

TB-05566-001_v01 | November 2010

Technical Brief

VIDEO CAPTURE, ENCODING,
AND STREAMING IN A MULTI-
GPU SYSTEM

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | ii

TB-05566-001_v01

TABLE OF CONTENTS

Video Capture, Encoding, and Streaming in a Multi-GPU System 4
System Overview ... 5
Video Capture ... 6

Connecting the Capture Card with a GPU ... 6
Video Processing with CUDA .. 8
3D video (Stereo) .. 10
Ancillary Data ... 10
Encoding .. 11

Encoder Performance Considerations ... 12
System Considerations .. 14
Data Considerations ... 14

Capture ... 15
Stereo Content Handling .. 15
Image Formats and Format Conversions ... 15
Image resampling .. 18
Data Movement ... 19

Streaming ... 19
3D Client ... 20
Video Stream Publishing ... 21

References: ... 21

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | iii

LIST OF FIGURES

Figure 1. High level system diagram .. 5
Figure 2. Capture GPU Tasks .. 14
Figure 3. Encoding GPU Tasks .. 14
Figure 4. YUY3 Format ... 15
Figure 5. NV12 Format ... 16
Figure 6. YV12 Format .. 17
Figure 7. Lanczos Filter ... 18
Figure 8. Streaming Data .. 19
Figure 9. Microsoft Silverlight SMF 2.0 Video Player Data Format 20

LIST OF TABLES

Table 1. Hardware Components ... 6
Table 2. Encoder Performance Chart .. 13

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 4

VIDEO CAPTURE, ENCODING, AND
STREAMING IN A MULTI-GPU SYSTEM

Nowadays, compression plays a major role in any media delivery infrastructure. In
video streaming it is especially important as high-definition uncompressed video can
consume as much as one gigabit per second for a single stream. Video codecs such as
H.264 and VC-1 have made viewing high-quality video at low bit rates possible.
However, for the best viewing experience, content providers are required to produce
multiple versions of the captured stream at various bit rates for adaptive streaming, and
at various resolutions to fit the screens of many different viewer devices.

Currently there is a need for efficient and affordable solutions that allow content
providers to capture multiple SDI video feeds (or video file inputs) and produce
multiple bitrates of each feed for internet delivery. There is also a growing demand for
systems that are capable of capturing and streaming live 3D content. NVIDIA® GPUs are
incorporated into all aspects of image and video processing thanks to the tremendous
processing power available through the GPUs highly parallel architecture.

The purpose of this document is to outline some of the design and programming
considerations required to build a real-time video encoder and server using NVIDIA
technology. It details the fundamentals of programming for the NVIDIA Quadro® SDI
video capture card, the efficiencies of GPU-based h.264 encoding, and how client
applications can stream and watch 3D video.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 5

SYSTEM OVERVIEW

The described video encoder and video server system allows capturing several video
feeds and it harnesses the power of multiple GPUs to deliver multiple compressed video
streams to internet clients.

The figure below is a high level diagram for the system.

Figure 1. High level system diagram

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 6

The encoding portion of the system is implemented using the NVIDIA Quadro SDI
capture card that provides the ability to capture up to four SDI video feeds with the
lowest possible latency directly to an NVIDIA Quadro GPU and multiple Quadro and
NVIDIA Tesla™ GPUs. The GPUs are used to accelerate video compression of the
captured feeds. Table 1 lists the hardware components used to build the system.

Table 1. Hardware Components

Component Description
Quadro SDI Capture Card

PCI Express ×8 interface card capable of capturing
up to four single-link, or two dual-link HD SDI, or
two 3G SDI video streams directly into GPU video
memory.

GPU Quadro — GT200 and GF100 class

Tesla — GT200 and GF100 class

VIDEO CAPTURE

Video capture is done by the Quadro SDI Capture card. The device is capable of
capturing up to four single-link, or two dual-link HD SDI, or two 3G SDI video streams
directly into GPU video memory. This method delivers the lowest latency input to the
GPU. To perform the capture, the device must be bound to one (and only one) of the
GPUs that are supported for capture. Both the capture device and the GPU must be
programmatically configured using the combination of NVIDIA I/O API and OpenGL
capture extension (NvAPI with GL/WGL extension on windows, and NVCtrl with
GL/GLX extension on Linux).

Connecting the Capture Card with a GPU
Transfer of the SDI video data to the GPU is enabled by the GL_NV_video_capture
extension to OpenGL. The connection of the SDI card with the GPU is established using
an OpenGL rendering context. Prior to creating the rendering context the application
must select a device context on Windows and an XScreen on Linux to address a
particular GPU. On Windows, GPU affinity extension must be used to create a device
context corresponding to a particular GPU. This device context should then be used
throughout capture configuration code.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 7

Code Listing 1: Addressing a Particular GPU on Windows:

HGPUNV gpuList[MAX_GPUS];

//populating a GPU affinity handle list.
int i = 0;
HGPUNV hGPU;
while(wglEnumGpusNV(GPUIdx,&hGPU))
{
 gpuList[i++] = hGPU;
 //hGPU and the affinity extension can be used for further GPU
identification
}
…
HGPUNV handles[2];
handles[0] = gpuList[CaptureGPU];
handles[1] = NULL;

HDC videoDC = wglCreateAffinityDCNV(handles);

//Use the affinity device context when configuring capture and creating
OpenGL rendering context
UINT numDevices = wglEnumerateVideoCaptureDevicesNV(videoDC, NULL);
…

Code Listing 2: Addressing a Particular GPU on Linux

On Linux, an XScreen associated with the chosen GPU must be used throughout capture
configuration code. There might be cases where there is no one-to-one GPUXScreen
correspondence in the system. NVCtrl API must be used to determine the GPU to
XScreen mapping.

//determine GPU<->XScreen mapping
ret = XNVCTRLQueryTargetCount(dpy, NV_CTRL_TARGET_TYPE_GPU, &num_gpus);
if (ret) {
 for (gpu = 0; gpu < num_gpus; gpu++) {
 /* X Screens driven by this GPU */
 ret = XNVCTRLQueryTargetBinaryData
 (dpy,
 NV_CTRL_TARGET_TYPE_GPU,
 gpu, // target_id
 0, // display_mask
 NV_CTRL_BINARY_DATA_XSCREENS_USING_GPU,
 (unsigned char **) &pData,
 &len);
 if (ret) {
 if(pData[0])
 xscreen[gpu] = pData[1];
 }

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 8

//NVCtrl API can be used for further GPU identification
 }
}
…
//The selected XScreen should be used when configuring capture and
creating OpenGL rendering context
VideoInDevices = glXEnumerateVideoCaptureDevicesNV(dpy,
xscreen[captureGPU],
 &numDevices);
…

The GL_NV_video_capture extension provides a mechanism for direct capture and
streaming of the incoming SDI video into either OpenGL video buffer objects (VBO),
which are an extension to the OpenGL pixel buffer objects(PBO) or texture objects in
GPU memory.

VIDEO PROCESSING WITH CUDA

Captured OpenGL objects already in the GPU memory can be mapped to CUDA
memory space and further processed by the GPU using the NVIDIA CUDA®-OpenGL
interoperability mechanism.

To do that, the CUDA device must be initialized for OpenGL interoperability. This can
be done using cuGLCtxCreate call when creating a CUDA context using the driver
API or cuGLSetGLDevice when setting up the device using the runtime API.

Note: OpenGL capture context must be current before creating a CUDA context
with OpenGL interoperability.

Code Listing 3:Creating CUDA Context for OpenGL Interoperability

CUdevice cuDevice;
CUcontext cuContext;
int selectedDevice = 0;
CUresult cerr = cuDeviceGet(&cuDevice, selectedDevice);
CheckError(cerr);
cerr = cuGLCtxCreate(&cuContext,
CU_CTX_MAP_HOST|CU_CTX_BLOCKING_SYNC,cuDevice);
CheckError(cerr);

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 9

A graphics object containing the video frame must be registered with CUDA in the
beginning of the program execution and mapped to CUDA address space every frame
prior to CUDA’s usage. The object must be unmapped before it can be used again for
capture. Code Listing 4 illustrates this.

Code Listing 4: CUDA Processing of a Video Buffer Object Using CUDA
Driver API

GLint buf = m_vidBufObj[objInd];

CUgraphicsResource cudaResource;

//Registering is done only once in the beginning
cuGraphicsGLRegisterBuffer(&cudaResource, buf,
CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE);
unsigned char *dptr;
// Buffer object mapping:Done every frame
cuGraphicsMapResources(1, &cudaResource, 0);
size_t num_bytes;
cuGraphicsResourceGetMappedPointer((void**)&dptr, &num_bytes,
cudaResource);

// Call the CUDA kernel here
// Buffer object unmapping:Done every frame
cuGraphicsUnmapResources(1, &cudaResource, 0);

// Unregistering is done only once in the end
cuGraphicsGLUnregisterBuffer(cudaResource)

Note that CUDA – OpenGL interop does not require for the CUDA context and OpenGL
context to reside on the same device. When there are several GPUs present in the
system, there is a possibility that the CUDA context and the OpenGL context reside on
two separate devices because OpenGL and CUDA enumerate devices independent of
each other. In this case the driver moves the buffer object from one device to the next via
system memory every frame for interop.

Data movement can be avoided when the CUDA context and OpenGL context are made
to reside on the same GPU. On Windows it is possible to achieve this by using GPU
affinity and cuWGLGetDevice as shown in code listing 5.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 10

Code Listing 5: Using GPU Affinity for CUDA OpenGL Interoperability
on Windows

HGPUNV gpuList[MAX_GPUS];
//see code listing 24 for gpuList setup
cuWGLGetDevice(&cuDevice, gpuList[CaptureGPU]);
// now create the CUDA context
result = cuGLCtxCreate(&cuContext,
CU_CTX_MAP_HOST|CU_CTX_BLOCKING_SYNC,cuDevice);

Currently on Linux there is no counterpart to cuWGLGetDevice (such as
cuGLXGetDevice call), but it is planned for a future release of CUDA. In place of this,
other techniques should be used in making sure that the CUDA context with OpenGL
interop is created on the GPU with a particular XScreen. For example; one can make sure
the capture GPU differs from the other GPUs in the system by name, then it would be
possible to identify it in CUDA using cuDeviceGetName and only create a context with
OpenGL interoperability for the device that has a particular name.

3D VIDEO (STEREO)

Stereoscopy is the most widely accepted method for capturing and delivering 3D video.
It involves capturing stereo pairs in a two-view setup, with cameras mounted side by
side and separated by the same (or close to the same) distance as between a person's
pupils. When 3D video feed capture is mentioned in this paper it assumes stereoscopic
capture and it also assumes that both left and right camera views arrive into the system
as two separate, unprocessed video feeds.

ANCILLARY DATA

In addition to video, the Quadro SDI Capture device captures ancillary data in both the
horizontal and vertical blanking regions of the video streams. It can be configured to
capture various types of data such as time-code, audio and other custom data packets.
Each frame, the data ends up in a structure in system memory. This data can be accessed
using the Ancillary Data API that is provided as a part of the Quadro SDI Capture SDK
(refer to the SDK for details) and it should be packaged together with the already
encoded frame prior to encoded stream distribution.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 11

ENCODING

For the purposes of this analysis, video encoding is performed using the NVIDIA CUDA
Video Encoder (NVCUVENC). Note that there are several other examples of CUDA
accelerated video encoding software products and tools that can be used instead (for
example MainConcept CUDA H.264/AVC Encoder).

NVCUVENC is compliant with AVC/H.2641

On the low level, an encoder takes raw YUV frames in NV12 format as input (

 (MPEG-4 Part 10 AVC, ISO/IEC 14496-10).
Its’ intent, like that of all of MPEG-4, was to produce video compression of acceptable
quality and very low bit-rate—around half the bit rate of its predecessors MPEG-2 and
H.263) and it is using the GPU to accelerate the encoding process. It is supported on all
CUDA enabled GPUs.

Image
Formats and Format Conversions on page 15) and generates Network Abstraction Layer
(NAL) packets.

Note: To aid in providing efficient and error resilient transport, the AVC
specification defines a Network Abstraction Layer (NAL) that encapsulates the
output of the encoder. NAL Units consist of video slices: independently-decodable
groups of macro blocks with positioning, quantization and other data. NAL Units
form the basic fragments of video that are transmitted to clients

The H.264 encoder operates on a frame in units of macroblock (16x16 pixels). Each
macroblock is encoded in intra (first picture or a reference frame of a sequence) or inter
(all the other pictures or pictures between the reference frames) mode. In either case, a
prediction macroblock P is formed based on a reconstructed frame. In intra mode, P is
formed from samples in the current frame that have been previously encoded, decoded,
and reconstructed. In inter mode, P is formed by motion-compensated prediction from
one or more reference frame(s).

There are four compute-intensive portions in the H.264 encode process and it is
important to consider those when using the GPU for the encode process acceleration:

 Motion Estimation (ME)
Examining the reference frame for similarities to the input macroblock.

 Motion Compensation (MC)
Block prediction by block reconstruction from previously encoded pictures using
motion vectors (if there are any).

1 H.264, is a subset of MPEG-4 also known as MPEG-4 Advanced Video Coding (AVC).

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 12

 Digital Signal Processing (DSP)
Transformation, scaling and quantization of the difference between the original and
the predicted block (the residual).

 Variable Length Coding (VLC)
Examining the frequency of patterns within the quantized residual block and its
coding.

NVCUVENC can use the GPU in two different modes:

 Partial GPU offload
 Full GPU offload.

In Partial Offload mode only the motion estimation task is executed on the GPU. For the
Full Offload mode, the bulk of computation is executed on the GPU, with just the
variable length coding running on the CPU.

Encoder Performance Considerations
The purpose of this section is to provide an example of the kind of performance analysis
that needs to be done when building a multi GPU encoding system and estimating the
maximum encoding load that can be handled by the system. It also goes over some
rudimentary encoder performance aspects that should be taken into consideration. For
the sake of simplicity, the encoder is configured with performance settings (baseline
profile, no B frames. and etc.). All of the video feeds are being encoded into 15 Mbps bit
streams.

Performance is measured in various system configurations.

The system contains two four core CPUs (Intel Xeon x5550). At first, performance of the
encoder on a single stream accelerated by a single NVIDIA GPU is considered and later
multiple GPU/multiple encode configurations are examined.

Encoding a Clip

Encoding a clip gives a good idea of the encoder throughput and the utilization of all the
resources because in this scenario the encoder is not being bound by the input rate.

A clip at 800 frames long (approximately 13 seconds of video at 60 fps) and a 1920x1080
resolution will be encoded. The clip was captured at a sports event so it represents a
good encoding challenge.

Table 2 shows the performance of the encoder in both modes of operation, running on a
GT200 class GPU, Quadro FX 4800.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 13

Note: GPU utilization in the following chart means which portion of the time the
GPU is running kernels. In current GPU architectures, whenever the GPU is running
a kernel it is utilized at a 100%. This might not be the case in future architectures.

Table 2. Encoder Performance Chart

Partial Offload Full Offload
FPS 120 FPS 60

GPU Utilization (%) 82 GPU Utilization (%) 90

CPU Utilization (%) 40 - 45 CPU Utilization (%) 6 - 10

The rest of the analysis will be performed in the partial offload mode in a system with
one or more GPUs of the GT200s class.

Real-time Single Stream Encoding:

According to the chart in Table 2, the encode process is operating at twice the video
input rate when the incoming video is 1080p (a 1920x1080 resolution at 60 fps):

Encode rate = 120 fps = 2*60 fps = 2*Input rate

Hence the encode process should utilize about a half of the CPU resource, which puts it
at 40-45%/2, which is 20-22% utilization, and a half of its GPU resource, which achieves
40% utilization.

Real-time Multiple Stream Encoding on a single GPU:

The number of 1080p video streams that can be encoded simultaneously (each stream is
a 1920x1080 resolution at 60 fps) in the system with a single GPU will scale linearly until
we reach encoder throughput. This means that we can run up to 2 simultaneous encodes
of 1080p video.

Real-time Multiple Stream Encoding on multiple GPUs:

By adding more GPUs to the system, the number of encodes running simultaneously
scales linearly until limited by CPU utilization. Since each encoding process utilizes the
CPU at about 22%, it means that the number of simultaneous full resolution 1080p
encodes in a system will be bound by 5. Note that this is only a theoretical maximum at
this point as other aspects of the system were not taken into consideration (for example:
OS scheduling, video ingest overhead, initial processing overhead, and etc.).

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 14

SYSTEM CONSIDERATIONS

It is important to consider the PCI bandwidth requirements of the capture board. In
current motherboard architectures, two PCI slots can belong to two different PCI
controllers, which can be detrimental to the GPUCapture board bandwidth. As a
result, care should be taken in slot placements of the capture board and the GPU
designated for capture.

DATA CONSIDERATIONS

Due to the fact that one of the GPUs is involved in the image acquisition, it makes sense
for that GPU to do some data pre-processing. The resulting images are then passed to
other GPUs for encoding. Figure 2 and Figure 3 show possible task distribution between
the GPUs. Note, that depending on the GPU load during the encode process; the capture
GPU can be available for encoding tasks in addition to its pre-processing tasks.

Figure 2. Capture GPU Tasks

Figure 3. Encoding GPU Tasks

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 15

Capture
Capture is happening almost entirely without GPU involvement with the exception of
populating the OpenGL objects with the content from the ring buffer shared between the
capture board and the GPU. This task is negligible compared to all the other tasks in the
process.

Stereo Content Handling
When stereo content is captured, it arrives at the GPU as two different buffers
representing left and right eye. To be correctly processed by the encoder and
downstream of the encoder, the frames must be packaged and formatted together.

A typical packaging and formatting is side-by-side. In side-by-side 3D, a full 1080p or
720p frame consists of two halves: one on the left and the other on the right. The entire
frame for the left eye is scaled down horizontally to fit the left-half of the frame, and the
entire frame for the right eye is scaled down horizontally to fit the right side of the
frame. In the case of 720p content (resolution of 1280 x 720), each frame actually consists
of the horizontally scaled frame for the left eye with a resolution of 640 x 720 and
adjacent to it, the corresponding frame for the right eye at the same 640×720 resolution.

Image Formats and Format Conversions
The image(s) arrive at the capture GPU and end up as a buffer in YUY2 format.

YUY2 is a packed 4:2:2 YUV format where every scan line contains four Y samples for
every two U or V samples. Figure 4 shows the memory component arrangement of
YUY2 data.

Figure 4. YUY3 Format

An image with this component arrangement is not very suitable for per-pixel operations
and it usually undergoes a format transformation to an image of a planar format prior to
any processing.

Y0 V2Y5U2Y4V1Y3U1Y2V0Y1U0

Increasing Memory Address

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 16

At the low level, the NVIDIA encoder requires video to be in NV12 format, so even
though the encoder API accepts video in other YUV formats, the encoder will internally
convert the video to be in NV12 format prior to encoding. NV12 is a 4:2:0 quasi-planar
format with four samples of Y for every two U or V samples horizontally and two
samples of Y for every sample of U or V vertically (see Figure 5).

Figure 5. NV12 Format

An image with this component arrangement is not very suitable for per-pixel operations
and it usually undergoes a format transformation to an image of a planar format prior to
any processing.

A more common format that is typically used for encoding is YV12. YV12 in a 4:2:0
planar format with the same component sampling as NV12. The component
arrangement is shown in Figure 6.

Y0 Y3Y2Y1

Increasing Memory Address

U0 V1U1V0

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 17

Figure 6. YV12 Format

To arrive at the encoding image format, the image data must undergo component
reordering and vertical resampling of the Chroma planes. These operations can be
conducted on the encoding GPUs but since some down sampling is involved, it might be
more beneficial to have them done on the capture GPU. This way less data is being
transferred between the GPUs. Resampling is discussed in more detail in the following
section.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 18

Image resampling
As discussed, some component planes of the captured image must undergo down
sampling prior to encoding (vertically for Chroma plane sub-sampling and horizontally
for all component planes when a packaged stereo content is being processed). Because
high quality image resampling is a compute intensive task that is inherently parallel and
well suited for the GPU, the resampling is done on the GPU.

The implementation used is Lanczos windowed sinc function (Figure 7) because it offers
the best compromise in terms of reduction of aliasing, sharpness, and minimal ringing.

Figure 7. Lanczos Filter

The algorithm walks through the pixels in the downscaled image and looks at each pixel
as a fractionally-positioned pixel in the original image. The color value of the pixel
comprises of a weighted sum of the neighboring pixels in a 4x4 neighborhood. The
weights are calculated using the formula shown in Figure 7 and each weight is
normalized by the sum of the weight.

For packaged stereo content this procedure is conducted horizontally when down
sampling the Luma plane, and both vertically and horizontally when down sampling
the Chroma planes. The image should also undergo some blurring (low pass filtering),
and possibly de-interlacing if the incoming video is interlaced prior to resampling. This
reduces aliasing and preserves image integrity. The same function can be used for the
low pass filter.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 19

Data Movement
The SDI capture board delivers the video frames to a single GPU, where in a multi GPU
environment has to propagate them to other GPUs in the system for further processing
(for example when encoding).

Data movement is happening after all the initial processing had taken place on the
capture GPU; particularly stereo content packaging, format conversion, and resampling.
Once the initial processing is done, the capture GPU uploads the data to system memory
for encoding GPUs to consume.

STREAMING

To accomplish streaming, a publishing process that packages encoded frames together
with audio and other ancillary data in some network-friendly container then publishes
the multiplexed streams to a content distribution server must be present downstream of
the encoder. The end user can connect to the server through a URL and view the content
with the appropriate client (the user must have a player and in the case of 3D content,
also 3D ready hardware). There are several content delivery techniques and frameworks
that implement this available today. But at the time that this paper is written there is
only one officially available client for viewing streaming 3D content and it is NVIDIA
3D Vision™-modified Microsoft Silverlight SMF 2.0 Video Player. Figure 8 shows the
streaming data going to the Microsoft Silverlight player.

Figure 8. Streaming Data

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 20

3D Client
NVIDIA 3D Vision-modified Microsoft Silverlight SMF 2.0 Video Player is built to
receive 3D content in a frame-packed format (side/side, top/bottom, etc.). It decodes the
stream, splits each frame to extract the frame for each eye, and then rescales these
individual frames to a full HD resolution using up-scaling algorithms. The player then
displays these up-scaled individual frames alternately in a frame-sequential manner that
is in sync with your active shutter 3D glasses.

Figure 9. Microsoft Silverlight SMF 2.0 Video Player Data Format

Silverlight is powered by IIS Smooth Streaming technology. This allows the client to
request stream chunks from the Web server in a linear fashion and download them
using plain HTTP progressive download. As the chunks are downloaded to the client,
the client plays back the sequence of chunks in linear order. When the video/audio
source is encoded at multiple bit rates the client can now choose between chunks of
different sizes. Because Web servers usually deliver data as fast as network bandwidth
allows them to, the client can easily estimate user bandwidth and decide to download
larger or smaller chunks ahead of time thus allowing smooth user viewing experience.

The next section briefly explains what needs to consist of a publishing process to be able
to deliver the encoded streams to the server.

Video Capture, Encoding, and Streaming in a Multi-GPU System

Video Capture, Encoding, and Streaming in a Multi-GPU System TB-05566-001_v01 | 21

Video Stream Publishing
IIS Smooth Streaming technology uses MPEG-4 Part 14 (ISO/IEC 14496-12) as a transport
format. This format consists of basic units called a box containing both metadata and
data. It is also referred to as Fragmented MP4(or f-MP4) because its specification is
designed to allow these MP4 boxes to be organized in a fragmented manner, where the
stream can be created "as you go" as a series of short metadata/data box pairs, rather
than one long metadata/data pair.

The Smooth Streaming Format SDK is intended to be used by encoding applications to
package compressed video and audio payloads into the fragmented-MP4 container, and
to generate the required manifests that describe the bit-streams. These generated files
include file extensions *.ismv that contain H.264 elementary streams and audio data,
and manifest XML files with file extensions *.ism and *.ismc that contain detailed
description of the streams for the server and the clients to consume.

The publishing process is responsible for setting up and managing long-running HTTP
POST connections to the IIS server's Live Smooth Streaming Publishing Point. Once the
process establishes an HTTP connection with the server, it can call into the SSF library
and provide settings information about the input video and audio compressed bit-
streams. Subsequently, the application will feed compressed video and audio payload
into the SSF library until enough data has been provided to package one
fragment/chunk. The process will then request the f-MP4 buffer for transmitting to the
IIS server.

When the entire stream has been processed an empty mfra box should be sent to the IIS
server to signal end-of-stream and stop the publishing point.

REFERENCES:

 NVIDIA Quadro SDI Capture Programming Guide
 Microsoft IIS Smooth Streaming Technical Overview
 NVIDIA CUDA Video Encoder Specification

www.nvidia.com

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

ROVI Compliance Statement
NVIDIA Products that support Rovi Corporation’s Revision 7.1.L1 Anti-Copy Process (ACP) encoding technology
can only be sold or distributed to buyers with a valid and existing authorization from ROVI to purchase and
incorporate the device into buyer’s products.

This device is protected by U.S. patent numbers 6,516,132; 5,583,936; 6,836,549; 7,050,698; and 7,492,896
and other intellectual property rights. The use of ROVI Corporation's copy protection technology in the device
must be authorized by ROVI Corporation and is intended for home and other limited pay-per-view uses only,
unless otherwise authorized in writing by ROVI Corporation. Reverse engineering or disassembly is prohibited.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, NVIDIA 3D Vision, Quadro, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright
© 2010 NVIDIA Corporation. All rights reserved.

	Video Capture, Encoding, and Streaming in a Multi-GPU System
	System Overview
	Video Capture
	Connecting the Capture Card with a GPU

	Video Processing with CUDA
	3D video (Stereo)
	Ancillary Data
	Encoding
	Encoder Performance Considerations
	Encoding a Clip
	Real-time Single Stream Encoding:
	Real-time Multiple Stream Encoding on a single GPU:
	Real-time Multiple Stream Encoding on multiple GPUs:

	System Considerations
	Data Considerations
	Capture
	Stereo Content Handling
	Image Formats and Format Conversions
	Image resampling
	Data Movement

	Streaming
	3D Client
	Video Stream Publishing

	References:

