
© 2008 NVIDIA Corporation.

Kevin Gee - XNA Developer Connection
Microsoft Corporation

Introduction to the
Direct3D 11 Graphics Pipeline

Key Takeaways
• Direct3D 11 focuses on

– Increasing scalability,
– Improving the development experience,
– Extending the reach of the GPU,
– Improving Performance.

• Direct3D 11 is a strict superset of D3D 10 & 10.1
– Adds support for new features
– Start developing on Direct3D 10/10.1 today

• Available on Windows Vista & future Windows
operating systems

• Supports 10 / 10.1 level hardware

Outline
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

Character Authoring Pipeline
(Rocket Frog Taken From Loop &Schaefer, "Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches“)

Sub-D Modeling Animation Displacement Map

Polygon Mesh Generate LODs

Character Authoring (Cont’d)
• Trends

– Denser meshes, more detailed characters
• ~5K triangles -> 30-100K triangles

– Complex animations
• Animations on polygon mesh vertices more costly

• Result
– Integration in authoring pipeline painful
– Larger memory footprints causing painful I/O issues

• Solution
– Use the higher-level surface representation longer

• Animate control cage (~5K vertices)
• Generate displacement & normal maps

Direct3D 11 Pipeline

Direct3D 10 pipeline
Plus

Three new stages for
Tessellation

Input Assembler

Vertex Shader

Pixel Shader

Hull Shader

Rasterizer

Output Merger

Tessellator

Domain Shader

Geometry Shader Stream Output

Hull Shader

Hull Shader (HS)

Tessellator

Domain
Shader

HS output:
Patch control pts after
Basis conversion

HS output:
• TessFactors (how much to tessellate)
• fixed tessellator mode declarations

HS input:
patch control pts One Hull Shader

invocation per
patch

Tessellator

Fixed-Function Tessellator (TS)

Domain
Shader

Hull Shader

TS input:
• TessFactors (how much to tessellate)
• fixed tessellator mode declarations

TS output:
• U V {W} domain
points

TS output:
• topology
(to primitive assembly)

Note: Tessellator
does not see
control points

Tessellator
operates per
patch

Domain Shader (DS)

Domain Shader

Hull Shader

Tessellator

DS input:
• U V {W} domain points

DS input:
• control points
• TessFactors

DS output:
• one vertex

One Domain Shader
invocation per
point from
Tessellator

Direct3D 11 Pipeline

• D3D11 HW Feature
• D3D11 Only
• Fundamental

primitive is patch
(not triangle)

• Superset of Xbox 360
tessellation

Input Assembler

Vertex Shader

Pixel Shader

Hull Shader

Rasterizer

Output Merger

Tessellator

Domain Shader

Geometry Shader Stream Output

displacement
map

Evaluate
surface

including
displacement

domain shader

Example Surface Processing Pipeline

patch
control points

Animate/skin
Control
Points

transformed
control points

vertex shader

Transform basis,
Determine how

much to tessellate

control points
in Bezier patch

U V {W}
domain points

Single-pass process!

Sub-D Patch Bezier Patch

hull shader

Tess
Factors Tessellate!

tessellator

New Authoring Pipeline
(Rocket Frog Taken From Loop &Schaefer, "Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches“)

Sub-D Modeling Animation Displacement Map

Optimally Tessellated Mesh

GPU

Tessellation: Summary
• Provides

– Smooth silhouettes
– Richer animations for less

• Scale visual quality across hardware configurations
• Supports performance improvements

– Coarse model = compression, faster I/0 to GPU
– Cheaper skinning and simulation
– Improve pixel shader quad utilization
– Scalable rendering for each end user’s hardware

• Render content as artists intend it!

Outline
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

GPGPU & Data Parallel Computing

• GPU performance continues to grow
• Many applications scale well to massive

parallelism without tricky code changes
• Direct3D is the API for talking to GPU
• How do we expand Direct3D to GPGPU?

Direct3D 11 Pipeline

Direct3D 10 pipeline
Plus

Three new stages for
Tessellation

Plus
Compute Shader

Input Assembler

Vertex Shader

Pixel Shader

Hull Shader

Rasterizer

Output Merger

Tessellator

Domain Shader

Geometry Shader Stream Output

Compute
ShaderData Structure

Integration with Direct3D

• Fully supports all Direct3D resources
• Targets graphics/media data types
• Evolution of DirectX HLSL
• Graphics pipeline updated to emit general

data structures…
• …which can then be manipulated by

compute shader…
• And then rendered by Direct3D again

Example Scenario
• Render scene
• Write out scene image
• Use Compute for

image post-processing
• Output final image

Input Assembler

Vertex Shader

Pixel Shader

Hull Shader

Rasterizer

Output Merger

Tessellator

Domain Shader

Geometry Shader Stream Output

Compute
ShaderData Structure

Target Applications

• Image/Post processing:
– Image Reduction
– Image Histogram
– Image Convolution
– Image FFT

• A-Buffer/OIT
• Ray-tracing, radiosity, etc.
• Physics
• AI

Compute Shader: Summary

• Enables much more general algorithms
• Transparent parallel processing model
• Full cross-vendor support

– Broadest possible installed base

Outline
• Overview
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

D3D11 Multithreading Goals
• Asynchronous resource loading

– Upload resources, create shaders, create state
objects in parallel

– Concurrent with rendering

• Multithreaded draw & state submission
– Spread out render work across many threads

• Limited support for per-object display lists

Devices and Contexts
• D3D device functionality now split into

three separate interfaces
• Device, Immediate Context, Deferred

Context
– Device has free threaded resource creation
– Immediate Context is your single primary

device for state, draws, and queries
– Deferred Contexts are your per-thread devices

for state & draws

D3D11 Interfaces

Immediate
Context

Device

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

CreateTexture

CreateVB

CreateShader

CreateShader

CreateTexture

CreateVB

CreateShader

CreateIB

Render Thread Load Thread 2Load Thread 1

Async Resources
• Use the Device interface for resource

creation
• All functions are free threaded

– Uses fine-grained sync primitives

• Resource upload and shader compilation
can happen concurrently

State & Draw Submission
• First priority: multithreaded submission

– Single-use display lists

• Lower priority: per-object display lists
– Multiple reuse

• D3D11 display lists are immutable

D3D11 Interfaces
Immediate

Context
Deferred
Context

Deferred
Context

Display List Display List

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

DrawPrim

Execute

Execute

Deferred Contexts
• Can create many deferred contexts

– Each one is single threaded (thread unsafe)

• Deferred context generates a Display List
– Display List is consumed by Immediate or

Deferred contexts

• No read-backs or downloads from the GPU
– Queries
– Resource locking

• Lock with DISCARD is supported on
deferred contexts

D3D11 on D3D10 H/W
• Deferred contexts are implemented at an

API-capture level
• Async resource creation uses coarse sync

primitives
– No longer free threaded; thread safe though

• D3D10 drivers can be updated to better
support D3D11 features

• Will work on Windows Vista as well as
future Windows releases

Outline
• Overview
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

Shader Issues Today
• Shaders getting bigger, more complex
• Shaders need to target wide range of hardware
• Optimization of different shader configurations

drives shader specialization

Options: Über-shader

Über-shader
foo (…) {

if (m == 1) {
// do material 1

} else if (m == 2) {
// do material 2

}
if (l == 1) {

// do light model 1
} else if (l == 2) {

// do light model 2
}

}

Options: Über-shader
“One Shader to Rule them All”
• Good:

– All functionality in one place
– Reduces state changes at runtime
– One compile step
– Seems to be most popular coding method

• Bad:
– Complex, unorganized shaders
– Register usage is always worst case path

Options: Specialization
Multiple specialized shaders for each

combination of settings
• Good:

– Always optimal register usage
– Easier to target optimizations

• Bad:
– Huge number of resulting shaders
– Pain to manage at runtime

Combinatorial Explosion
Number of Lights

N
um

ber of M
aterials

Solution: Dynamic Shader
Linkage & OOP

• Introducing new OOP features to HLSL
– Interfaces
– Classes

• Can be used for static code
• Also used as the mechanism for linking

specific functionality at runtime

Interfaces

interface Light
{

float3 GetDirection(float3 eye);

float3 GetColor();
};

Classes
class DirectionalLight : Light
{

float3 GetDirection(float3 eye)
{

return m_direction;
}

float3 GetColor()
{

return m_color;
}

float3 m_direction;
float3 m_color;

};

Dynamic Shader Linkage

Über-shader
foo (…) {

if (m == 1) {
// do material 1

} else if (m == 2) {
// do material 2

}
if (l == 1) {

// do light model 1
} else if (l == 2) {

// do light model 2
}

}

Dynamic Subroutine
Material1(…) { … }
Material2(…) { … }
Light1(…) { … }
Light2(…) { … }

foo(…) {
myMaterial.Evaluate(…);
myLight.Evaluate(…);

}

In the Runtime
• Select specific class instances you want
• Runtime will inline class methods

– Equivalent register usage to a specialized
shader

• Inlining is done in the native assembly
– Fast operation

• Applies to all subsequent Draw(…) calls

Outline
• Overview
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

Why New Texture Formats?
• Existing block palette interpolations too

simple
• Results often rife with blocking artifacts
• No high dynamic range (HDR) support
• NB: All are issues we heard from developers

Two New BC’s for Direct3D11
• BC6 (aka BC6H)

– High dynamic range
– 6:1 compression (16 bpc RGB)
– Targeting high (not lossless) visual quality

• BC7
– LDR with alpha
– 3:1 compression for RGB or 4:1 for RGBA
– High visual quality

New BC’s: Compression
• Block compression (unchanged)

– Each block independent
– Fixed compression ratios

• Multiple block types (new)
– Tailored to different types of content
– Smooth gradients vs. noisy normal maps
– Varied alpha vs. constant alpha

Also new: decompression results must be bit-accurate with spec

Multiple Block Types
• Different numbers of color interpolation lines

– Less variance in one block means:
• 1 color line
• Higher-precision endpoints

– More variance in one block means:
• 2 (BC6 & 7) or 3 (BC7 only) color lines
• Lower-precision endpoints and interpolation bits

• Different numbers of index bits
– 2 or 3 bits to express position on color line

• Alpha
– Some blocks have implied 1.0 alpha
– Others encode alpha

Partitions
• When using multiple color lines, each pixel

needs to be associated with a color line
– Individual bits to choose is expensive

• For a 4x4 block with 2 color lines
– 216 possible partition patterns
– 16 to 64 well-chosen partition patterns give a

good approximation of the full set
– BC6H: 32 partitions
– BC7: 64 partitions, shares first 32 with BC6H

Example Partition Table

A 32-partition table for 2 color lines

Comparisons

Orig BC3

Orig BC7

Abs Error

Comparisons

Orig BC3

Orig BC7

Abs Error

Comparisons

Abs ErrorHDR Original at
given exposure

BC6 at
given exposure

Outline
• Overview
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

Lots of Other Features
• Addressable Stream Out
• Draw Indirect
• Pull-model attribute eval
• Improved Gather4
• Min-LOD texture clamps
• 16K texture limits
• Required 8-bit subtexel,

submip filtering precision

• Conservative oDepth
• 2 GB Resources
• Geometry shader instance

programming model
• Optional double support
• Read-only depth or stencil

views

Outline
• Overview
• Drilldown

– Tessellation
– Compute Shader
– Multithreading
– Dynamic Shader Linkage
– Improved Texture Compression
– Quick Glance at Other Features

• Availability

Questions?

© 2008 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market

conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

