
© 2008 NVIDIA Corporation.

Eric Young & Frank Jargstorff

Image Processing & Video Algorithms
with CUDA

© 2008 NVIDIA Corporation.

• Image processing is a natural fit for data parallel
processing
– Pixels can be mapped directly to threads
– Lots of data is shared between pixels

• Advantages of CUDA vs. pixel shader-based image
processing

• CUDA supports sharing image data with OpenGL
and Direct3D applications

introduction

© 2008 NVIDIA Corporation.

• CUDA for Image and Video Processing
– Advantages and Applications

• Video Processing with CUDA
– CUDA Video Extensions API
– YUVtoARGB CUDA kernel

• Image Processing Design Implications
– API Comparison of CPU, 3D, and CUDA

• CUDA for Histogram-Type Algorithms
– Standard and Parallel Histogram
– CUDA Image Transpose Performance
– Waveform Monitor Type Histogram

overview

© 2008 NVIDIA Corporation.

advantages of CUDA

• Shared memory (high speed on-chip cache)
• More flexible programming model

– C with extensions vs HLSL/GLSL
• Arbitrary scatter writes
• Each thread can write more than one pixel
• Thread Synchronization

© 2008 NVIDIA Corporation.

applications

• Convolutions
• Median filter
• FFT
• Image & Video compression
• DCT
• Wavelet
• Motion Estimation
• Histograms
• Noise reduction
• Image correlation
• Demosaic of CCD images (RAW conversion)

© 2008 NVIDIA Corporation.

shared memory

• Shared memory is fast
– Same speed as registers
– Like a user managed data cache

• Limitations
– 16KB per multiprocessor
– Can store 64 x 64 pixels with 4 bytes per pixel

• Typical operation for each thread block:
– Load image tile from global memory to shared
– Synchronize threads
– Threads operate on pixels in shared memory in parallel
– Write tile back from shared to global memory

• Global memory vs Shared
– Big potential for significant speed up depending on how many

times data in shared memory can be reused

© 2008 NVIDIA Corporation.

0

200

400

600

800

1000

1200

3 5 9 13 17 21 25 29 33

M
pi

xe
ls

 /
se

c

Filter size (pixels)

G80 Separable Convolution Performance

CUDA
OpenGL

convolution performance

© 2008 NVIDIA Corporation.

separable convolutions

• Filter coefficients can be stored in constant
memory

• Image tile can be cached to shared memory
• Each output pixel must have access to

neighboring pixels within certain radius R
• This means tiles in shared memory must be

expanded with an apron that contains
neighboring pixels

• Only pixels within the apron write results
– The remaining threads do nothing

© 2008 NVIDIA Corporation.

tile apron

Image

Image
Apron

Tile

Tile with
Apron

© 2008 NVIDIA Corporation.

image processing with CUDA

• How does image processing map to the
GPU?
– Image Tiles Grid/Thread Blocks
– Large Data Lots of Memory BW
– 2D Region Shared Memory (cached)

© 2008 NVIDIA Corporation.

define tile sizes
#define TILE_W 16
#define TILE_H 16
#define R 2 // filter radius
#define D (R*2+1) // filter diameter
#define S (D*D) // filter size
#define BLOCK_W (TILE_W+(2*R))
#define BLOCK_H (TILE_H+(2*R))

© 2008 NVIDIA Corporation.

simple filter example
__global__ void d_filter(int *g_idata, int *g_odata,

unsigned int width, unsigned int height)
{

__shared__ int smem[BLOCK_W*BLOCK_H];
int x = blockIdx.x*TILE_W + threadIdx.x - R;
int y = blockIdx.y*TILE_H + threadIdx.y - R;

// clamp to edge of image
x = max(0, x);
x = min(x, width-1);
y = max(y, 0);
y = min(y, height-1);

unsigned int index = y*width + x;
unsigned int bindex = threadIdx.y*blockDim.y+threadIdx.x;

// each thread copies its pixel of the block to shared memory
smem[bindex] = g_idata[index];
__syncthreads();

© 2008 NVIDIA Corporation.

simple filter example (cont.)

// only threads inside the apron will write results
if ((threadIdx.x >= R) && (threadIdx.x < (BLOCK_W-R)) &&

(threadIdx.y >= R) && (threadIdx.y < (BLOCK_H-R)))
{

float sum = 0;
for(int dy=-R; dy<=R; dy++) {

for(int dx=-R; dx<=R; dx++) {
float i = smem[bindex + (dy*blockDim.x) + dx];
sum += i;

}
}
g_odata[index] = sum / S;

}
}

© 2008 NVIDIA Corporation.

sobel edge detect filter
• Two filters to detect horizontal

and vertical change in the image
• Computes the magnitude and

direction of edges
• We can calculate both directions

with one single CUDA kernel

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+•=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
=

horizontal

vertical
Sobel

verticalhorizontalSobel

vertical

horizontal

G
GDirection

GGnormMagnitude

C

C

arctan

101
202
101

121
000
121

22

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1

1

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2

21

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2 3

3 3 3
3 3 3
3 3

2 31

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2 3

3 3 3
3 3 3
3 3 4

4 4 4
4 4 4
4 4

2 3 41

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2 3

3 3 3
3 3 3
3 3 4

4 4 4
4 4 4
4 4

2 3 41

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•= 4

4

4 4 4
4 4 4
4 4

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2 3

3 3 3
3 3 3
3 3 4

4 4 4
4 4 4
4 4

2 3 41

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

4

© 2008 NVIDIA Corporation.

sobel edge detect filter
• 3x3 window of pixels for each thread

0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
1

1 1 1
1 1 1
1 1 2

2 2 2
2 2 2
2 2 3

3 3 3
3 3 3
3 3 4

4 4 4
4 4 4
4 4

2 3 41

vertical

C

G

vertical

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

•
101
202
101

horizonta

C

G

horizontal

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−−
•

121
000
121

22
verticalhorizontalSobel GGnormMagnitude +•=

© 2008 NVIDIA Corporation.

fast box filter

• Allows box filter of any width with a constant cost
– Rolling box filter

• Uses a sliding window
– Two adds and a multiply per output pixel
– Adds new pixel entering window, subtracts pixel leaving

• Iterative Box Filter ≈ Gaussian blur
• Using pixel shaders, it is impossible to implement a

rolling box filter
– Each thread requires writing more than one pixel

• CUDA allows executing rows/columns in parallel
– Uses tex2D to improve read performance and simplify

addressing

© 2008 NVIDIA Corporation.

fast box filter

Source Image (input) Output Result
• Separable, two pass filter. First row pass, then column pass

© 2008 NVIDIA Corporation.

fast box filter (row pass pixel 0)

• Assume r = 2, each thread works pixels along the row and sums (2r+1) pixels
• Then average (2r+1) pixels and writes to destination (i, j)

0
1
2
3

=+ + + +
(2r + 1)

3

1 1 1
2 2 2

1 1
2 2

0 0 00 0

3 3 33 3 3 3 33 3

3 33 33

© 2008 NVIDIA Corporation.

fast box filter (row pass pixel 11)

• Take previous sum from pixel 10, -1 pixel (i - (r+1), j), +1 pixel (i +(r+1), j)
• Average (2r+1) pixels and Output to (i, j)

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

© 2008 NVIDIA Corporation.

fast box filter (finish row pass)
• Each thread continues to iterate until the entire row of pixels is done
• Average then Write to (i, j) in destination image
• A single thread writes the entire row of pixels

0 0
1 1
2 2
3 3

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

0 0
1 1
2 2
3 3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

0 0 0
1 1 1
2 2 2
3 3 3

0
1
2
3

0
1
2
3

0
1
2
3

• Note: Writes are not coalesced
• Solution: Use shared memory to cache results per warp,
call __syncthreads(), then copy to global mem to achieve Coalescing

© 2008 NVIDIA Corporation.

Column Filter Pass (final)
• Threads (i, j) read from global memory and sum along the column
from row pass image, we get Coalesced Reads

• Compute pixel sums from previous pixel, -1 pixel, +1 pixel
• Average result and Output to (i, j). We get Coalesced Writes

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

0 1 2 3
0 1 2 3

0 1 2 3

0 1 2 3
0 1 2 3

© 2008 NVIDIA Corporation.

Video processing with CUDA

• GPU has different engines
– Video Processor (decoding video bitstreams)
– CUDA (image and video processing)
– DMA Engine (transfers data host GPU)

• CUDA enables developers to access these engines

© 2008 NVIDIA Corporation.

• NVCUVID: video extension for CUDA
• Access to video decoder core requires

VP2 (> G80)
• Similar to DXVA API, but will be

platform OS independent.
• Interoperates with CUDA (surface

exchange) with OpenGL and DirectX
• CUDA SDK 2.0: “cudaVideoDecode”

CUDA Video Extensions

© 2008 NVIDIA Corporation.

• VP2 is a dedicated video-decode
engine on NVIDIA GPUs.

• Supports:
• MPEG-1, MPEG-2
• H.264

• Can operate in parallel with GPU’s
DMA engines and 3D Graphics engine.

• Very low power.

Video Processor (VP2)

© 2008 NVIDIA Corporation.

YUV to RGB conversion

• Video Processor
– Decodes directly to a NV12 surface 4:2:0 that can be mapped directly

to a CUDA surface
– Y samples (bytes) are packed together, followed by interleaved

Cb, Cr samples (bytes) sub sampled 2x2

• CUDA Kernel performs YUV to RGB

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

r

b

C
C
Y

B
G
R

0772.10.1
714136.034413.00.1
402.100.1

© 2008 NVIDIA Corporation.

__global__ void YUV2RGB(uint32 *yuvi, float *R, float *G, float *B)
{

float luma, chromaCb, chromaCr;
// Prepare for hue adjustment (10-bit YUV to RGB)
luma = (float)yuvi[0];
chromaCb = (float)((int32)yuvi[1] - 512.0f);
chromaCr = (float)((int32)yuvi[2] - 512.0f);

// Convert YUV To RGB with hue adjustment
*R = MUL(luma, constHueColorSpaceMat[0]) +

MUL(chromaCb, constHueColorSpaceMat[1]) +
MUL(chromaCr, constHueColorSpaceMat[2]);

*G = MUL(luma, constHueColorSpaceMat[3]) +
MUL(chromaCb, constHueColorSpaceMat[4]) +
MUL(chromaCr, constHueColorSpaceMat[5]);

*B = MUL(luma, constHueColorSpaceMat[6]) +
MUL(chromaCb, constHueColorSpaceMat[7]) +
MUL(chromaCr, constHueColorSpaceMat[8]);

}

YUV to RGB CUDA kernel

© 2008 NVIDIA Corporation.

• Five entry-points for Decoder object:
• cuvidCreateDecoder(...);
• cuvidDestroyDecoder(...);
• cuvidDecodePicture(...);
• cuvidMapVideoFrame(...);
• cuvidUnmapVideoFrame(...);

• Sample application also uses helper
library for Parsing video streams.
• Provided in binary as part of SDK

NVCUVID API

© 2008 NVIDIA Corporation.

cudaVideoDecode Demo

© 2008 NVIDIA Corporation.

• Image Processing:
• CPU vs. 3D APIs vs. CUDA
• Design implications

• CUDA for Histogram-Type Algorithms
– Standard and Parallel Histogram
– CUDA Image Transpose Performance
– Waveform Monitor Type Histogram

Image Processing (contd.)

© 2008 NVIDIA Corporation.

API Comparison
API CPU Code 3D API (DX/GL) CUDA Code

Image Data Heap Allocated Texture/FB CUDA 2D Allocate

Alignment Matters n/a Matters

Cached Yes Yes No

Access (r/w) Random/random Random/fixed Random/random

Access order Matters
(general purpose caches)

Minimized
(2D Caching Schemes)

Matters
(coalescing, CUDA Array -> Texture HW)

In-Place Good n/a Doesn’t matter

Threads Few per Image
(Programmer’s decision. But
typically one per tile; one
tile per core)

One Per Pixel
(Consequence of using Pixel
Shaders)

One per few Pixels
(Programmer’s decision. Typically one
per input or output pixel)

Data Types All 32bit-float
(half-float maybe)

All
(Double precision, native instructions
not for all though)

Storage Types All Tex/FB Formats All

© 2008 NVIDIA Corporation.

• Extremely Important Algorithm
• Histogram Data used in large number of

“compound” algorithms:
• Color and contrast improvements
• Tone Mapping
• Color re-quantization/posterize
• Device Calibration (Scopes see below)

Histogram

© 2008 NVIDIA Corporation.

Histogram Performance
• 3D API not suited for histogram computation.
• CUDA Histogram is 300x faster than previous

GPGPU approaches:

64 bins 256 bins

CUDA¹ 6500 MB/s 3676 MB/s

R2VB² 22.8 MB/s 42.6 MB/s

CPU³ 826 MB/s 1096 MB/s

¹ http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html#histogram64
² Efficient Histogram Generation Using Scattering on GPUs, T. Sheuermann, AMD Inc, I3D 2007
³ Intel Core 2 @ 2.9 GHz

© 2008 NVIDIA Corporation.

Histogram Algorithm
• Distribution of

intensities/colors in an
image

• Standard algoritm:

• How to parallelize?

Reinhard HDR Tonemapping operator

for all i in [0, max_luminance]:
h[i] = 0;

for all pixel in image:
++h[luminance(pixel)]

© 2008 NVIDIA Corporation.

• Subdivide “for-all-pixel” loop
• Thread works on block of pixels (in

extreme, one thread per pixel)
• Need ++h[luminance(pixel)] to be

atomic (global atomics >= compute1_1)

• Breaking up Image I into sub-images
I = UNION(A, B):
• H(UNION(A, B)) = H(A) + H(B)
• Histogram of concatenation is sum of

histograms

Histogram Parallelization

© 2008 NVIDIA Corporation.

• Have one histogram per thread
• Memory consumption!
• Consolidate sub-histograms in parallel

(parallel-reduction).

• CUDA:
• Histograms in shared memory
• 64bins * 256threads = 16kByte (8bit bins)
• Approach not feasible for >64 bins

Better Parallel Histogram

© 2008 NVIDIA Corporation.

• Compute capability 1.2 has shared-
memory atomic-operations.

• Victor Podlozhnyuk “Manual shared
memory per-warp atomics” (CUDA
SDK histogram256 sample)

• Have groups of 32 threads work on
one sub-histogram, reduce as before.

>64bins Parallel Histogram

© 2008 NVIDIA Corporation.

• My attempt to implement a waveform
monitor for video using CUDA.

• One histogram per
column of the in-
put video frame.

• In order to achieve
good performance
need to solve various memory-access
related issues.

Real-World Problems with
Histograms

© 2008 NVIDIA Corporation.

• Input video
produces Y-channel
(luma) as planar
data in row-major
form.

• Coalescing: 16
threads access 32bit
word in subsequent
locations.

Accessing 8-bit Pixels

0 0 0 1 1 1 3 3 30 1 32 2 2 2

© 2008 NVIDIA Corporation.

• => 16xM thread
blocks => 64 columns
processed by each
block.

• => 64 histograms in
smem:
64 * 256 * 4 = 64kByte. Max
16 kByte!

SMEM Exhausted!
0 0 0 1 1 1 3 3 30 1 32 2 2 2

© 2008 NVIDIA Corporation.

• 16xM TB dimensions desirable but
impossible for Y-surface read

• Nx32 TB dimensions desirable for
“manual atomics” in waveform code

• Solution: Fast transpose input image!
• Also: Result histograms could be

copied efficiently (shared->global)
horizontally.

Thread-Block Dimensions

© 2008 NVIDIA Corporation.

• Problem: Writing a fast Transpose vs.
writing Transpose fast.

• Naïve implementation:

Image Transpose

kernel(char * pi, int si, char * po, int so,
int w, int h)

{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;

if (y < w && x < h)
OUTPUT_PIXEL(y, x) = INPUT_PIXEL(x, y);

}

© 2008 NVIDIA Corporation.

• Memory reads AND writes not
coalesced because reading/writing
bytes, not words.

• Bandwidth: ~3 GByte/s (of ~141max)
• Idea:

• Need to read (at least) 16 words in
subsequent threads.

• Need to write (at least) 16 words in
subsequent threads.

Problems with Naïve Code

© 2008 NVIDIA Corporation.

• Subdivide image into “micro-blocks”
of 4x4 pixels (16Byte).

• Thread blocks of 16x16 threads.
• Each thread operates on a micro-

block.
• Shared memory for micro-blocks:

16 x 16 x 4 x 4 = 4kByte.

Improved Transpose Idea

© 2008 NVIDIA Corporation.

• Each thread reads its micro-block into
shared memory.

• Each thread transposes its micro-
block.

• Each thread writes its micro-block
back into global memory.

Basic Algorithm

© 2008 NVIDIA Corporation.

• Reading one row of
MicroBlock via
unsigned int
rather than 4x
unsigned char

Reading and Writing
MicroBlocks

© 2008 NVIDIA Corporation.

• One (16-thread)
warp reads one row
of MicroBlocks.

• One 16x16 block of
threads deals with
a 64x64 pixel
region (8-bit
luminance pixels).

16x16 Thread Blocks

t0 t1 t2 t15

t16 t17 t18 t31

© 2008 NVIDIA Corporation.

• Assume single 64x64 image.

• Problem: Non-coalesced writes!

Pseudo Code

kernel(...)
{
int i = threadIdx.x;
int j = threadIdx.y;

readMicroBlock(image, i, j, shared, i, j);
transposeMicroBlock(shared, i, j);
writeMicroBlock(shared, i, j, image, j, i);

}

© 2008 NVIDIA Corporation.

• readMicroBlock(image, i, j, shared, i, j);
• writeMicroBlock(shared, i, j, image, j, i);

Write Coalescing for Transpose

t0 t1 t2 t15

t16 t17 t18 t31

t0 t16 t32

t1 t17 t33

Input Image Output Image

© 2008 NVIDIA Corporation.

• Simple fix:

• Must __syncthreads() because Ti,j now
writes data produced by Tj,i.

Coalesced Writes

kernel(...)
{
int i = threadIdx.x;
int j = threadIdx.y;

readMicroBlock(image, i, j, shared, i, j);
transposeMicroBlock(shared, i, j);
__syncthreads();
writeMicroBlock(shared, j, i, image, i, j);

}

© 2008 NVIDIA Corporation.

Algorithm 256x256 512x512 1024^2 2048^2 4096^2

CUDA Naive 2.39 3.72 3.43 3.29 2.89

CUDA Opt 16.64 28.73 35.44 38.88 40.33

IPPI 9.03 8.49 5.07 3.83 2.60

Transpose Performance

Unit: GB/s throughput.
GPU: GeForce GTX 280 (GT200)
CPU: Intel Core 2 Duo X6800 @ 2.93GHz

© 2008 NVIDIA Corporation.

• Memory access crucial for CUDA
performance.

• Shared memory as user-managed
cache.

• 8-bit images especially tricky.
• Extra pass may improve over all

performance.

Summary

© 2008 NVIDIA Corporation.

Waveform Demo

© 2008 NVIDIA Corporation.

• Eric Young
– (eyoung@nvidia.com)

• Frank Jargstorff
– (fjargsto@nvidia.com)

Questions?

