
ACCELERATE RESULTS GPU COMPUTING | NOV 11

ACCELERATE YOUR RESULTS
WITH GPU COMPUTING

GPU-ACCELERATED LIBRARIES
Take advantage of the massively parallel computing power
of the GPU by using the GPU-accelerated versions of your
existing libraries. Some examples include:

For a more complete list of commercial and open-source
libraries, visit developer.nvidia.com/gpu-accelerated-libraries

NVIDIA Math Libraries
A collection of GPU-accelerated libraries—including
FFT, BLAS, sparse matrix operations, RNG,
performance primitives for image/signal processing,
and the Thrust C++ library of high-performance
templated algorithms—that all deliver significant
speedups when compared to CPU-only libraries.
These highly optimized libraries are free of charge
in the NVIDIA® CUDA® Toolkit available at
www.nvidia.com/getcuda

EM Photonics CULA
A GPU-accelerated linear algebra (LA) library that
dramatically improves the performance of
sophisticated mathematics.

MAGMA
A collection of open-source, next-generation linear
algebra libraries for heterogeneous GPU-based
architectures supporting interfaces to current LA
packages and standards (e.g. LAPACK and BLAS).

RogueWave IMSL
A comprehensive set of mathematical and statistical
functions for Fortran applications to take advantage
of GPU acceleration.

Accelerating applications on hundreds of computing cores in
GPUs is easier than ever with a rich ecosystem of libraries,
compiler directives, and programming languages for GPU
computing. Whether your application runs on a single
workstation or thousands of nodes in a cluster, there’s a
solution that meets your needs.

To get started, simply choose your preferred solution:
•	GPU-accelerated libraries,
•	Compiler directives, or
•	A familiar programming language such as C, C++,
	 or Fortran.
Learn more about getting started with GPU computing in the
sections below.

“Drop-in” Acceleration

Applications

Quickly Accelerate
Serial Applications

Programming
Languages

Compiler
DirectivesLibraries

Broadest Applicability
and Maximum
Performance

developer.nvidia.com/gpu-accelerated-libraries
www.nvidia.com/getcuda

DIRECTIVE-BASED SOLUTIONS
Directives allow you to quickly add GPU
acceleration to the most performance
critical sections of your application
while maintaining portability. Directive-
based solutions for C and Fortran available
today include:

PGI Accelerator™ Compilers
Similar to OpenMP, PGI Accelerator
directives can be added to existing C99 or
Fortran applications to achieve GPU
acceleration on Linux, Mac OS X, and
Windows.

CAPS HMPP Directives
This HMPP compiler integrates powerful
data-parallel back ends for CUDA C and
OpenCL that dramatically reduces
development time. The HMPP runtime
ensures application deployment on multi-
GPU systems.

LANGUAGE INTEGRATION WITH C,
C++, OR FORTRAN
Gain maximum performance and flexibility
for your applications by writing your own
GPU code. NVIDIA GPUs support the
industry’s most robust languages and APIs
for GPU computing developers, including:

NVIDIA CUDA C AND CUDA C++
The NVIDIA CUDA Toolkit provides a
comprehensive development environment

for C and C++ developers building GPU-
accelerated applications. The toolkit
includes a compiler for NVIDIA GPUs, math
libraries, and tools for debugging and
optimizing the performance of your
applications. Also included are
programming guides, user manuals, API
reference, and other resources to help you
get started.

PGI CUDA Fortran
A CUDA Fortran Compiler developed by PGI
provides Fortran language support for
NVIDIA’s CUDA-enabled GPUs.

NVIDIA OpenCL
A low-level API for heterogeneous
computing that runs on
NVIDIA GPUs.

Learn more at:
http://developer.nvidia.com/languages

DEVELOPER TOOLS
Understanding how your application uses
the GPU is crucial for acceleration and
optimization. Here are some available GPU
debugging and performance analysis tools:

NVIDIA CUDA-GDB
A debugger capable of handling thousands
of threads running simultaneously on each
GPU in the system.

Allinea DDT
A powerful debugger that debugs hybrid
MPI, OpenMP, and CUDA applications on a
workstation or GPU cluster.

TotalView
AGUI-based debugger for one or many
processes/threads with complete control
over program execution, including support
for OpenMP, MPI, and GPUs.

NVIDIA Visual Profiler
A cross-platform performance profiling
tool that delivers vital feedback for
optimizing CUDA C/C++ applications.

TAU Performance System
A profiling and tracing toolkit for
performance analysis of hybrid parallel
programs written in CUDA C, OpenCL,
pyCUDA, or HMPP.

VampirTrace
A performance monitor that provides
detailed insight to runtime behavior of
accelerators enabling extensive
performance analysis and optimization.

NVIDIA Parallel Nsight™ 2.0 for
Visual Studio
A fully integrated CPU and GPU
development environment for Microsoft
Visual Studio 2011.

Visit developer.nvidia.com/cuda-tools-
ecosystem

JOB SCHEDULING AND CLUSTER
MANAGEMENT SOLUTIONS
Most commercial and open source job
schedulers and cluster management
solutions support GPUs. For more
information on these powerful tools, visit:
developer.nvidia.com/cuda-tools-
ecosystem

TECHNICAL WEBINARS
Get training designed specifically for
developers and participate in Q&A from our
GPU computing experts at developer.
nvidia.com/gpu-computing-webinars

CONSULTING AND TRAINING SERVICES
Independent consulting and training
services are available to support you in
accelerating your applications. Learn more
at: www.nvidia.com/object/cuda_
consultants.html

BENEFITS
> Easy – Use simple compiler hints
> Fast – Accelerate on GPUs quickly
> Portable – Optimize on CPUs or GPUs

For more information on directive-based
programming, visit
www.nvidia.com/2xin4weeks

Serial code is only able to take
advantage of a single CPU core, even
on multicore CPUs.

Add a simple compiler directive to provide a hint
for the compiler to automatically parallelize your
for loop and execute it on the GPU.

Learn more about GPU computing at http://developer.nvidia.com/cuda
© 2011 NVIDIA, the NVIDIA logo, CUDA, and Parallel Nsight are trademarks and/or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated. All rights reserved.

Multicore CPU

main() {
double pi = 0.0f; long i;
for (i=0; i<N: i++)
{
 double t= (double)((i+0.5)/N);
 pi +=4.0/(1.0+t*t);
}
printf(”pi=%f\n”,pi/N;

}

Multicore CPU NVIDIA GPU

HINT

main() {
double pi = 0.0f; long i;
#pragma acc region for
for (i=0; i<N: i++)
{
 double t= (double)((i+0.5)/N);
 pi +=4.0/(1.0+t*t);
}
printf(”pi=%f\n”,pi/N;

}

OR

http://developer.nvidia.com/languages
developer.nvidia.com/cuda-tools-ecosystem
developer.nvidia.com/cuda-tools-ecosystem
developer.nvidia.com/cuda-tools-ecosystem
developer.nvidia.com/cuda-tools-ecosystem
developer.nvidia.com/gpu-computing-webinars
developer.nvidia.com/gpu-computing-webinars
www.nvidia.com/object/cuda_consultants.html
www.nvidia.com/object/cuda_consultants.html
www.nvidia.com/2xin4weeks
http://developer.nvidia.com/cuda

