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Abstract

Recently a GPU has acquired programmability to per-
form general purpose computation fast by running ten thou-
sands of threads concurrently. This paper presents a new al-
gorithm for dense matrix-vector multiplication on NVIDIA
CUDA architecture. The experimental results on GeForce
8800GTX show that the proposed algorithm runs maximum
15.69 (resp., 32.88) times faster than the sgemv routine in
NVIDIA’s BLAS library CUBLAS 1.1 (resp., Intel Math Ker-
nel Library 9.1 on one-core of 2.0 GHz Intel Xeon E5335
CPU with SSE3 SIMD instructions) for matrices with order
16 to 12800. The performance, including the data trans-
fer between CPU and GPU, of Jacobi’s iterative method for
solving linear equations shows that the proposed algorithm
is practical for some real applications.

1 Introduction

Matrix-vector multiplication is a kernel routine of many
numerical algorithms. Recently a GPU has acquired pro-
grammability [6] to run ten thousands of threads concur-
rently and some algorithms [7, 1, 2, 9] appeared for GPU to
compute matrix-vector multiplication. For NVIDIA CUDA
(Compute Unified Device Architecture) architecture [5],
NVIDIA provides a BLAS library (called CUBLAS [4])
which includes a routine called sgemv for single precision
dense matrix-vector multiplication. The observed perfor-
mance of sgemv in CUBLAS 1.1 on GeForce 8800GTX [3]
is high at about 36.41 GFLOPS at the maximum for ma-
trices with order 1024 to 12800 (without data transfer time
between CPU and GPU). However, the performance rapidly
and extremely fluctuates with an increase of the order of a
given matrix with fluctuation period of 16 and is under 4
GFLOPS at the minimum. Note that the minimum repeat-
edly appears several times within every period of 16.

This paper presents a superior algorithm for dense

matrix-vector multiplication on NVIDIA CUDA architec-
ture. Then, this paper empirically compares the proposed
algorithm with sgemv in CUBLAS 1.1 and also sgemv in
Intel Math Kernel Library (MKL for short) 9.1 on 2.0 GHz
Intel Xeon E5335 CPU with SSE3 SIMD instructions, in
terms of both one matrix-vector multiplication and Jacobi’s
iterative method for solving linear equations.

2 An Overview of CUDA Architecture

This section briefly illustrates CUDA architecture by the
case of GeForce 8800GTX, mainly using excerpts from [5]
and [3]. For more detail, see [5] and [3].

When programmed through CUDA, the GPU is viewed
as a compute device capable of executing a very high num-
ber of threads in parallel. A kernel is a portion of an appli-
cation that is executed on the GPU and can be isolated into
a function, of C language, that is executed as many different
threads.

A multiprocessor consists of 8 scalar processors with
16KB shared memory and a total of 8192 registers.
CUDA architecture calls so-called VRAM device memory.
8800GTX is a two-level shared-memory parallel machine
such that 16 multiprocessors are connected via 768MB de-
vice memory. So, 8800GTX equips with a total of 128
scalar processors. The maximum number of threads that
can run concurrently on a multiprocessor is 768. Hence,
8800GTX can run maximum 12288 threads concurrently by
hardware management.

A thread block (block for short) is a batch of threads that
can cooperate together by efficiently sharing data through
fast shared memory and their execution to coordinate mem-
ory accesses. The maximum number of threads per block is
limited to 512. A block has dimensionality. Blocks of same
dimensionality and size that execute the same kernel can
be batched together into a grid of blocks. Threads in dif-
ferent blocks from the same grid cannot communicate and
synchronize with each other. Each thread (resp., block) is
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identified by its thread ID (resp., block ID), which is the
thread (resp., block) number within the block (resp., grid).
An application can also specify a block (resp., a grid) as a
two- or three-dimensional (resp., two-dimensional) array of
arbitrary size and identify each thread (resp., block) using a
2- or 3-component (resp, 2-component) index instead. Each
block is allocated to a multiprocessor. Each multiprocessor
can run concurrently maximum 8 blocks [5]. Each block is
split into groups of 32 threads called warps. Each of these
warps is executed by the multiprocessor in a SIMD fashion.
A thread scheduler periodically switches from one warp to
another. A half-warp is either the first or second half of a
warp.

Shared memory is organized into 16 banks and can be
accessed as fast as accessing a register as long as there are
no bank conflicts between the threads in a half-warp. If
two addresses of a memory request fall in the same mem-
ory bank, there is a bank conflict and the access has to be
serialized. However, no bank conflict occurs provided that
all threads of a half-warp read from an address within the
same 32-bit word.

To access device memory with high bandwidth, the de-
vice memory addresses simultaneously accessed by each
thread of a half-warp during the execution of a single read
or write instruction should be arranged so that the memory
accesses can be coalesced into a single contiguous, aligned
memory access. To issue one arithmetic or memory instruc-
tion (except several instructions) for a warp, a multiproces-
sor takes 4 clock cycles [5]. Device memory bandwidth is
very high at 86.4 GB/sec [3]. However, when accessing
device memory, there are 400 to 600 clock cycles of mem-
ory latency [5]D This device memory latency can be hid-
den by the thread scheduler if there are sufficient number of
threads. The number of threads that run concurrently on a
multiprocessor is restricted by the fact that shared memory
and registers in a multiprocessor are divided among con-
current blocks allocated for the multiprocessor. NVIDIA
recommends at least 192 threads per block and at least 2
blocks per multiprocessor [5].

CUDA supports a subset of the texturing hardware that
the GPU uses for graphics to access texture memory. Al-
though the shared memory and the device memory are not
cached, the texture memory is cached. The texture cache
is optimized for 2D spatial locality, so threads of the same
warp that read texture addresses that are close together will
achieve best performance. So, reading data from texture
memory instead of device memory can have performance
benefits if access pattern has such locality.

3 The Proposed Algorithm

Listing 1 shows a naive implementation of matrix-vector
multiplication in C language. During the multiplication,

Listing 1. naive matrix-vector multiplication
in C

1 / / y = Ax
2 / / A : m−by−n mat r i x , x : n e l e m e n t s v e c t o r ,
3 / / y : m e l e m e n t s v e c t o r
4
5 void mv( f l o a t ∗y , f l o a t ∗A, f l o a t ∗x , i n t m, i n t n ) {
6 f o r ( i n t i = 0 ; i < m; i ++) {
7 y [ i ] = 0 ;
8 f o r ( i n t j = 0 ; j < n ; j ++)
9 y [ i ] += A[ i ∗ n + j ] ∗ x [ j ] ;

10 }
11 }

each element in the matrix A is used only once. In contrast,
the vector x is used for every row of A. So, reusable data in
matrix-vector multiplication is x only. Therefore, x is de-
sirable to be loaded into shared memory. However, even if
we can use whole shared memory only for x, shared mem-
ory can load only 4096 floats. Hence, this paper considers a
block algorithm for matrix-vector multiplication such that:
The size of data required for computation of a block is small
enough to fit shared memory; Blocks can be computed in
parallel by multiprocessors; Computation for a block itself
can be performed efficiently in parallel on a multiprocessor.

As a block algorithm that satisfies the above require-
ments, this paper proposes a parallel algorithm shown in
Listing 2. Figure 1 illustrates the behavior of the parallel
algorithm. In Listing 2, matrix A is divided into blocks
with size 16 × 16. The construct ”forall ... do
in parallel” represents a parallel for-loop. The outer
forall in line 10 corresponds to the parallelism among
multiprocessors. The body of the outer forall corre-
sponds to the computation in a multiprocessor. Notice that
two inner foralls in line 14 and 20 imply the compu-
tation itself has parallelism. To parallelize matrix-vector
multiplication shown in Listing 1, it is common to utilize
parallelism only in line 6. In this case, the amount of avail-
able parallelism is m. In contrast, the proposed algorithm
utilizes higher amount of parallelism. The dominant part of
the proposed algorithm is line 14 to 19 in Listing 2. The
amount of the available parallelism is 16m. The domi-
nant part can be efficiently implemented because it is em-
barrassingly parallel computations in terms of both inter-
multiprocessor and intra-multiprocessor. Line 20 to 21 in
Listing 2 can be implemented as a set of simultaneous in-
dependent reduction operations of 16 floats. The set is per-
formed only once during whole matrix-vector multiplica-
tion. On the other hand, the complexity of the dominant part
is O(n) per thread. So, the larger the number of the column
of A is, the less significant the complexity of the reduction
part is. The reduction operation itself is not embarrassingly



Listing 2. A high-level description of the pro-
posed algorithm for CUDA architecture

1 / / y = Ax
2 / / A : m−by−n mat r i x , x : n e l e m e n t s v e c t o r ,
3 / / y : m e l e m e n t s v e c t o r
4 / / T h i s code i s i l l u s t r a t i v e . So , f o r s i m p l i c i t y ,
5 / / here , m and n are assumed t o be a m u l t i p l e o f 1 6 .
6 / / T h i s r e s t r i c t i o n i s r e l e a s e d l a t e r i n
7 / / t h e f i n a l CUDA code .
8
9 void mv( f l o a t ∗y , f l o a t ∗A, f l o a t ∗x , i n t m, i n t n ) {

10 f o r a l l h (0 <= h < m / 16) do in p a r a l l e l {
11 / / Note t h a t P , i , and j below are l o c a l t o h
12 / / r e s p e c t i v e l y .
13 f l o a t P [ 1 6 ] [ 1 6 ] ;
14 f o r a l l i , j ( 0 <= i , j < 16) do in p a r a l l e l {
15 P [ i ] [ j ] = 0 ;
16 f o r ( i n t w = 0 ; w < n / 1 6 ; w++)
17 P [ i ] [ j ] += A[ ( 1 6 ∗ h + i ) ∗ n + (16 ∗ w + j ) ]
18 ∗ x [16 ∗ w + j ] ;
19 }
20 f o r a l l i ( 0 <= i < 16) do in p a r a l l e l
21 y [16 ∗ h + i ] = t h e sum t o t a l o f P [ i ] [ ∗ ] ;
22 }
23 }

parallel computations. However, it can be efficiently imple-
mented here so that each reduction operation is performed
within a multiprocessor with zero latency access to shared
memory (i.e., without bank conflict) as shown in the next
paragraph. Since the proposed algorithm reads from and
writes to A, x, and y only in sequential access manner, all
accesses to device memory can be coalesced.

Listing 3 shows the entire CUDA implementation of the
proposed algorithm. Figure 2 illustrates the behavior of
each thread in the proposed CUDA algorithm. For detail of
CUDA library routines and language extensions for C/C++,
see [5]. Listing 3 includes not only the kernel function
mv kernel but also the C interface function mv that in-
vokes mv kernel and performs preprocessing and post-
processing necessary for mv kernel.

The body of the outer forall in Listing 2 can be imple-
mented efficiently on CUDA architecture as shown in List-
ing 3. Line 33 to 76 (resp., 78 to 84) corresponds to the
dominant part (resp., reduction part). Vector x is read via
its copy xs on shared memory. The proposed implementa-
tion allocates 16× 16 threads to a thread block which deals
with a 16×16 submatrix of A. The data in x required to deal
with a submatrix of A is 16 floats only. If x is naively read
every 16 floats, then 240 threads of 256 threads in a thread
block must be idle when the other 16 threads read 16 floats
of x. So, the proposed implementation devises the read of
x so that x is read every 256 floats. Another device is that
matrix A is read via texture texRefA. As shown in Figure
2, access pattern for A has 2D spatial locality. So, reading A
via texture improves the performance of the algorithm.

Since a thread block contains exactly 256 threads, at
most three thread blocks can be active on a multiprocessor.
So, each thread block can use shared memory at most 16/3
KB. The size of the shared memory required by a thread
block (a little more than 2KB) is less than the limit. How-
ever, the kernel function of the proposed implementation
uses 16 registers. So, only two thread blocks are active on a
multiprocessor.

If m is not a multiple of 16, then mv kernel is invoked
as if m is the minimum multiple m′ of 16 that is greater
than m. In this case, mv kernel computes a vector with
length m′ but returns only first m of the m′ floats as a resul-
tant vector. If n is not a multiple of 256, then let n′ be the
maximum multiple of 256 that does not exceed n. In this
case, mv kernel deals with n′ columns first. Line 58 to
76 deal with remained (n mod 256) columns.

4 Experiments

This section compares the performance of the proposed
algorithm with CUBLAS 1.1 and also MKL 9.1.025 run-
ning on a CPU. For each test, one core of 2.0 GHz Intel
Xeon E5335 (FSB 1333MHz, L2 cache 8MB, quad cores)
and NVIDIA GeForce 8800GTX was used. The used OS
is Windows XP Professional with NVIDIA graphics driver
Version 169.21. For CUDA and CUBLAS program com-
pilation, Microsoft Visual Studio 2005 Professional Edi-
tion with optimization option /O2 and CUDA 1.1 SDK was
used. For MKL program compilation, Intel C++ compiler
10.0.026 with optimization options /O2, /QaxT (directs the
compiler to utilize SSE3 SIMD instructions and processor
specific optimizations), and /Qfp-speculationfast was used.

4.1 One Matrix-Vector Multiplication

Figure 3 shows the performance of one matrix-vector
multiplication with every matrix order from 16 to 12800.
The performance was measured with NVIDIA’s CUDA
Profiler 1.1 for the CUBLAS program and the CUDA pro-
gram. The first measurement for CUDA and MKL includes
the overhead of the library initialization and so on. There-
fore, for each point, the measurement was conducted 11
times consecutively and the average value except the first
measurement was plotted.

The proposed algorithm is a little slower than CUBLAS
1.1 only in 19 cases where a given matrix order is in
{s|7712 ≤ s ≤ 8064, s is a multiple of 32} ∪ {s|8096 ≤
s ≤ 8192, s is a multiple of 16}. However, for all other
12766 cases, the proposed algorithm runs faster than
CUBLAS 1.1. For a matrix with order at least 2048, the
performance of CUBLAS significantly varies from 3.15
GFLOPS to 36.41 GFLOPS with a fluctuation period of 16.
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If a given matrix order is a multiple of 16, then the per-
formance of CUBLAS is maximum 36.41 GFLOPS. How-
ever, otherwise, the performance of CUBLAS is about 4.5
to 7.4 GFLOPS only. In particular, for half matrix orders,
the performance of CUBLAS is only 4.5 GFLOPS. In con-
trast to this, the performance of the proposed algorithm is
relatively stable and keeps above 28.05 GFLOPS for matrix
order 2048 to 12800. The proposed algorithm has a fluc-
tuation period of 512. The reason is as follows: If there
are enough many blocks, each of 16 multiprocessors is al-
located 2 blocks such that each block computes 16 rows
of a given matrix; Therefore, blocks are evenly distributed
among multiprocessors if the number of rows of a given
matrix is a multiple of 512(= 16 × 2 × 16).

4.2 Jacobi’s Iterative Method

Figure 4 shows experimental results on Jacobi’s itera-
tive method for solving linear equations Ax = b where
A = (aij) is a given n-by-n matrix, b is a given vector,
and x is the solution vector of the equations. To accelerate
the data transfer between CPU and GPU, the CUDA pro-
gram and the CUBLAS program used page-locked memory
to store A, x, and the temporary buffer which corresponds to
y. The performance of CUBLAS sgemv significantly varies
over a given matrix order. Figure 4 (b) and (d) (resp., (a)
and (c) ) show comparisons among the proposed algorithm,
CUBLAS, and MKL in two of the best (resp., worst) cases
for CUBLAS. The execution order of floating point oper-
ations in matrix-vector multiplication depends on the used
algorithm. Therefore, the number of iterations may be dif-
ferent among CUBLAS, the proposed algorithm, and MKL.
So, Figure 4 plots only the cases where the number of iter-
ations are the same among the three. Each point is not the
average value of plural executions but the value of only one
execution. The measurement was consecutively conducted
20 times for each α and the results except the first measure-
ment are plotted in Figure 4 to abandon the first measure-
ment.

The execution time of Jacobi’s method depends on a
given matrix order and the number of iterations but does
not directly depend on the values in a given matrix and a
given vector (of course, the number of iterations depends
on the values) . So, for each matrix order, a matrix and
a vector are randomly generated subject to the following
constraint. The number of iterations is controlled as fol-
lows: Let L, D, and U be a lower triangular matrix, a di-
agonal matrix, and an upper triangular matrix respectively
such that A = L + D + U ; Let H be −D−1(L + U);
Jacobi’s method is convergent iff every eigenvalue λ of H
satisfies |λ| < 1 [8]; The smaller the maximum absolute
value λmax of the eigenvalues is, the faster the convergence
speed of Jacobi’s method is [8]; λmax ≤ ∑

j �=i |aij/aii|

follows; Therefore, the smaller
∑

j �=i |aij/aii|(< 1) is, the
faster the convergence speed of Jacobi’s method is; Hence,
A is generated to have random nondiagonal elements from
[0.0, 1.0] and diagonal elements α

∑
j �=i aij where α is 1.1,

1.2, or 1.4. b is generated randomly from [−0.5, 0.5].
Although the proposed algorithm is a little slower than

CUBLAS in case of matrix order 8192, for other four
cases the proposed algorithm is fairly faster than CUBLAS.
CUBLAS and the proposed algorithm transfer a given ma-
trix to GPU only once because each iteration of Jacobi’s
iterative method uses the same matrix. So, the performance
is improved with an increase of the number of iterations
and approaches the performance without the data transfer
in Figure 3. For example, if the matrix order is 8192 and
the number of iterations is at least 140, the overhead of
data transfer between CPU and GPU is negligible. This im-
plies that, if the proposed algorithm is used, GPU is useful
for some applications that perform matrix-vector multipli-
cations many times but perform the data transfer between
CPU and GPU a few times.

5 Related Works

As far as the author knows, except CUBLAS sgemv, no
result exist on dense matrix-vector multiplication for CUDA
architecture (As for sparse matrix-vector multiplication for
CUDA, there is a result [7]). However, some results are
known for traditional GPGPU, which reduces general com-
putations to a series of rasterization problems on a GPU us-
ing OpenGL or DirectX 3D. This section briefly summa-
rizes these related works.

Krüger et al. [2] presented a dense matrix-vector multi-
plication algorithm using Pixel Shader 2.0 API of DirectX9.
The experiments on Windows XP with a 2.8GHz Pentium 4
and an ATI 9800 graphics card showed that the performance
(without data transfer between CPU and GPU) for matrices
with order 512 to 2048 is about 12 to 15 times faster com-
pared to an optimized CPU program (the detail on the CPU
program is not described).

Buck et al. [1] proposed for GPUs a high level data-
parallel programming language called Brook, which is
based on stream computation model. The performance
(without data transfer between CPU and GPU) of the Brook
program (resp., the hand-written GPGPU program) for
dense matrix-vector multiplication on Windows XP with 3
GHz Intel Pentium 4 and ATI Radeon X800 XT Platinum
is 2.251 GFLOPS (resp., 2.335 GFLOPS) for a matrix with
order 1024.

Tarditi et al. [9] proposed an even higher level data-
parallel programming language called Accelerator, which is
based on array computation model. The performance (with-
out data transfer between CPU and GPU) of the Accelera-
tor program, whose source code is translated into the code
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Figure 3. Performance of matrix-vector multiplication (without data transfer between CPU and GPU)

of a virtual machine called CLR, (resp., the hand-written
GPGPU program) for dense matrix-vector multiplication on
Windows XP with a 3.2GHz Pentium 4 and an ATI X1800
graphics card is 4 times slower (resp., 1.3 times faster) than
a CPU program optimized by Intel MKL 7.0 for a matrix
with order 1000.

6 Conclusion

A new algorithm has been proposed for dense matrix-
vector multiplication on NVIDIA CUDA architecture. On
GeForce 8800GTX, the proposed algorithm runs maximum
15.69 (resp., 32.88) times faster than the sgemv routine in
NVIDIA’s CUBLAS 1.1 (resp., Intel MKL 9.1 on one-core
of 2.0 GHz Intel Xeon E5335 CPU with SSE3 SIMD in-
structions) for matrices with order 16 to 12800. The perfor-
mance, including the data transfer between CPU and GPU,
of Jacobi’s iterative method has showed that the proposed
algorithm is practical for some real applications.
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Listing 3. The proposed matrix-vector multiplication algorithm in CUDA
1 / / y = Ax
2 / / A : m−by−n mat r i x , x : n e l e m e n t s v e c t o r , y : m e l e m e n t s v e c t o r
3 / / m and n are a r b i t r a r y p o s i t i v e i n t e g e r s .
4
5 t e x t u r e <f l o a t 4 , 2 , cudaReadModeElementType> texRefA ;
6
7 void mv( f l o a t ∗y , f l o a t ∗A, f l o a t ∗x , i n t m, i n t n ) {
8 i n t blkNum = (m >> 4) + ( (m & 15) ? 1 : 0 ) ; i n t h e i g h t = blkNum << 4 ;
9 i n t wid th = ( n & 255) ? (256 ∗ ( ( n >> 8) + 1 ) ) : n ;

10 dim3 t h r e a d s ( 1 6 , 1 6 ) , g r i d ( blkNum , 1 ) ;
11 cudaArray ∗d A ; f l o a t ∗d x , ∗d y ;
12
13 cudaChanne lFormatDesc channe lDesc = cudaCrea t eChanne lDesc<f l o a t 4 > ( ) ;
14 cudaMal locAr ray (&d A , &channe lDesc , wid th >> 2 , h e i g h t ) ;
15 cudaMemcpy2DToArray ( d A , 0 , 0 , A, n ∗ s i z e o f ( f l o a t ) , n ∗ s i z e o f ( f l o a t ) , m, cudaMemcpyHostToDevice ) ;
16 cudaBindTex tu reToAr ray ( texRefA , d A ) ;
17 cudaMal loc ( ( void ∗∗) &d x , n ∗ s i z e o f ( f l o a t ) ) ;
18 cudaMal loc ( ( void ∗∗) &d y , m ∗ s i z e o f ( f l o a t ) ) ;
19
20 cudaMemcpy ( d x , x , n ∗ s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;
21 mv kerne l<<< g r i d , t h r e a d s >>>(d y , d A , d x , m, n ) ;
22 cudaMemcpy ( y , d y , m ∗ s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;
23
24 c u d a F r e e ( d y ) ; c u d a F r e e ( d x ) ; cudaUnb indTex tu re ( texRefA ) ; c u d a F r e e A r r a y ( d A ) ;
25 }
26
27 # d e f i n e bx b l o c k I d x . x
28 # d e f i n e t x t h r e a d I d x . x
29 # d e f i n e t y t h r e a d I d x . y
30 g l o b a l vo id
31 m v k e r n e l ( f l o a t ∗ y , cudaArray∗ A, f l o a t ∗ x , i n t m, i n t n )
32 {
33 s h a r e d f l o a t xs [ 1 6 ] [ 1 6 ] ;
34 s h a r e d f l o a t Ps [ 1 6 ] [ 1 6 ] ;
35 f l o a t 4 a ;
36 f l o a t ∗P s p t r = ( f l o a t ∗) Ps + ( t y << 4) + t x ;
37 i n t ay = ( bx << 4) + t y ;
38 f l o a t ∗ x p t r = x + ( t y << 4) + t x ;
39 f l o a t ∗ x s p t r = ( f l o a t ∗) xs + ( t x << 2 ) ;
40
41 ∗P s p t r = 0 . 0 f ;
42 i n t i ;
43 f o r ( i = 0 ; i < ( n & ˜ 2 5 5 ) ; i += 256 , x p t r += 256) {
44 xs [ t y ] [ t x ] = ∗ x p t r ;
45 s y n c t h r e a d s ( ) ;
46 i n t ax = t x + ( i >> 2 ) ;
47 a = tex2D ( texRefA , ax , ay ) ;
48 ∗P s p t r += a . x ∗ ∗ x s p t r + a . y ∗ ∗( x s p t r + 1 ) + a . z ∗ ∗( x s p t r + 2 ) + a .w ∗ ∗( x s p t r + 3 ) ;
49 a = tex2D ( texRefA , ax + 16 , ay ) ;
50 ∗P s p t r += a . x ∗ ∗( x s p t r + 64) + a . y ∗ ∗( x s p t r + 65) + a . z ∗ ∗( x s p t r + 66) + a .w ∗ ∗( x s p t r + 6 7 ) ;
51 a = tex2D ( texRefA , ax + 32 , ay ) ;
52 ∗P s p t r += a . x ∗ ∗( x s p t r + 128) + a . y ∗ ∗( x s p t r + 129) + a . z ∗ ∗( x s p t r + 130) + a .w ∗ ∗( x s p t r + 1 3 1 ) ;
53 a = tex2D ( texRefA , ax + 48 , ay ) ;
54 ∗P s p t r += a . x ∗ ∗( x s p t r + 192) + a . y ∗ ∗( x s p t r + 193) + a . z ∗ ∗( x s p t r + 194) + a .w ∗ ∗( x s p t r + 1 9 5 ) ;
55 s y n c t h r e a d s ( ) ;
56 }
57
58 i f ( i + ( t y << 4) + t x < n ) {
59 xs [ t y ] [ t x ] = ∗ x p t r ;
60 }
61 s y n c t h r e a d s ( ) ;
62 i n t j ;
63 f o r ( j = 0 ; j < ( ( n − i ) >> 6 ) ; j ++ , x s p t r += 61) {
64 a = tex2D ( texRefA , t x + ( i >> 2) + ( j << 4 ) , ay ) ;
65 ∗P s p t r += a . x ∗ ∗ x s p t r ++ + a . y ∗ ∗ x s p t r ++ + a . z ∗ ∗ x s p t r ++ + a .w ∗ ∗ x s p t r ;
66 }
67 s y n c t h r e a d s ( ) ;
68 i n t r emain = ( n − i ) & 6 3 ;
69 i f ( ( t x << 2) < r emain ) {
70 a = tex2D ( texRefA , t x + ( i >> 2) + ( j << 4 ) , ay ) ;
71 ∗P s p t r += a . x ∗ ∗ x s p t r ++;
72 }
73 i f ( ( t x << 2) + 1 < r emain ) ∗P s p t r += a . y ∗ ∗ x s p t r ++;
74 i f ( ( t x << 2) + 2 < r emain ) ∗P s p t r += a . z ∗ ∗ x s p t r ++;
75 i f ( ( t x << 2) + 3 < r emain ) ∗P s p t r += a .w ∗ ∗ x s p t r ;
76 s y n c t h r e a d s ( ) ;
77
78 i f ( t x < 8) ∗P s p t r += ∗( P s p t r + 8 ) ;
79 i f ( t x < 4) ∗P s p t r += ∗( P s p t r + 4 ) ;
80 i f ( t x < 2) ∗P s p t r += ∗( P s p t r + 2 ) ;
81 i f ( t x < 1) ∗P s p t r += ∗( P s p t r + 1 ) ;
82
83 s y n c t h r e a d s ( ) ;
84 i f ( t y == 0 && ( bx << 4) + t x < m) y [ ( bx << 4) + t x ] = Ps [ t x ] [ 0 ] ;
85 }




