Unrolling parallel loops

Vasily Volkov
UC Berkeley

November 14, 2011
Today

• Very simple optimization technique
• Closely resembles loop unrolling
• Widely used in high performance codes
Mapping to GPU: it starts with a loop

```c
for( int i = 0; i < n; i++ )
    a[i] = b[i] + c[i];
```

__global__ void add(int *a, int *b, int *c)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = b[i] + c[i];
}

One loop iteration is mapped to one GPU thread

GPU kernel
What if you unroll the loop before mapping?
Unroll the loop first...

```c
for( int i = 0; i < n; i++ )
a[i] = b[i] + c[i];
```

```c
for( int i = 0; i < n; i += 2 )
{
    a[i+0] = b[i+0] + c[i+0];
    a[i+1] = b[i+1] + c[i+1];
}
```

2x fewer iterations, 2x more work per iteration
...and then map to GPU?

```c
__global__ void add( int *a, int *b, int *c )
{
    int i = 2*(threadIdx.x+blockIdx.x*gridDim.x);
    a[i+0] = b[i+0] + c[i+0];
    a[i+1] = b[i+1] + c[i+1];
}
```

2x fewer threads, 2x more work per thread

But why would you ever do that?
Agenda:

I. Speedup in molecular dynamics kernel
II. Speedup in radio astronomy kernel
III. Case study: a linear algebra kernel
Example: molecular dynamics

One of the first works in CUDA:

Found that 8x “unrolling” gives 2x speedup
Charged particles on 3D grid

Goal:
Compute electric potential \(V(r) = \frac{1}{4\pi\varepsilon_0} \sum \frac{q_i}{|r_i - r|} \) on grid.
Pseudo-code for the problem

for each grid point i:
 for each particle j:
 add up j’s contribution to i
 store the result
Parallelize the outer loop

for each grid point i in parallel:
 for each particle j:
 add up j’s contribution to i
 store the result
Mapping: one grid point per thread

19x faster than optimized CPU code
– Can we do better?
Unroll the parallel loop

for every second grid point \(i \) in parallel:
 for each particle \(j \):
 add up \(j \)’s contribution to \(i \)
 add up \(j \)’s contribution to \(i+1 \)
 store the both results
Multiple grid points per thread

Advantage: read q_i, r_i once, use multiple times
Also, can eliminate common subexpressions in $|r_i - r|$
“Unrolling” results in 2.2x speedup

<table>
<thead>
<tr>
<th>Grid points per thread</th>
<th>Speedup vs quad core CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
</tr>
</tbody>
</table>

A substantial speedup for a simple optimization!
Radio astronomy

One of the later papers:

1.8x speedup by doing 4x more work per thread
Array of antennas

Many antennas work as a single telescope
• For the cost of extra processing power

Input data: signal $X_i(t)$ from each antenna

Output: cross-correlation $S_{ij} = \sum_{t} X_i(t)X_{j}^{\dagger}(t)$

Different frequencies are processed separately
Parallelized pseudo-code

for each pair of antennas i and j in parallel:

for each time sample t:

$$S_{ij} := S_{ij} + X_i(t)X_j^*(t)$$

store the result
Unrolling the loops

for each pair of even i and j in parallel:

for each time sample t:

\[
S_{ij} := S_{ij} + X_i(t)X^*_j(t)
\]
\[
S_{i+1,j} := S_{i+1,j} + X_{i+1}(t)X^*_j(t)
\]
\[
S_{i,j+1} := S_{i,j+1} + X_i(t)X^*_{j+1}(t)
\]
\[
S_{i+1,j+1} := S_{i+1,j+1} + X_{i+1}(t)X^*_{j+1}(t)
\]

store the result

(mapped to threads)
“Unrolling” results in 1.8x speedup

<table>
<thead>
<tr>
<th>Matrix entries per thread</th>
<th>Gflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1</td>
<td>562</td>
</tr>
<tr>
<td>2x1</td>
<td>852</td>
</tr>
<tr>
<td>2x2</td>
<td>1023</td>
</tr>
</tbody>
</table>

Reason: data reuse in local variables

Blocking in GPU matrix multiply was used before CUDA, see: Moravánszky, A. 2003. *Dense Matrix Algebra on the GPU.*
Case study: Small linear solves

• Solve many independent 32x32 s.p.d. systems $Ax=b$
 – Solve one system per thread block
• Minimum flop solution: Cholesky+triangular solve
 – Challenging to implement efficiently in SIMD
• Use Gauss-Jordan instead, no pivoting
 – Drawback: does 6x more flops than Cholesky
• Here: omit right-hand side
 – Easy to add back with little overhead (1.2x slowdown)
• Target platform: GTX480, CUDA 4.0
Baseline solution

```c
__shared__ float A[32][32];
__global__ void eliminate( float *in, float *out ) {
    int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

    // copy matrix to shared memory
    A[y][x] = in[32*32*problem+32*y+x];

    // run Gauss-Jordan in shared memory (see next slide)
    #pragma unroll
    for( int i = 0; i < 32; i++ )
    {
        if( y == i ) A[y][x] /= A[i][i];
        __syncthreads();
        if( y != i ) A[y][x] -= A[y][i]*A[i][x];
    }

    // copy result to global memory
    out[32*32*problem+32*y+x] = A[y][x];
}
```
Gauss-Jordan in shared memory

1. Scale the pivot row
2. Subtract it from every other row

Get 1 on diagonal
Get 0 off diagonal

```c
for( int i = 0; i < 32; i++ ) {
    if( y == i ) A[y][x] /= A[i][i];
    __syncthreads( );
    if( y != i ) A[y][x] -= A[y][i]*A[i][x]; //no __syncthreads( ) needed here
}
```
Unroll the parallel loop

• Use half as many threads
• But twice as much work per thread
• This amounts to replicating lines of code
Unrolling 2x (red is new)

```c
__global__ void eliminate( float *in, float *out ) {
    int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

    //copy matrix to shared memory
    A[2*y+0][x] = in[32*32*problem+32*(2*y+0)+x];
    A[2*y+1][x] = in[32*32*problem+32*(2*y+1)+x];

    //Gauss-Jordan in shared memory
    #pragma unroll
    for( int i = 0; i < 32; i++ )
    {
        if( y == i/2 ) A[i][x] /= A[i][i];
        __syncthreads( );
        if( 2*y+0 != i ) A[2*y+0][x] -= A[i][x]*A[2*y+0][i];
    }

    //store the result in global memory
    out[32*32*problem+32*(2*y+0)+x] = A[2*y+0][x];
    out[32*32*problem+32*(2*y+1)+x] = A[2*y+1][x];
}
```
__global__ void eliminate(float *in, float *out) {
 int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

 A[4*y+0][x] = in[32*32*problem+32*(4*y+0)+x];
 A[4*y+1][x] = in[32*32*problem+32*(4*y+1)+x];
 A[4*y+2][x] = in[32*32*problem+32*(4*y+2)+x];
 A[4*y+3][x] = in[32*32*problem+32*(4*y+3)+x]; // do 4x more work

 #pragma unroll
 for(int i = 0; i < 32; i++)
 {
 if(y == i/4) A[i][x] /= A[i][i];
 __syncthreads();
 if(4*y0 != i) A[4*y0][x] -= A[i][x]*A[4*y0][i];
 if(4*y1 != i) A[4*y1][x] -= A[i][x]*A[4*y1][i];
 if(4*y2 != i) A[4*y2][x] -= A[i][x]*A[4*y2][i];
 if(4*y3 != i) A[4*y3][x] -= A[i][x]*A[4*y3][i];
 }

 out[32*32*problem+32*(4*y0)+x] = A[4*y0][x];

 ...
}
```c
__global__ void eliminate( float *in, float *out ) {
    int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

    for( int j = 4*y; j < 4*(y+1); j++ ) // unrolled by compiler
        A[j][x] = in[32*32*problem+32*j+x];

    #pragma unroll
    for( int i = 0; i < 32; i++ )
    {
        if( y == i/4 ) A[i][x] /= A[i][i];
        __syncthreads();
        for( int j = 4*y; j < 4*(y+1); j++ )
            if( j != i ) A[j][x] -= A[j][i]*A[i][x];
    }

    for( int j = 4*y; j < 4*(y+1); j++ )
        out[32*32*problem+32*j+x] = A[j][x];
}
```
__global__ void eliminate(float *in, float *out) {
 int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

 for(int j = 8*y; j < 8*(y+1); j++)
 A[j][x] = in[32*32*problem+32*j+x];

 #pragma unroll
 for(int i = 0; i < 32; i++)
 {
 if(y == i/8) A[i][x] /= A[i][i];
 __syncthreads();
 for(int j = 8*y; j < 8*(y+1); j++)
 if(j != i) A[j][x] -= A[j][i]*A[i][x];
 }

 for(int j = 8*y; j < 8*(y+1); j++)
 out[32*32*problem+32*j+x] = A[j][x];
}
Unrolling 16x

```c
__global__ void eliminate( float *in, float *out ) {
    int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

    for( int j = 16*y; j < 16*(y+1); j++ )
        A[j][x] = in[32*32*problem+32*j+x];

    #pragma unroll
    for( int i = 0; i < 32; i++ )
    {
        if( y == i/16 ) A[i][x] /= A[i][i];
        __syncthreads();

        #pragma unroll // have to be explicit for heavy unrolling
        for( int j = 16*y; j < 16*(y+1); j++ )
            if( j != i ) A[j][x] -= A[j][i]*A[i][x];
    }

    for( int j = 16*y; j < 16*(y+1); j++ )
        out[32*32*problem+32*j+x] = A[j][x];
}
```
Aggregate speedup: 2.6x

Let’s use profiler to figure out what happened.
Profiler statistics per thread

<table>
<thead>
<tr>
<th>Elements per thread</th>
<th>Gflop/s</th>
<th>Registers per thread</th>
<th>Instructions executed per thread</th>
<th>Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>8</td>
<td>397</td>
<td>0.67</td>
</tr>
<tr>
<td>2</td>
<td>135</td>
<td>9</td>
<td>470</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>153</td>
<td>11</td>
<td>783</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>158</td>
<td>15</td>
<td>1431</td>
<td>0.67</td>
</tr>
<tr>
<td>16</td>
<td>159</td>
<td>21</td>
<td>2740</td>
<td>0.33</td>
</tr>
</tbody>
</table>

- More resources consumed per thread
- Occupancy goes up and down

Doesn’t really explain the speedup
Profiler statistics per thread block

<table>
<thead>
<tr>
<th>Threads per block</th>
<th>Gflop/s</th>
<th>Registers per block</th>
<th>Instructions per thread block</th>
<th>Thread blocks per multiprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>62</td>
<td>8192</td>
<td>12704</td>
<td>1</td>
</tr>
<tr>
<td>512</td>
<td>135</td>
<td>4608</td>
<td>7520</td>
<td>3</td>
</tr>
<tr>
<td>256</td>
<td>153</td>
<td>2816</td>
<td>6264</td>
<td>6</td>
</tr>
<tr>
<td>128</td>
<td>158</td>
<td>1920</td>
<td>5724</td>
<td>8</td>
</tr>
<tr>
<td>64</td>
<td>159</td>
<td>1344</td>
<td>5480</td>
<td>8</td>
</tr>
</tbody>
</table>

Fewer resources used per thread block
- i.e. per same amount of work

More concurrent thread blocks

Fewer instructions per each solve
Poor latency hiding w/ 1 thread block per SM

• First thing block does – access global memory
• Can’t do any computing until data comes
• So, can’t hide latency

• Need to have at least 2 concurrent blocks
 – Not possible if using 32x32 thread blocks
Instruction throughput decreases – but runs faster?
Dramatically fewer auxiliary instructions (control, barriers, etc.)

- Similar effect as with classical loop unrolling

Most instructions are shared memory access?!
Why so many shared memory accesses?

How many instructions is this:

\[A[y][x] -= A[y][i]*A[i][x]; \]

- 1 arithmetic instruction (FMA)
- 3 loads, 1 store

Note: each load costs 2 arithmetic instructions
- 32 banks vs 32 streaming processors
- But run at half clock rate

These 3 loads are 6x more expensive than 1 FMA
- Eliminate some?
Look for reuse

__global__ void eliminate(float *in, float *out) {
 int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;
 for(int j = 8*y; j < 8*(y+1); j++)
 A[j][x] = in[32*32*problem+32*j+x];
 #pragma unroll
 for(int i = 0; i < 32; i++)
 {
 if(y == i/8) A[i][x] /= A[i][i];
 __syncthreads();
 for(int j = 8*y; j < 8*(y+1); j++)
 if(j != i) A[j][x] -= A[j][i]*A[i][x];
 }
 for(int j = 8*y; j < 8*(y+1); j++)
 out[32*32*problem+32*j+x] = A[j][x];
}
__global__ void eliminate(float *in, float *out) {
 int x = threadIdx.x, y = threadIdx.y, problem = blockIdx.x;

 float a[8]; // array in registers
 for(int j = 0; j < 8; j++)
 a[j] = A[8*y+j][x] = in[32*32*problem+32*(8*y+j)+x];

 #pragma unroll
 for(int i = 0; i < 32; i++)
 {
 if(y == i/8) A[i][x] = a[i%8] /= A[i][i];
 }

 __syncthreads();
 float Aix = A[i][x];
 for(int j = 0; j < 8; j++)

 for(int j = 0; j < 8; j++)
 out[32*32*problem+32*(8*y+j)+x] = a[j];
}
The effect: further 1.8x speedup

- Reuse: 280 Gflop/s
- No reuse: 159 Gflop/s
- Baseline: 62 Gflop/s

Matrix entries per thread
Conclusion

• Simple optimization technique
• Resembles loop unrolling
• Often results in 2x speedup