introduction

• Image processing is a natural fit for data parallel processing
 – Pixels can be mapped directly to threads
 – Lots of data is shared between pixels

• Advantages of CUDA vs. pixel shader-based image processing

• CUDA supports sharing image data with OpenGL and Direct3D applications
overview

- CUDA for Image and Video Processing
 - Advantages and Applications

- Video Processing with CUDA
 - CUDA Video Extensions API
 - YUVtoARGB CUDA kernel

- Image Processing Design Implications
 - API Comparison of CPU, 3D, and CUDA

- CUDA for Histogram-Type Algorithms
 - Standard and Parallel Histogram
 - CUDA Image Transpose Performance
 - Waveform Monitor Type Histogram
advantages of CUDA

- Shared memory (high speed on-chip cache)
- More flexible programming model
 - C with extensions vs HLSL/GLSL
- Arbitrary scatter writes
- Each thread can write more than one pixel
- Thread Synchronization
applications

- Convolutions
- Median filter
- FFT
- Image & Video compression
- DCT
- Wavelet
- Motion Estimation
- Histograms
- Noise reduction
- Image correlation
- Demosaic of CCD images (RAW conversion)
shared memory

• Shared memory is fast
 – Same speed as registers
 – Like a user managed data cache
• Limitations
 – 16KB per multiprocessor
 – Can store 64 x 64 pixels with 4 bytes per pixel
• Typical operation for each thread block:
 – Load image tile from global memory to shared
 – Synchronize threads
 – Threads operate on pixels in shared memory in parallel
 – Write tile back from shared to global memory
• Global memory vs Shared
 – Big potential for significant speed up depending on how many times data in shared memory can be reused
G80 Separable Convolution Performance

- CUDA
- OpenGL

The graph shows the convolution performance of G80 with CUDA and OpenGL. The performance decreases as the filter size increases.
separable convolutions

- Filter coefficients can be stored in constant memory
- Image tile can be cached to shared memory
- Each output pixel must have access to neighboring pixels within certain radius R
- This means tiles in shared memory must be expanded with an apron that contains neighboring pixels
- Only pixels within the apron write results
 - The remaining threads do nothing
tile apron
image processing with CUDA

• How does image processing map to the GPU?
 – Image Tiles ↔ Grid/Thread Blocks
 – Large Data ↔ Lots of Memory BW
 – 2D Region ↔ Shared Memory (cached)
define tile sizes

#define TILE_W 16
#define TILE_H 16
#define R 2 // filter radius
#define D (R*2+1) // filter diameter
#define S (D*D) // filter size
#define BLOCK_W (TILE_W+(2*R))
#define BLOCK_H (TILE_H+(2*R))
simple filter example

__global__ void d_filter(int *g_idata, int *g_odata,
 unsigned int width, unsigned int height)
{
 __shared__ int smem[BLOCK_W*BLOCK_H];
 int x = blockIdx.x*TILE_W + threadIdx.x - R;
 int y = blockIdx.y*TILE_H + threadIdx.y - R;

 // clamp to edge of image
 x = max(0, x);
 x = min(x, width-1);
 y = max(y, 0);
 y = min(y, height-1);

 unsigned int index = y*width + x;
 unsigned int bindex = threadIdx.y*blockDim.y+threadIdx.x;

 // each thread copies its pixel of the block to shared memory
 smem[bindex] = g_idata[index];
 __syncthreads();
simple filter example (cont.)

// only threads inside the apron will write results
if ((threadIdx.x >= R) && (threadIdx.x < (BLOCK_W-R)) &&
 (threadIdx.y >= R) && (threadIdx.y < (BLOCK_H-R)))
{
 float sum = 0;
 for(int dy=-R; dy<=R; dy++) {
 for(int dx=-R; dx<=R; dx++) {
 float i = smem[bindex + (dy*blockDim.x) + dx];
 sum += i;
 }
 }
 g_odata[index] = sum / S;
}
}
sobel edge detect filter

- Two filters to detect horizontal and vertical change in the image
- Computes the magnitude and direction of edges
- We can calculate both directions with one single CUDA kernel

\[
C_{\text{horizontal}} = \begin{pmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{pmatrix}
\]

\[
C_{\text{vertical}} = \begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{pmatrix}
\]

\[
\text{Magnitude}_{\text{Sobel}} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
\]

\[
\text{Direction}_{\text{Sobel}} = \arctan \left(\frac{G_{\text{vertical}}}{G_{\text{horizontal}}} \right)
\]
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
C_{\text{vertical}} = \begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{pmatrix} = G_{\text{vertical}}
\]

\[
C_{\text{horizontal}} = \begin{pmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1 \\
\end{pmatrix} = G_{\text{horizontal}}
\]

Magnitude_{Sobel} = norm \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
C_{\text{vertical}} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = G_{\text{vertical}}
\]

\[
C_{\text{horizontal}} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} = G_{\text{horizontal}}
\]

\[
\text{Magnitude}_{\text{sobel}} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
\]
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix} = G_{\text{vertical}}
\]

\[
\begin{bmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{bmatrix} = G_{\text{horizontal}}
\]

\[
\text{Magnitude}_{\text{Sobel}} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
\]
sobel edge detect filter

- 3x3 window of pixels for each thread

$$C_{\text{vertical}} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = G_{\text{vertical}}$$

$$C_{\text{horizontal}} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} = G_{\text{horizontal}}$$

$$\text{Magnitude}_{\text{sobel}} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}$$
sobel edge detect filter

- 3x3 window of pixels for each thread

$C_{vertical} = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} = G_{vertical}$

$C_{horizontal} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix} = G_{horizontal}$

$Magnitude_{Sobel} = \text{norm} \cdot \sqrt{G^2_{horizontal} + G^2_{vertical}}$
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
\begin{vmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{vmatrix} = G_{vertical}
\]

\[
\begin{vmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{vmatrix} = G_{horizontal}
\]

\[
\begin{align*}
\text{Magnitude}_{Sobel} &= \text{norm} \cdot \sqrt{G_{horizontal}^2 + G_{vertical}^2}
\end{align*}
\]
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
\begin{align*}
C_{\text{vertical}} &= \begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1 \\
\end{pmatrix} = G_{\text{vertical}} \\
C_{\text{horizontal}} &= \begin{pmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1 \\
\end{pmatrix} = G_{\text{horizontal}}
\end{align*}
\]

Magnitude_{\text{sobel}} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
sobel edge detect filter

- 3x3 window of pixels for each thread

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 4 & 4 \\
0 & 1 & 2 & 3 & 4 & 4 & 4 \\
0 & 1 & 2 & 3 & 4 & 4 & 4 \\
\end{bmatrix}
\]

\[
C_{\text{vertical}} = \begin{pmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{pmatrix} = G_{\text{vertical}}
\]

\[
C_{\text{horizontal}} = \begin{pmatrix}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{pmatrix} = G_{\text{horizontal}}
\]

Magnitude_{Sobel} = \text{norm} \cdot \sqrt{G_{\text{horizontal}}^2 + G_{\text{vertical}}^2}
fast box filter

- Allows box filter of any width with a constant cost
 - Rolling box filter
- Uses a sliding window
 - Two adds and a multiply per output pixel
 - Adds new pixel entering window, subtracts pixel leaving
- Iterative Box Filter \approx Gaussian blur
- Using pixel shaders, it is impossible to implement a rolling box filter
 - Each thread requires writing more than one pixel
- CUDA allows executing rows/columns in parallel
 - Uses tex2D to improve read performance and simplify addressing
fast box filter

- Separable, two pass filter. First row pass, then column pass

Source Image (input) Output Result
fast box filter (row pass pixel 0)

• Assume $r = 2$, each thread works pixels along the row and sums $(2r+1)$ pixels
• Then average $(2r+1)$ pixels and writes to destination (i, j)
fast box filter (row pass pixel 11)

- Take previous sum from pixel 10, -1 pixel \((i - (r+1), j)\), +1 pixel \((i + (r+1), j)\)
- Average \((2r+1)\) pixels and Output to \((i, j)\)
fast box filter (finish row pass)

- Each thread continues to iterate until the entire row of pixels is done
- Average then Write to \((i, j)\) in destination image
- A single thread writes the entire row of pixels

Note: Writes are not coalesced

Solution: Use shared memory to cache results per warp, call _syncthreads(), then copy to global mem to achieve Coalescing
Column Filter Pass (final)

- Threads \((i, j)\) read from global memory and sum along the column from row pass image, we get *Coalesced Reads*
- Compute pixel sums from previous pixel, -1 pixel, +1 pixel
- Average result and Output to \((i, j)\). We get *Coalesced Writes*
Video processing with CUDA

- GPU has different engines
 - Video Processor (decoding video bitstreams)
 - CUDA (image and video processing)
 - DMA Engine (transfers data host ↔ GPU)

- CUDA enables developers to access these engines
CUDA Video Extensions

• NVCUVID: video extension for CUDA
• Access to video decoder core requires VP2 (> G80)
• Similar to DXVA API, but will be platform OS independent.
• Interoperates with CUDA (surface exchange) with OpenGL and DirectX
• CUDA SDK 2.0: “cudaVideoDecode”
Video Processor (VP2)

- VP2 is a dedicated video-decode engine on NVIDIA GPUs.
- Supports:
 - MPEG-1, MPEG-2
 - H.264
- Can operate in parallel with GPU’s DMA engines and 3D Graphics engine.
- Very low power.
YUV to RGB conversion

- **Video Processor**
 - Decodes directly to a NV12 surface 4:2:0 that can be mapped directly to a CUDA surface
 - Y samples (bytes) are packed together, followed by interleaved Cb, Cr samples (bytes) sub sampled 2x2

- **CUDA Kernel performs YUV to RGB**

\[
\begin{bmatrix}
R \\
G \\
B
\end{bmatrix} = \begin{bmatrix}
1.0 & 0 & 1.402 \\
1.0 & -0.34413 & -0.714136 \\
1.0 & 1.772 & 0
\end{bmatrix} \begin{bmatrix}
Y \\
Cb \\
Cr
\end{bmatrix}
\]
YUV to RGB CUDA kernel

```c
__global__ void YUV2RGB(uint32 *yuvi, float *R, float *G, float *B)
{
    float luma, chromaCb, chromaCr;
    // Prepare for hue adjustment (10-bit YUV to RGB)
    luma       = (float)yuvi[0];
    chromaCb   = (float)((int32)yuvi[1] - 512.0f);
    chromaCr   = (float)((int32)yuvi[2] - 512.0f);

    // Convert YUV To RGB with hue adjustment
    *R    = MUL(luma,     constHueColorSpaceMat[0]) +
             MUL(chromaCb, constHueColorSpaceMat[1]) +
             MUL(chromaCr, constHueColorSpaceMat[2]);
    *G    = MUL(luma,     constHueColorSpaceMat[3]) +
             MUL(chromaCb, constHueColorSpaceMat[4]) +
             MUL(chromaCr, constHueColorSpaceMat[5]);
    *B    = MUL(luma,     constHueColorSpaceMat[6]) +
             MUL(chromaCb, constHueColorSpaceMat[7]) +
             MUL(chromaCr, constHueColorSpaceMat[8]);
}
```
NVCUVID API

• Five entry-points for Decoder object:
 • cuvidCreateDecoder(...);
 • cuvidDestroyDecoder(...);
 • cuvidDecodePicture(...);
 • cuvidMapVideoFrame(...);
 • cuvidUnmapVideoFrame(...);

• Sample application also uses helper library for Parsing video streams.
 • Provided in binary as part of SDK
cudaVideoDecode Demo
Image Processing (contd.)

• Image Processing:
 • CPU vs. 3D APIs vs. CUDA
 • Design implications

• CUDA for Histogram-Type Algorithms
 – Standard and Parallel Histogram
 – CUDA Image Transpose Performance
 – Waveform Monitor Type Histogram
API Comparison

<table>
<thead>
<tr>
<th>API</th>
<th>CPU Code</th>
<th>3D API (DX/GL)</th>
<th>CUDA Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Data</td>
<td>Heap Allocated</td>
<td>Texture/FB</td>
<td>CUDA 2D Allocate</td>
</tr>
<tr>
<td>Alignment</td>
<td>Matters</td>
<td>n/a</td>
<td>Matters</td>
</tr>
<tr>
<td>Cached</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Access (r/w)</td>
<td>Random/random</td>
<td>Random/fixed</td>
<td>Random/random</td>
</tr>
<tr>
<td>Access order</td>
<td>Matters</td>
<td>Minimized</td>
<td>Matters</td>
</tr>
<tr>
<td></td>
<td>(general purpose caches)</td>
<td>(2D Caching Schemes)</td>
<td>(coalescing, CUDA Array -> Texture HW)</td>
</tr>
<tr>
<td>In-Place</td>
<td>Good</td>
<td>n/a</td>
<td>Doesn’t matter</td>
</tr>
<tr>
<td>Threads</td>
<td>Few per Image</td>
<td>One Per Pixel</td>
<td>One per few Pixels</td>
</tr>
<tr>
<td></td>
<td>(Programmer’s decision. But typically one per tile; one tile per core)</td>
<td>(Consequence of using Pixel Shaders)</td>
<td>(Programmer’s decision. Typically one per input or output pixel)</td>
</tr>
<tr>
<td>Data Types</td>
<td>All</td>
<td>32bit-float</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(half-float maybe)</td>
<td>(Double precision, native instructions not for all though)</td>
</tr>
<tr>
<td>Storage Types</td>
<td>All</td>
<td>Tex/FB Formats</td>
<td>All</td>
</tr>
</tbody>
</table>
Histogram

• Extremely Important Algorithm
 • Histogram Data used in large number of “compound” algorithms:
 • Color and contrast improvements
 • Tone Mapping
 • Color re-quantization/posterize
 • Device Calibration (Scopes see below)
Histogram Performance

- 3D API not suited for histogram computation.
- CUDA Histogram is 300x faster than previous GPGPU approaches:

<table>
<thead>
<tr>
<th></th>
<th>64 bins</th>
<th>256 bins</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA¹</td>
<td>6500 MB/s</td>
<td>3676 MB/s</td>
</tr>
<tr>
<td>R2VB²</td>
<td>22.8 MB/s</td>
<td>42.6 MB/s</td>
</tr>
<tr>
<td>CPU³</td>
<td>826 MB/s</td>
<td>1096 MB/s</td>
</tr>
</tbody>
</table>

¹ http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64
² Efficient Histogram Generation Using Scattering on GPUs, T. Sheuermann, AMD Inc, I3D 2007
³ Intel Core 2 @ 2.9 GHz
Histogram Algorithm

- Distribution of intensities/colors in an image
- Standard algorithm:

```python
for all i in [0, max_luminance]:
    h[i] = 0;
for all pixel in image:
    ++h[luminance(pixel)]
```

- How to parallelize?

Reinhard HDR Tonemapping operator
Histogram Parallelization

- Subdivide “for-all-pixel” loop
 - Thread works on block of pixels (in extreme, one thread per pixel)
 - Need \(++h[\text{luminance(pixel)}] \) to be atomic (global atomics \(\geq \) compute1_1)
- Breaking up Image \(I \) into sub-images
 \(I = \text{UNION}(A, B) \):
 - \(H(\text{UNION}(A, B)) = H(A) + H(B) \)
 - Histogram of concatenation is sum of histograms
Better Parallel Histogram

• Have one histogram per thread
 • Memory consumption!
 • Consolidate sub-histograms in parallel (parallel-reduction).

• CUDA:
 • Histograms in shared memory
 • 64bins * 256threads = 16kByte (8bit bins)
 • Approach not feasible for >64 bins
>64bins Parallel Histogram

- Compute capability 1.2 has shared-memory atomic-operations.
- Victor Podlozhnyuk “Manual shared memory per-warp atomics” (CUDA SDK histogram256 sample)
- Have groups of 32 threads work on one sub-histogram, reduce as before.
Real-World Problems with Histograms

- My attempt to implement a waveform monitor for video using CUDA.
- One histogram per column of the input video frame.
- In order to achieve good performance need to solve various memory-access related issues.
Accessing 8-bit Pixels

• Input video produces Y-channel (luma) as planar data in row-major form.

• Coalescing: 16 threads access 32bit word in subsequent locations.
SMEM Exhausted!

- => 16xM thread blocks => 64 columns processed by each block.
- => 64 histograms in smem:
 $$64 \times 256 \times 4 = 64\text{kByte}. \text{Max 16 kByte!}$$
Thread-Block Dimensions

- 16xM TB dimensions desirable but impossible for Y-surface read
- Nx32 TB dimensions desirable for “manual atomics” in waveform code
- Solution: Fast transpose input image!
- Also: Result histograms could be copied efficiently (shared->global) horizontally.
Problem: Writing a fast Transpose vs. writing Transpose fast.

Naïve implementation:

```c
kernel(char * pi, int si, char * po, int so, int w, int h)
{
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    if (y < w && x < h)
        OUTPUT_PIXEL(y, x) = INPUT_PIXEL(x, y);
}
```
Problems with Naïve Code

• Memory reads AND writes not coalesced because reading/writing bytes, not words.
• Bandwidth: \(\sim 3 \text{ GByte/s} \) (of \(\sim 141\text{max} \))
• Idea:
 • Need to read (at least) 16 words in subsequent threads.
 • Need to write (at least) 16 words in subsequent threads.
Improved Transpose Idea

- Subdivide image into “micro-blocks” of 4x4 pixels (16Byte).
- Thread blocks of 16x16 threads.
- Each thread operates on a micro-block.
- Shared memory for micro-blocks: $16 \times 16 \times 4 \times 4 = 4k$Byte.
Basic Algorithm

• Each thread reads its micro-block into shared memory.
• Each thread transposes its micro-block.
• Each thread writes its micro-block back into global memory.
Reading and Writing MicroBlocks

- Reading one row of MicroBlock via unsigned int rather than 4x unsigned char
16x16 Thread Blocks

• One (16-thread) warp reads one row of MicroBlocks.

• One 16x16 block of threads deals with a 64x64 pixel region (8-bit luminance pixels).
Pseudo Code

• Assume single 64x64 image.

```c
kernel(...)
{
    int i = threadIdx.x;
    int j = threadIdx.y;

    readMicroBlock(image, i, j, shared, i, j);
    transposeMicroBlock(shared, i, j);
    writeMicroBlock(shared, i, j, image, j, i);
}
```

• Problem: Non-coalesced writes!
Write Coalescing for Transpose

- readMicroBlock(image, i, j, shared, i, j);
- writeMicroBlock(shared, i, j, image, j, i);
Coalesced Writes

• Simple fix:

```c
kernel(...)
{
    int i = threadIdx.x;
    int j = threadIdx.y;

    readMicroBlock(image, i, j, shared, i, j);
    transposeMicroBlock(shared, i, j);
    __syncthreads();
    writeMicroBlock(shared, j, i, image, i, j);
}
```

• Must `__syncthreads()` because \(T_{i,j} \) now writes data produced by \(T_{j,i} \).
Transpose Performance

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>256x256</th>
<th>512x512</th>
<th>1024^2</th>
<th>2048^2</th>
<th>4096^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA Naive</td>
<td>2.39</td>
<td>3.72</td>
<td>3.43</td>
<td>3.29</td>
<td>2.89</td>
</tr>
<tr>
<td>CUDA Opt</td>
<td>16.64</td>
<td>28.73</td>
<td>35.44</td>
<td>38.88</td>
<td>40.33</td>
</tr>
<tr>
<td>IPPI</td>
<td>9.03</td>
<td>8.49</td>
<td>5.07</td>
<td>3.83</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Unit: GB/s throughput.
GPU: GeForce GTX 280 (GT200)
CPU: Intel Core 2 Duo X6800 @ 2.93GHz
Summary

• Memory access crucial for CUDA performance.
• Shared memory as user-managed cache.
• 8-bit images especially tricky.
• Extra pass may improve over all performance.
Waveform Demo
Questions?

• Eric Young
 – (eyoung@nvidia.com)

• Frank Jargstorff
 – (fjargsto@nvidia.com)