
 

 

WP-05482-001_v01|  October 2010 

White Paper 

NVIDIA 3D VISION PRO AND 
STEREOSCOPIC 3D 



 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  ii 

DOCUMENT CHANGE HISTORY 

WP-05482-001_v01 

Version Date Authors Description of Change 
01 October 8, 2010 SN, CK, SM Initial Release 

    



 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  iii 

TABLE OF CONTENTS 

NVIDIA 3D Vision Pro and Stereoscopic 3D ................................................... 1 
Introduction ...................................................................................... 1 

Sources for Data .............................................................................. 1 
Stereo .......................................................................................... 1 
Anaglyph Stereo .............................................................................. 2 
Polarized Light ............................................................................... 2 
LCD Shuttered Glasses ....................................................................... 3 

NVIDIA 3D Vision Products ..................................................................... 3 
NVIDIA 3D Vision (Consumer Version) ..................................................... 4 

Hardware ................................................................................... 4 
Software ................................................................................... 4 
How It Works .............................................................................. 5 

NVIDIA 3D Vision Pro (Professional Version) .............................................. 7 
Hardware ................................................................................... 7 
Implementation Details .................................................................. 7 
Get Transceiver Information, Change Channel, and Pair Glasses (Example) ..... 8 

Writing Stereo Applications .................................................................. 10 
OpenGL Implementation ................................................................... 10 

Configure the Hardware to Support Stereo .......................................... 10 
Query and Request Stereo Capability ................................................. 10 
Render to Each Eye, and Swap Buffers ............................................... 11 

Direct3D Implementation .................................................................. 13 
References ...................................................................................... 15 

 

 



 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  iv 

LIST OF FIGURES 

Figure 1. NVIDIA 3D Vision Kit   .................................................................. 4
Figure 2. Frustum for Each Eye Is Horizontally Translated Version of Mono Frustum   .. 6
Figure 3. NVIDIA 3D Vision Pro Kit   ............................................................. 7

 

 

 



 

  
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  1 

NVIDIA 3D VISION PRO AND 
STEREOSCOPIC 3D 

INTRODUCTION 

There is an insatiable need for increasing the realism in how 3D objects are represented 
to viewers in computer graphics. As the limitations of hardware and software continue 
to improve, users can now experience unprecedented realistic 3D effects. A technique 
that is gaining popularity is colloquially called “3D,” but is more correctly described as 
“stereoscopic 3D” or just “stereo.” This technique for representing objects in 3D is not 
new, but due to improvements in both hardware and software the technique has gone 
mainstream from what was once a niche market. 

Sources for Data 
The origins for 3D data can vary widely, from data obtained from scanners to models 
created by artists with 3D modeling software. To accurately represent these objects on a 
2D computer display, you can use many visual clues to trick the mind into perceiving it 
as a true 3D object. Simple visual clues such as distant objects appearing smaller, and 
near objects obscuring far objects are very effective, but augmenting these with stereo 
can create a truly realistic 3D experience. 

Stereo 
To achieve a stereoscopic 3D representation, it is necessary to have two copies of the 
image, one for the left eye and one for the right eye, where the images have a 
perspective offset relative to each other, which is appropriate for the eye separation of 
the viewer (inter-ocular distance). This separation tricks the brain into perceiving the 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  2 

object at a relative depth from the viewer that is not constrained to the plane of the 
display device. 

Many different hardware systems can deliver the eye separation needed to create the 
effect of 3D stereo. The method used to achieve 3D stereo for a large movie audience is 
different than for a single viewer interacting with a 3D object on a personal workstation. 
Likewise, the user experience is much better with active shutter glasses that are exactly 
synchronized with the displays than inexpensive glasses that filter the images based on 
color differences. 

The following section briefly discusses some of the techniques used to achieve the stereo 
effect. 

Anaglyph Stereo 
Anaglyph stereo is the easiest way to achieve 3D stereo. This process involves separating 
an image into a left and right eye image by a separation in color space. The image is then 
viewed with glasses that are chromatically opposite—usually red and cyan—to act as 
filters, and reveals only the left eye image to the left eye, and the right eye image to the 
right eye. The viewer then fuses the image into a composite image that is perceived in 
three-dimensional space.  

The primary advantage of this technique is that no special display device is required to 
view anaglyph images, and only inexpensive paper glasses can be used for viewing. 
This method typically gives the least satisfying stereoscopic effect, with poor representation 
of the full-color spectrum. 

Polarized Light 
Another method for separation of the eyes is to use polarized light. For this method, the 
left and right eye images are distinguished by polarizing the light in either a circular or 
linear manner. As with anaglyph, glasses with passive filters are used to only allow light 
for the correct eye to pass through.  

This method is superior to anaglyph because it can show the complete color spectrum, 
but requires special projection screens or monitors that preserve the polarity of the light. 
The implementation can either use two separate projectors, or one projector with a 
shutter that alternates polarization for each eye. 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  3 

LCD Shuttered Glasses 
The technique we are most interested in this paper is the use of LCD shuttered glasses. 
This method uses glasses that have an LCD for each eye, and the glasses are 
synchronized to open and close when the corresponding eye image is to be viewed. The 
right and left eye are presented sequentially on alternating frames, allowing for viewing 
the full resolution of the image for each eye. 

This technique is used for the NVIDIA 3D Vision™ product, and is the best method to 
obtain a true 3D stereoscopic effect. The advantage of this technique is that the image for 
each eye is displayed at full resolution. Plus, there are no restrictions on the viewing 
angle to maintain the 3D effect, and the synchronization between the glasses and the 
display device can be controlled to ensure an excellent 3D stereoscopic effect.  

The synchronization signal can be sent to the glasses in a variety of ways, typically over 
a wire or infrared wireless signal. 

The next section describes the NVIIDA 3D Vision product in more detail. 

NVIDIA 3D VISION PRODUCTS 

Two versions of the NVIDIA 3D Vision product are available: NVIDIA 3D Vision and 
NVIDIA 3D Vision Pro. Both use the LCD shuttering method for obtaining stereo, but 
there are several differences between the products, which are described below. 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  4 

NVIDIA 3D Vision (Consumer Version) 
Figure 1 shows the contents of the NVIDIA 3D Vision Kit. 

 

 

 

 

 

 

 

 

Figure 1. NVIDIA 3D Vision Kit 

 
Hardware 
The consumer version of NVIDIA 3D Vision consists of wireless LCD shuttered glasses 
that receive an infrared signal from an emitter connected to the PC via a USB cable. The 
glasses are shuttered at 120 Hz frequency, updating each eye 60 times per second for a 
flicker-free stereoscopic experience. Compatible display devices include CRTs, NVIDIA 
3D Vision Ready LCD monitors, and DLP TVs (see http://www.nvidia.com/object/3d-vision-

requirements.html for a list of supported displays). 

Software 

The consumer version of NVIDIA 3D Vision was developed to provide the 3D 
stereoscopic effect for games that do not already have a stereo mode. This is 
accomplished by a driver that intercepts Direct3D graphics calls, and creates a left eye 
view and right eye perspective view with an appropriate offset between them based on 
the depth information obtained from the 3D scene.  

 

http://www.nvidia.com/object/3d-vision-requirements.html�
http://www.nvidia.com/object/3d-vision-requirements.html�


NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  5 

How It Works 

 

3D game data is sent to the stereoscopic driver.  

 

 

 

The driver takes the 3D game data and renders each 
 scene twice—once for the left eye and once for the right eye. 

 

 

 

 

A stereoscopic display then shows the left eye view  
for even frames (0, 2, 4, and so on), and the right eye  
view for odd frames (1, 3, 5, and so on).



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  6 

This approach works very well for many games, but an improved experience can be 
enjoyed if developers pay attention to such things as 

 Ensuring that the user interface text and heads-up-display information is displayed 
at screen depth so that they appear to be in mono.  

 Taking care to render objects at the appropriate depth. For example, the sky box 
should be drawn with a valid depth that is at the maximum far distance in the scene.  

 Making sure all the 3D objects have a valid depth relative to the rest of the scene. 

Carefully choosing the depth of the objects in the scene is important, particularly for 
objects that appear to come out of the screen. Objects that appear to come out of the 
screen are uncomfortable to look at because the viewer’s brain must overcome the fact 
it’s seeing something in front of where their eyes are focused. The object should not get 
close to the edges of the window, where it might get clipped. And, the object should 
move slowly from inside the screen to out of the screen to give time for the viewer to 
adjust, using smooth transitions (Figure 2). 

 

Figure 2. Frustum for Each Eye Is Horizontally Translated Version of 
Mono Frustum 

 

  

   

Z

Y

X

Eye space 
Left Eye  

Right Eye

Mono Eye 

Screen Left Frustum

Right Frustum

Mono Frustum



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  7 

NVIDIA 3D Vision Pro (Professional Version) 

Hardware 

Figure 3 shows the 3D Vision Pro glasses and hub. 

 

 

Figure 3. NVIDIA 3D Vision Pro Kit 
 

Instead of using an infrared signal from the emitter to the glasses to signal the transition 
between left and right eyes, the signal for NVIDIA3D Vision Pro uses a radio frequency 
(RF) signal. The advantage of using RF is that the communication is bidirectional and 
glasses can be paired with an emitter. This scenario enables the use of multiple emitters 
from different computers in the same proximity without interference. It also allows 
multiple emitters to be used from one computer to cover a larger physical space. And 
since the glasses can communicate with the hub, additional capabilities are possible, as 
will be described in the next section. 

When connected to a high-end NVIDIA® Quadro® graphics board, NVIDIA 3D Vision 
Pro has a wired connection to the 3-pin mini-DIN stereo connector on the board. This 
connection guarantees synchronization between the GPU and the hub regardless of the 
operating system or the CPU load on the system, and results in a flicker-free 
stereoscopic 3D experience. 

Implementation Details 

Using NVIDIA’s NvAPI interface, users can control many aspects of the NVIDIA 3D 
Vision Pro product. Here are some examples of how to use this interface. 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  8 

 Get Transceiver Information, Change Channel, and Pair Glasses 
(Example) 

 
 
NvAPI_Status CreateContext( Nv3DVPContextHandle * pContext ) 
{ 
    assert( NULL != pContext ); 
    Nv3DVPContextHandle contextPre( *pContext ); 
    NvAPI_Status status = NvAPI_3DVP_CreateContext( pContext ); 
    return status; 
} 
 
bool EnumTransceivers( const Nv3DVPContextHandle context, 
                       TransceiverHandles * pTransceivers ) 
{ 
    assert( NULL != pTransceivers ); 
    NvAPI_Status status; 
    Nv3DVPTransceiverHandle transceiver( NULL ); 
    pTransceivers->clear(); 
    do 
    { 
        Nv3DVPTransceiverHandle transceiverPre( transceiver ); 
        status = NvAPI_3DVP_EnumTransceiver( context, 
                                             &transceiver ); 
        if (NVAPI_OK == status) 
        { 
            pTransceivers->push_back( transceiver ); 
        } 
    } 
    while ( NVAPI_OK == status ); 
    return ( NVAPI_END_ENUMERATION == status ); 
} 
 
NvAPI_Status OpenTransceiver( const Nv3DVPContextHandle context, 
                              const Nv3DVPTransceiverHandle  
                              transceiver,  
                              const NVAPI_3DVP_ACCESS access ) 
{ 
    NvAPI_Status status = NvAPI_3DVP_OpenTransceiver( context, 
                                        transceiver, access ); 
    return status; 
} 
 
Nv3DVPContextHandle context( NULL ); 
TransceiverHandles  transceivers; 
NVAPI_3DVP_TRANSCEIVER_INFO info; 
 
 
 
// (0) Initialize NvAPI  



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  9 

NvAPI_initialize(); 
 
// (1) Create a context 
status = CreateContext( &context ); 
 
// (2) Enumerate all the transceivers  
Status = EnumTransceivers( context, &transceivers); 
 
// (3) Open transceiver.begin() for read/write access 
if ( NVAPI_OK != OpenTransceiver( context, *transceivers.begin(), 
                                  NVAPI_3DVP_ACC_READWRITE ) ) 
{ 
        //Error: cleanup with NvAPI_3DVP_DestroyContext(context) 
} 
 
// (4) Get transceiver information 
status = NvAPI_3DVP_GetTransceiverInfo( context,  
                                       *transceivers.begin(), 
                                        &info ); 
 
printf(" version      = 0x%x\n", info.version ); 
printf(" hwFeatures   = 0x%x\n", info.hwFeatures ); 
printf(" fwRevA       = 0x%x\n", info.fwRevA ); 
printf(" fwRevB       = 0x%x\n", info.fwRevB ); 
printf(" fwRevC       = 0x%x\n", info.fwRevC ); 
printf(" rfAddress    = %d.%d.%d.%d.%d\n", info.rfAddress.a0, 
         info.rfAddress.a1, info.rfAddress.a2, info.rfAddress.a3,  
         info.rfAddress.a4 ); 
printf(" channelCount = %d\n", info.channelCount ); 
 
 
// (5) Set transceiver mode to NVAPI_3DVP_TM_LOW_RANGE 
status = NvAPI_3DVP_SetTransceiverMode( context, 
                                    *transceivers.begin(),  
                                      NVAPI_3DVP_TM_LOW_RANGE ); 
 
// (6) Set channel to 1 
status = NvAPI_3DVP_SetTransceiverChannel( context, 
                                      *transceivers.begin(), 1 ); 
 
// (7) Pair glasses 
NvU32 timeOut=4; 
status = NvAPI_3DVP_PairGlasses( context, *transceivers.begin(),  
                                 timeOut ); 
Sleep( timeout * 1000 ); 
 
// (8) Close Transceivers 
for ( TransceiverHandles::const_iterator iter(  
      transceivers.begin() ); transceivers.end() != iter; ++iter ) 
    { 
        if ( NVAPI_OK != NvAPI_3DVP_CloseTransceiver( context, *iter ) 
) 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  10 

        { 
            printf("// ERROR: failed to close transceiver\n" ); 
        } 
    } 

WRITING STEREO APPLICATIONS  

Applications may use either the OpenGL or Direct3D API to implement stereoscopic 3D. 
The next two sections show implementations for both. 

OpenGL Implementation 
To get the full benefit of the stereoscopic experience, developers need to change an 
application to render to what is commonly referred to as “quad-buffered stereo.” This 
has historically only been possible using the OpenGL API, but with NVIDIA’s NvAPI 
interface, Direct3D developers can now also create quad-buffered stereo applications.  

Following, these steps are described in more detail: 

 Configure the hardware to support stereo. 
 Query and request a stereo capability. 
 Create an asymmetric viewing frustum.  
 Render to separate left and right eye buffers with an eye offset translation between. 
 Call SwapBuffers to swap both the left and the right eye buffer. 

Configure the Hardware to Support Stereo 

Go to the NVIDIA Control Panel and make these menu selections: 

 3D settings   Stereo Enable   On 
 3D settings   Stereo – Display mode  On-board DIN connector   

These steps configure the environment to offer stereo pixel formats. Without changing 
from the default (Off), applications cannot obtain a stereo pixel format descriptor. 

Query and Request Stereo Capability 

An application has to show its intention to render in a stereo manner because the default 
configuration does not include stereo capabilities. On Windows, this is done by 
requesting a pixel format descriptor with the PFD_STEREO bit mask for the call to 
DescribePixelFormat and ChoosePixelFormat: 

  



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  11 

PixelFormat = DescribePixelFormat(hdc, iPixelFormat,  
                 sizeof(PIXELFORMATDESCRIPTOR), &pfd); 
if ((pfd.dwFlags & PFD_STEREO) == 0)  
   // no stereo pixel formats available 
     StereoIsAvailable = FALSE; 
else 
     StereoIsAvailable = TRUE; 
if (StereoIsAvailable) 
{ 
    ZeroMemory(&pfd, sizeof(PIXELFORMATDESCRIPTOR)); 
    pfd.nSize           = sizeof(PIXELFORMATDESCRIPTOR); 
    pfd.nVersion        = 1; 
    pfd.dwFlags         = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |  
                          PFD_DOUBLEBUFFER | PFD_STEREO; 
    pfd.iPixelType      = PFD_TYPE_RGBA; 
    pfd.cColorBits      = 24; 
 
    iPixelFormat = ChoosePixelFormat(hdc, &pfd); 
    if (iPixelFormat != 0) 
    { 
        if (SetPixelFormat(hdc, iPixelFormat, &pfd)) 
        { 
          hglrc = wglCreateContext(hdc); 
          if (hglrc != NULL) 
           { 
            if (wglMakeCurrent(hdc, hglrc)) 
            { 
            … 

Render to Each Eye, and Swap Buffers 

Once a pixel format descriptor has been obtained with the PFD_STEREO capability, it is 
necessary to change the rendering slightly. For most stereo applications, all the 
rendering needs to be done twice, once for each eye. For the correct stereo projection, a 
left and right frustum is created with an offset from each other along the X axis by a 
simple translation along the X axis. This method is preferred over using a ‘toe-in’ 
method which occurs when using gluPerspective where both frustums point at the 
same focal point. This method incorrectly introduces vertical parallax between the left 
and right frustums.   

The parameters to glFrustum should be modified to create asymmetric frustums for 
each eye for the correct stereo projection. The frustum asymmetry should be the same 
amount as the eye offset used, except since the parameters to glFrustum are taken at 
the near clipping distance and the frustum asymmetry adjustment is done at the 
convergence distance, the FrustumAsymmetry value needs to be scaled by the ratio of 
the near clipping distance to the convergence distance. 

  



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  12 

Then, instead of just rendering the scene once, it is necessary to render twice—once to 
each eye—using glTranslate to offset the rendering between the eyes by the desired 
eye offset.  

This eye offset value should allow for user modification, but a good starting point is to 
use a total offset of 7% (3.5% for each eye) * (Xmax – Xmin), where the Xmax and 
Xmin values are the limits of the scene on the horizontal axis at the depth where it is 
desired to have zero parallax (the convergence distance). 

Now, when beginning the rendering, instead of choosing the glDrawBuffer(GL_BACK) 
as is done when doing Mono rendering, you need to specify the back buffer for each eye: 
GLfloat eyeOffset = Xrange*0.035f ;  // Initial stereo separation  
FrustumAsymmetry = eyeOffset*Znear/Convergence;  
// Provide mechanism for user adjustments 
eyeOffset *= Xrange*UserOffsetAdjustment; 
FrustumAsymmetry *= UserFrustumAdjustment; 
// Select back left buffer  
glDrawBuffer(GL_BACK_LEFT); 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
// Setup the frustum for the left eye 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
 
 
glFrustum(Xmin  + FrustumAsymmetry, 
          Xmax  + FrustumAsymmetry, 
          bottom, top, nearVal, farVal); 
glTranslatef(eyeOffset, 0.0f, 0.0f); 
// Setup the transformation matrix for the object. 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
 
<Rendering calls> 
// Select back right buffer  
glDrawBuffer(GL_BACK_RIGHT); 
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
// Setup the frustum for the right eye. 
glMatrixMode(GL_PROJECTION); 
glLoadIdentity(); 
glFrustum(Xmin  - FrustumAsymmetry, 
          Xmax  - FrustumAsymmetry, 
          bottom, top, nearVal, farVal); 
glTranslatef(-eyeOffset, 0.0f, 0.0f); 
 
glMatrixMode(GL_MODELVIEW); 
glLoadIdentity(); 
<Rendering calls> 
SwapBuffers(hdc); 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  13 

Direct3D Implementation 
Using NVIDIA’s NvAPI interface, it is now possible to render quad-buffered stereo as a 
Direct3D application. The Direct3D application uses the NVIDIA 3D Vision stereo driver 
in a new mode that allows separate rendering for each eye. 

For setup, the NVIDIA 3D Vision software needs to be installed and enabled. 

Then, similar to the OpenGL implementation, the application needs to be changed prior 
to initial rendering, and then some changes need to be made to the rendering code.  

The NVIDIA 3D Vision driver needs to be set into the NVAPI_STEREO_DRVIER_ 
MODE_DIRECT6 mode in order to be able to use the back buffer for left and right eye 
rendering. The application then needs to set up the viewport with half the width for the 
right eye and the other half for the left eye.  

The projection matrix also needs to be modified to take into account the eye separation 
and convergence parameters. The rendering needs to be done once for each eye, and 
then after both eyes are complete, a single present() call will swap both eyes.  

 
// initialize NvAPI and enable stereo 
NvAPI_initialize(); 
 
// enable direct mode  
NvAPI_Stereo_SetDriverMode(NVAPI_STEREO_DRVIER_MODE_DIRECT);  
 
 
// Check for availability of Stereo capability 
NvU8 isStereoEnabled; 
NvAPI_Status status = NvAPI_Stereo_IsEnabled(&isStereoEnabled); 
 
// Stereo status report an error 
if ( status != NVAPI_OK) 
{ 
   // 3D Vision driver is not installed on the system 
   MessageBoxA(NULL, "Stereo is not available\nMake sure the  
               stereo driver is installed correctly", "Stereo not  
               available", MB_OK|MB_SETFOREGROUND|MB_TOPMOST); 
 
} 
// Stereo is available but not enabled, let's enable it 
else if(NVAPI_OK == status && !isStereoEnabled) 
{ 
    MessageBoxA(NULL, "Stereo is available but not enabled\nLet's 
                enable it", "Stereo not enabled",  
                MB_OK|MB_SETFOREGROUND|MB_TOPMOST); 
    status = NvAPI_Stereo_Enable(); 
} 
 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  14 

 
// create D3D device  
ID3D10Device* pDevice;  
D3D10CreateDevice( …, &pDevice ); 
 
// create the StereoHandle  
StereoHandle stereoHandle;  
NvAPI_Stereo_CreateHandleFromIUnknown( pDevice, &stereoHandle ); 
 
// At this point Device is ready for stereo in direct mode until  
// it’s destroyed ‘ 
 
 
// NV_STEREO_ACTIVE_EYE enum  
typedef enum {  
    NVAPI_STEREO_EYE_RIGHT,  
    NVAPI_STEREO_EYE_LEFT  
} NV_STEREO_ACTIVE_EYE;  
 
// Select the current side active  
NVAPI_INTERFACE NvAPI_Stereo_SetActiveEye( StereoHandle 
                stereoHandle, NV_STEREO_ACTIVE_EYE eye); 

 

The viewport is split between the right and left eye: 

 
g_LeftSideViewport.Width     = g_DXGISwapChainDesc.BufferDesc.Width/2; 
g_LeftSideViewport.Height    = g_DXGISwapChainDesc.BufferDesc.Height/2; 
g_LeftSideViewport.MinDepth  = 0.0f; 
g_LeftSideViewport.MaxDepth  = 1.0f; 
g_LeftSideViewport.TopLeftX  = 0; 
g_LeftSideViewport.TopLeftY  = g_LeftSideViewport.Height/2; 
 
g_RightSideViewport.Width    = g_DXGISwapChainDesc.BufferDesc.Width/2; 
g_RightSideViewport.Height   = g_DXGISwapChainDesc.BufferDesc.Height/2; 
g_RightSideViewport.MinDepth = 0.0f; 
g_RightSideViewport.MaxDepth = 1.0f; 
g_RightSideViewport.TopLeftX = g_RightSideViewport.Width; 
g_RightSideViewport.TopLeftY = g_RightSideViewport.Height/2; 

 

The projection matrix needs to be modified to take into account the stereo parameters.  

The NvAPI_Stereo_GetSeparation call returns the eye separation normalized by the 
physical screen width, and NvAPI_Stereo_GetConvergence returns the current 
convergence value. These can be used to calculate a new projection matrix: 

 



NVIDIA 3D Vision Pro and Stereoscopic 3D 

 
NVIDIA 3D Vision Pro and Stereoscopic 3D WP-05482-001_v01  |  15 

NvAPI_Stereo_GetSeparation(g_StereoHandle,&sep ); 
status = NvAPI_Stereo_GetConvergence(g_StereoHandle,&conv ); 
 
D3DXMATRIX mCurrentProj = g_Projection; 
float CurrentSeparation = g_EyeSeparation * g_Separation; 
if (CurrentEye == NVAPI_STEREO_EYE_RIGHT) 
   {     
       mCurrentProj._31 += CurrentSeparation; 
       mCurrentProj._41 -= CurrentSeparation*g_Convergence; 
   }     
   else  
   {     
       mCurrentProj._31 -= CurrentSeparation; 
       mCurrentProj._41 += CurrentSeparation*g_Convergence; 
   }     
}   
SetMatrix(…, mCurrentProj);   
 
< Render > 
 
NvAPI_Stereo_SetActiveEye(g_StereoHandle,NVAPI_STEREO_EYE_LEFT); 
 
SetViewport(&g_LeftSideViewport); 
 
//Present both left and right back buffers 
IDXGISwapChain::Present();  

REFERENCES 

 NvAPI: http://developer.nvidia.com/object/nvapi.html 

 NVIDIA 3D Vision: http://www.nvidia.com/object/3d-vision-main.html 

 



 

www.nvidia.com 

Notice 
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER 
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO 
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND 
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR 
A PARTICULAR PURPOSE.  

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication of otherwise under 
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change 
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA 
Corporation products are not authorized as critical components in life support devices or systems without 
express written approval of NVIDIA Corporation. 

Trademarks 
NVIDIA, the NVIDIA logo, NVIDIA 3D Vision, and Quadro are trademarks and/or registered trademarks of 
NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of 
the respective companies with which they are associated. 

Copyright  
© 2010 NVIDIA Corporation. All rights reserved.  


	NVIDIA 3D Vision Pro and Stereoscopic 3D
	Introduction
	Sources for Data
	Stereo
	Anaglyph Stereo
	Polarized Light
	LCD Shuttered Glasses

	NVIDIA 3D Vision Products
	NVIDIA 3D Vision (Consumer Version)
	Hardware
	Software
	How It Works


	//
	NVIDIA 3D Vision Pro (Professional Version)
	Hardware
	Implementation Details
	Get Transceiver Information, Change Channel, and Pair Glasses (Example)


	Writing Stereo Applications
	OpenGL Implementation
	Configure the Hardware to Support Stereo
	Query and Request Stereo Capability
	Render to Each Eye, and Swap Buffers

	Direct3D Implementation

	References


