Performance Improvement

- Maximize execution configuration
 - 256 threads, each loads one double
 - 16 registers * 256 threads = 4096 registers
 - Ok for both 10-series, 8-series 😊

- Maximize arithmetic intensity for 3D
 - 27-point, 4th order stencil
 - Same memory bandwidth
 - More compute
 - Can use fewer grid points
 - Faster convergence
General Rules for Optimization Recap

- **Optimize memory transfers**
 - Minimize memory transfers from host to device
 - Use shared memory as a cache to device memory
 - Take advantage of coalesced memory access

- **Maximize processor occupancy**
 - Use appropriate numbers of threads and blocks

- **Maximize arithmetic intensity**
 - More computation per memory access
 - Re-compute instead of loading data