
it’s no surprise that push-button parallel programming is
proving even more elusive.

In recent years, Microprocessor Report has been analyz-
ing various approaches to parallel processing. Among other
technologies, we’ve examined RapidMind’s Multicore
Development Platform (see MPR 11/26/07-01, “Parallel
Processing for the x86”), PeakStream’s math libraries for
graphics processors (see MPR 10/2/06-01, “Number
Crunching With GPUs”), Fujitsu’s remote procedure calls
(see MPR 8/13/07-01, “Fujitsu Calls Asynchronously”),
Ambric’s development-driven CPU architecture (see MPR
10/10/06-01, “Ambric’s New Parallel Processor”), and
Tilera’s tiled mesh network (see MPR 11/5/07-01, “Tilera’s
Cores Communicate Better”).

Now it is Nvidia’s turn for examination. Nvidia’s
Compute Unified Device Architecture (CUDA) is a soft-
ware platform for massively parallel high-performance
computing on the company’s powerful GPUs. Formally
introduced in 2006, after a year-long gestation in beta,
CUDA is steadily winning customers in scientific and engi-
neering fields. At the same time, Nvidia is redesigning and
repositioning its GPUs as versatile devices suitable for much
more than electronic games and 3D graphics. Nvidia’s Tesla
brand denotes products intended for high-performance
computing; the Quadro brand is for professional graphics
workstations, and the GeForce brand is for Nvidia’s tradi-
tional consumer graphics market.

For Nvidia, high-performance computing is both an
opportunity to sell more chips and insurance against an

uncertain future for discrete GPUs. Although Nvidia’s
GPUs and graphics cards have long been prized by gamers,
the graphics market is changing. When AMD acquired ATI
in 2006, Nvidia was left standing as the largest independent
GPU vendor. Indeed, for all practical purposes, Nvidia is
the only independent GPU vendor, because other competi-
tors have fallen away over the years. Nvidia’s sole-survivor
status would be enviable—should the market for discrete
GPUs remain stable. However, both AMD and Intel plan to
integrate graphics cores in future PC processors. If these
integrated processors shrink the consumer market for dis-
crete GPUs, it could hurt Nvidia. On the other hand, many
PCs (especially those sold to businesses) already integrate a
graphics processor at the system level, so integrating those
graphics into the CPU won’t come at Nvidia’s expense. And
serious gamers will crave the higher performance of discrete
graphics for some time to come. Nevertheless, Nvidia is wise
to diversify.

Hence, CUDA. A few years ago, pioneering program-
mers discovered that GPUs could be reharnessed for tasks
other than graphics. However, their improvised program-
ming model was clumsy, and the programmable pixel
shaders on the chips weren’t the ideal engines for general-
purpose computing. Nvidia has seized upon this opportunity
to create a better programming model and to improve the
shaders. In fact, for the high-performance computing mar-
ket, Nvidia now prefers to call the shaders “stream proces-
sors” or “thread processors.” It’s not just marketing hype.
Each thread processor in an Nvidia GeForce 8-series GPU

PARALLEL PROCESSING WITH CUDA
Nvidia’s High-Performance Computing Platform Uses Massive Multithreading

By Tom R. Halfhi l l {01/28/08-01}

Parallel processing on multicore processors is the industry’s biggest software challenge, but

the real problem is there are too many solutions—and all require more effort than setting

a compiler flag. The dream of push-button serial programming was never fully realized, so

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com

Article Reprint

can manage 96 concurrent threads, and these processors have
their own FPUs, registers, and shared local memory.

As Figure 1 shows, CUDA includes C/C++ software-
development tools, function libraries, and a hardware-
abstraction mechanism that hides the GPU hardware from
developers. Although CUDA requires programmers to write
special code for parallel processing, it doesn’t require them
to explicitly manage threads in the conventional sense, which
greatly simplifies the programming model. CUDA develop-
ment tools work alongside a conventional C/C++ compiler, so
programmers can mix GPU code with general-purpose code
for the host CPU. For now, CUDA aims at data-intensive
applications that need single-precision floating-point math
(mostly scientific, engineering, and high-performance com-
puting, as well as consumer photo and video editing). Double-
precision floating point is on Nvidia’s roadmap for a new GPU
later this year.

Hiding the Processors
In one respect, Nvidia starts with an advantage that makes
other aspirants to parallel processing envious. Nvidia has
always hidden the architectures of its GPUs beneath an
application programming interface (API). As a result, appli-
cation programmers never write directly to the metal.
Instead, they call predefined graphics functions in the API.

Hardware abstraction has two benefits. First, it simpli-
fies the high-level programming model, insulating program-
mers (outside Nvidia) from the complex details of the GPU
hardware. Second, hardware abstraction allows Nvidia to
change the GPU architecture as often and as radically as
desired. As Figure 2 shows, Nvidia’s latest GeForce 8 archi-
tecture has 128 thread processors, each capable of managing
up to 96 concurrent threads, for a maximum of 12,288 threads.
Nvidia can completely redesign this architecture in the next
generation of GPUs without making the API obsolescent or
breaking anyone’s application software.

In contrast, most microprocessor architectures are
practically carved in stone. They can be extended from one
generation to the next, as Intel has done with MMX and SSE
in the x86. But removing even one instruction or altering a
programmer-visible register will break someone’s software.
The rigidity of general-purpose CPUs forced companies like
RapidMind and PeakStream to create their own abstraction
layers for parallel processing on Intel’s x86 and IBM’s Cell
Broadband Engine. (PeakStream was acquired and absorbed
by Google last year.) RapidMind has gone even further by
porting its virtual platform to ATI and Nvidia GPUs instead
of using those vendors’ own platforms for high-performance
computing.

In the consumer graphics market, Nvidia’s virtual plat-
form relies on install-time compilation. When PC users
install application software that uses the graphics card, the
installer queries the GPU’s identity and automatically com-
piles the APIs for the target architecture. Users never see this
compiler (actually, an assembler), except in the form of the
installer’s progress bar. Install-time translation eliminates
the performance penalty suffered by run-time interpreted
or just-in-time compiled platforms like Java, yet it allows
API calls to execute transparently on any Nvidia GPU. As
we’ll explain shortly, application code written for the pro-
fessional graphics and high-performance computing mar-
kets is statically compiled by developers, not by the software
installer—but the principle of insulating programmers from
the GPU architecture is the same.

Although Nvidia designed this technology years ago to
make life easier for graphics programmers and for its own
GPU architects, hardware abstraction is ideally suited for the
new age of parallel processing. Nvidia is free to design
processors with any number of cores, any number of threads,
any number of registers, and any instruction set. C/C++
source code written today for an Nvidia GPU with 128
thread processors can run without modification on future
Nvidia GPUs with additional thread processors, or on Nvidia
GPUs with completely different architectures. (However,
modifications may be necessary to optimize performance.)

Hardware abstraction is an advantage for software
development on parallel processors. In the past, Moore’s law
enabled CPU architects to add more function units and
pipeline stages. Now, architects are adding more processor
cores. CUDA’s hardware abstraction saves programmers from
having to learn a new GPU architecture every couple of years.

CUDA Automatically Manages Threads
CUDA’s programming model differs significantly from single-
threaded CPU code and even the parallel code that some
programmers began writing for GPUs before CUDA. In a
single-threaded model, the CPU fetches a single instruction
stream that operates serially on the data. A superscalar CPU
may route the instruction stream through multiple pipelines,
but there’s still only one instruction stream, and the degree
of instruction parallelism is severely limited by data and

2

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

Figure 1. Nvidia’s CUDA platform for parallel processing on Nvidia
GPUs. Key elements are common C/C++ source code with different
compiler forks for CPUs and GPUs; function libraries that simplify
programming; and a hardware-abstraction mechanism that hides the
details of the GPU architecture from programmers.

3

resource dependencies. Even the best four-, five-, or six-way
superscalar CPUs struggle to average 1.5 instructions per
cycle, which is why superscalar designs rarely venture
beyond four-way pipelining. Single-instruction multiple-
data (SIMD) extensions permit many CPUs to extract some
data parallelism from the code, but the practical limit is usu-
ally three or four operations per cycle.

Another programming model is general-purpose
GPU (GPGPU) processing. This model is relatively new and
has gained much attention in recent years. Essentially,
developers hungry for high performance began using GPUs
as general-purpose processors, although “general-purpose”
in this context usually means data-intensive applications in
scientific and engineering fields. Programmers use the
GPU’s pixel shaders as general-purpose single-precision
FPUs. GPGPU processing is highly parallel, but it relies
heavily on off-chip “video” memory to operate on large data
sets. (Video memory, normally used for texture maps and
so forth in graphics applications, may store any kind of data
in GPGPU applications.) Different threads must interact
with each other through off-chip memory. These frequent
memory accesses tend to limit performance.

As Figure 3 shows, CUDA takes a third approach. Like
the GPGPU model, it’s highly parallel. But it divides the
data set into smaller chunks stored in on-chip memory,
then allows multiple thread processors to share each chunk.
Storing the data locally reduces the need to access off-chip
memory, thereby improving performance. Occasionally, of

course, a thread does need to access off-chip memory, such
as when loading the off-chip data it needs into local mem-
ory. In the CUDA model, off-chip memory accesses usually
don’t stall a thread processor. Instead, the stalled thread
enters an inactive queue and is replaced by another thread
that’s ready to execute. When the stalled thread’s data
becomes available, the thread enters another queue that sig-
nals it’s ready to go. Groups of threads take turn executing
in round-robin fashion, ensuring that each thread gets exe-
cution time without delaying other threads.

An important feature of CUDA is that application pro-
grammers don’t write explicitly threaded code. A hardware
thread manager handles threading automatically. Automatic
thread management is vital when multithreading scales to
thousands of threads—as with Nvidia’s GeForce 8 GPUs,
which can manage as many as 12,288 concurrent threads.
Although these are lightweight threads in the sense that each
one operates on a small piece of data, they are fully fledged
threads in the conventional sense. Each thread has its own
stack, register file, program counter, and local memory. Each
thread processor has 1,024 physical registers, 32 bits wide,
implemented in SRAM instead of latches. The GPU pre-
serves the state of inactive threads and restores their state
when they become active again. Instructions from multiple
threads can share a thread processor’s instruction pipeline at
the same time, and the processors can switch their attention
among these threads in a single clock cycle. All this run-time
thread management is transparent to the programmer.

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

Figure 2. Nvidia GeForce 8 graphics-processor architecture. This particular GeForce 8 GPU has 128 thread processors, also known as stream proces-
sors. (Graphics programmers call them “programmable pixel shaders.”) Each thread processor has a single-precision FPU and 1,024 registers, 32
bits wide. Each cluster of eight thread processors has 16KB of shared local memory supporting parallel data accesses. A hardware thread-execution
manager automatically issues threads to the processors without requiring programmers to write explicitly threaded code. The maximum number of
concurrent threads is 12,288. Nvidia GPUs with 128 thread processors include the GeForce 8800 GTX, GeForce 8800 Ultra, and GeForce 8800 GTS
512MB; the Quadra FX 5600; and the Tesla C870, D870, and S870.

4

By removing the burden of explicitly managing
threads, Nvidia simplifies the programming model and
eliminates a whole category of potential bugs. In theory,
CUDA makes deadlocks among threads impossible. Dead-
locks or “threadlocks” happen when two or more threads
block each other from manipulating the same data, creating
a standoff in which none of the threads may continue. The
danger of deadlocks is that they can lurk undetected in oth-
erwise well-behaved code for years. (See MPR 4/30/07-02,
“The Dread of Threads.”)

Nvidia says CUDA eliminates deadlocks, no matter
how many threads are running. A special API call, sync-
threads, provides explicit barrier synchronization. Calling
syncthreads at the outer level of a section of code invokes a
compiler-intrinsic function that translates into a single
instruction for the GPU. This barrier instruction blocks
threads from operating on data that another thread is using.
Although syncthreads does expose some degree of thread
management to programmers, it’s a relatively minor detail,
and Nvidia says it’s almost foolproof. A problem might arise

were a program to embed a syncthreads barrier within some
conditional-branch statements that aren’t executed in some
cases, but Nvidia strongly discourages using syncthreads in
that manner. If programmers follow the rules, Nvidia
insists, threadlocks won’t happen with CUDA.

RapidMind makes a similar claim for its parallel-
processing platform—which, like CUDA, doesn’t require
programmers to write explicitly multithreaded code. Absent
a formal mathematical proof, only time will tell if the CUDA
and RapidMind thread managers are as solid as their makers
claim.

Developers Must Analyze Data
Although CUDA automates thread management, it doesn’t
entirely relieve developers from thinking about threads.
Developers must analyze their problem to determine how
best to divide the data into smaller chunks for distribution
among the thread processors. This data layout or “decom-
position” does require programmers to exert some manual
effort and write some explicit code.

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

Figure 3. Three different models for high-performance computing. At left, a typical general-purpose CPU executes a single thread of execution by
fetching an instruction stream from an instruction cache and operating on data flowing through a data cache from main memory. The middle sec-
tion of this figure illustrates the GPGPU model, which uses a GPU’s programmable pixel shaders for general-purpose processing. It’s highly paral-
lel but I/O-bound by frequent accesses to off-chip memory. At right, Nvidia’s CUDA model caches smaller chunks of data on chip and shares the
data among clusters of thread processors (shaders).

5

For example, consider an application that has
great potential for data parallelism: scanning net-
work packets for malware. Worms, viruses, trojans,
root kits, and other malicious programs have tell-
tale binary signatures. An antivirus filter scans the
packet for binary sequences matching the bit
patterns of known viruses. With a conventional
single-threaded CPU, the filter must repeatedly
compare elements of one array (the virus signa-
tures) with the elements of another array (the
packet). If the contents of either array are too
large for the CPU’s caches, the program must fre-
quently access off-chip memory, severely impeding
performance.

With CUDA, programmers can dedicate a
lightweight thread to each virus signature. A block
of these threads can run on a cluster of thread
processors and operate on the same data (the
packet) in shared memory. If much or all the data
fits in local memory, the program needn’t access
off-chip memory. If a thread does need to access
off-chip memory, the stalled thread enters the
inactive queue and yields to another thread. This
process continues until all threads in the block
have scanned the packet. Meanwhile, other blocks of threads
are simultaneously doing the same thing while running on
other clusters of thread processors. An antivirus filter that
has a database of thousands of virus signatures can use
thousands of threads.

For developers, one challenge of CUDA is analyzing
their algorithms and data to find the optimal numbers of
threads and blocks that will keep the GPU fully utilized.
Factors include the size of the global data set, the maximum
amount of local data that blocks of threads can share, the
number of thread processors in the GPU, and the sizes of
the on-chip local memories. One important limit on the
number of concurrent threads—besides the obvious limit
of the number of thread processors—is the number of reg-
isters each thread requires. The CUDA compiler automati-
cally determines the optimal number of registers for each
thread. To reach the maximum possible number of 12,288
threads in a 128-processor GeForce 8, the compiler can’t
assign more than about 10 registers per thread. Usually, the
compiler assigns 20 to 32 registers per thread, which limits
the practical degree of concurrency to about 4,000 to 6,500
threads—still, a stupendous number.

To help developers perform this analysis, Nvidia pro-
vides an Excel spreadsheet called the Occupancy Calculator.
It considers all these factors (and others) to suggest the best
method of decomposing the data. Nvidia says future CUDA
development tools will incorporate a more-automated cal-
culator for data layout. In any case, programmers must be
intimately familiar with their algorithms and data. Some
applications have dependencies that will prevent decompos-
ing the data to the extent described in the antivirus example.

Writing C/C++ Code for CUDA
After a developer has performed this data analysis, the next
step is to express the solution in C or C++. For this purpose,
CUDA adds a few special extensions and API calls to the lan-
guage, as Figure 4 shows. The first code snippet in Figure 4 is
a single-threaded function for a conventional CPU. The sec-
ond snippet is a multithreaded implementation of the same
function for CUDA. Both functions perform a so-called
SAXPY operation (y ? ax + y) on a floating-point array. This
function (or “kernel” in CUDA-speak) is part of the basic
linear algebra subprograms (BLAS) included with CUDA.

One extension, __global__, is a declaration specifica-
tion (“decl spec”) for the C/C++ parser. It indicates that the
function saxpy_parallel is a CUDA kernel that should be
compiled for an Nvidia GPU, not for a host CPU, and that
the kernel is globally accessible to the whole program.
Another extension statement, in the last line of the CUDA
example, uses three pairs of angle brackets (<<<nblocks,
256>>>) to specify the dimensions of the data grid and its
blocks. The first parameter specifies the dimensions of the
grid in blocks, and the second parameter specifies the
dimensions of the blocks in threads. In this example, each
block has 256 threads.

An additional CUDA extension for C, not used in
Figure 4, is the __shared__ modifier for variables. It indi-
cates that a variable in local memory is shared among
threads in the same thread block. There are also some spe-
cial API calls, such as cudaMalloc() and cudaFree(), for
CUDA-specific memory allocation; and cudaMemcpy()
and cuda Memcpy2D(), for copying regions of CPU mem-
ory to GPU memory.

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

Figure 4. CUDA programming example in C. The first section of code is a single-
threaded loop for a conventional CPU, whereas the second section is rewritten for
multithreading on an Nvidia GPU. Both examples do the same thing—they perform
a SAXPY operation on two arrays of floating-point numbers (x and y), using the
scalar value alpha. CUDA’s special extensions, highlighted in color, signal the tool
chain to compile some of the code for an Nvidia GPU instead of for the host CPU.

6

Notice that the CUDA code in Figure 4 generally
adheres to standard C syntax but differs markedly from the
corresponding statements in the single-threaded code. The
loop in the serial code is completely absent from the parallel
code. Instead of operating on the data array iteratively, CUDA
performs the SAXPY operations in large blocks of threads
running concurrently. These blocks, as mentioned above,
represent subdivisions of the whole data set that can be
locally shared by multiple thread processors. The grid is the
whole data set, configured as a matrix subdivided into blocks.

Understanding the Data Is Crucial
The exact configuration of the grid and the blocks depends
on the nature of the data and on the algorithms operating
on the data. In the previous example of an antivirus filter,
the block size might depend on the sizes of the virus signa-
tures, while the configuration of the grid might depend on
the number of signatures in the database.

Likewise, the saxpy_parallel kernel in Figure 4 walks
through data arrays in steps corresponding to the sizes of
the blocks and the configuration of the grid. Within each
block of data, the GPU performs the necessary operations in
parallel. Each individual operation may be a separate
thread. There may be hundreds of threads in a block and
hundreds of thread blocks, depending on the configuration
of the data.

To obtain the best performance
from a GeForce 8, Nvidia advises CUDA
developers to keep the GPU occupied
with about 5,000 concurrent threads.
Yes, that’s a frightening number. Note,
however, that the code in Figure 4 is
capable of doing this—without explic-
itly creating any threads in the conven-
tional sense. At run time, CUDA’s hard-
ware thread manager handles the gory
details of spawning threads and thread
blocks, and it supervises their life cycles.

For developers, the tough work
lies in analyzing the application and de-
composing the data into the best layout
of grids and blocks. Some re-education
may be in order. Most programmers
(and programming languages) tend to
focus on the algorithms that operate on
data. That’s the normal approach for
single-threaded programming. But data
parallelism inverts that thinking.
Understanding the nature of the data
becomes as important—perhaps more
important—than crafting the algo-
rithms. Nvidia offers classes and tutori-
als to help retrain programmers for
CUDA.

A Tool Chain With Many Links
Compiling a CUDA program is not as straightforward as
running a C compiler to convert source code into executable
object code. There are additional steps involved, partly
because the program targets two different processor archi-
tectures (the GPU and a host CPU), and partly because of
CUDA’s hardware abstraction.

As the CUDA example in Figure 4 showed, the same
source file mixes C/C++ code written for both the GPU and
the CPU. Special extensions and declarations identify the
GPU code. The first step is to separate the source code for
each target architecture. For this purpose, Nvidia provides a
C++ front-end preprocessor from Edison Design Group
(EDG). The EDG preprocessor parses the source code and
creates different files for the two architectures.

For the host CPU, EDG creates standard .cpp source
files, ready for compilation with either the Microsoft or
GNU C/C++ compiler. (Nvidia doesn’t provide this com-
piler.) For Nvidia’s graphics processors, EDG creates a dif-
ferent set of .cpp files. Strangely enough, these source files
are then compiled using Open64, an open-source C/C++
compiler originally created for Intel’s Itanium architecture.
Nvidia says it chose Open64 because it’s a good parallel-
processing compiler, it’s easy to customize, and it’s free.

Nvidia’s implementation of Open64 generates assembly-
language output in a format called Parallel Thread eXecution

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

Figure 5. CUDA’s compilation process. Source code written for the host CPU follows a fairly tra-
ditional path and allows developers to choose their own C/C++ compiler, but preparing the
GPU’s source code for execution requires additional steps. Among the unusual links in the
CUDA tool chain are the EDG preprocessor, which separates the CPU and GPU source code; the
Open64 compiler, originally created for Itanium; and Nvidia’s PTX-to-Target Translator, which
converts Open64’s assembly-language output into executable code for specific Nvidia GPUs.

7

(PTX) files. PTX files aren’t specific to a particular Nvidia
GPU. In the consumer graphics market, these are the
device-driver files that Nvidia’s software installer assembles
into GPU-specific executable code at install time. However,
in the professional graphics and high-performance comput-
ing markets, PTX code usually isn’t assembled during instal-
lation. Developers in those high-end markets usually prefer
to statically assemble the code ahead of time, because they
need to test and verify the program to stringent standards
before using it for mission-critical applications.

Figure 5 illustrates the entire CUDA compilation pro-
cess. Although it’s certainly more convoluted than tradi-
tional source-to-binary compilation, it has several benefits.
First, CUDA developers can conveniently mix CPU and
GPU code in a single source file, instead of writing separate
programs for each architecture. Second, the CUDA chain
compiles the CPU and GPU code using different back-end
tools, each optimized for its target architecture, instead of
forcing a single compiler to do both jobs less well. Third,
CUDA developers needn’t rewrite their source code for
future Nvidia GPUs—retranslating the PTX files is all that’s
strictly necessary.

Although retranslating the PTX files isn’t strictly neces-
sary for forward compatibility, it’s desirable for maximum per-
formance and peace of mind. True, CUDA source code is inde-
pendent of the GPU architecture. Thanks to Nvidia’s hardware
abstraction and PTX translator, the same source code will run
on any future Nvidia GPU. But to some extent, CUDA source
code is bound to the GPU’s microarchitecture. When develop-
ers analyze their data to determine the best layout of grids and
blocks, they must consider such factors as the number of
thread processors in the GPU and the local-memory configu-
ration. A future (better) Nvidia GPU will presumably have
more thread processors, more memory, and other enhance-
ments. These factors will influence the optimal data layout.

So yes, the same source code will run just as well on a
future Nvidia GPU, and performance will likely scale in step
with the rising number of thread processors. But minor
modifications to the source code will probably improve per-
formance. Those modifications will also require careful
CUDA developers to retest and requalify their programs.
Because Nvidia introduces a new generation of GPUs
approximately every 18 months, CUDA developers intent
on squeezing every drop of performance from their soft-
ware will probably follow a similar development schedule.

The Pros and Cons of CUDA
As we alluded at the beginning of this report, the real prob-
lem with parallel processing is too many solutions. Finding
the best one for a particular application isn’t easy. Choosing
a processor architecture is only the first step and may be less
important than the supplier’s product roadmap, the software-
development tools, the amount of special programming
required, the degree of forward code compatibility, and the
anticipated longevity of the vendors.

Nvidia has obvious business reasons for promoting
GPUs in the field of high-performance computing. For
Nvidia’s prospective customers in this field, GPUs have sev-
eral attractions. Parallelism isn’t new in GPUs, so Nvidia’s
engineers are experienced with massively parallel processing
and are rapidly applying their knowledge to new designs.
The PC graphics market largely subsidizes the development
and production of these GPUs, so the chips evolve at a fast
rate and are relatively inexpensive and plentiful. (Nvidia has
already sold 50 million CUDA-capable GPUs.) Nvidia is a
big, established company, so it may be a safer bet than a
young startup struggling to introduce a new processor
architecture and programming model. High-performance
computing on GPUs has attracted an enthusiastic following
in the academic community as well as within the industry,
so there is growing expertise among programmers and
alternative approaches to software development.

Downsides are few. GPUs only recently became fully
programmable devices—the shaders used to be hard-
wired—so their programming interfaces and tools are some-
what immature. Single-precision floating point is sufficient
for consumer graphics, so GPUs don’t yet support double
precision. The primary market for GPUs is electronic gam-
ing, so Nvidia must optimize the devices for that applica-
tion, sometimes at the expense of auxiliary markets. GPUs

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

P r i c e & Av a i l a b i l i t y

Nvidia’s Compute Unified Device Architecture
(CUDA) is available now for software development with
Nvidia graphics processors. CUDA works with all GPUs
in Nvidia’s Tesla high-performance computing line; with
the latest 4600 and 5600 GPUs in Nvidia’s Quadro pro-
fessional-graphics line; and with GeForce-8 GPUs in
Nvidia’s consumer graphics line. Nvidia says CUDA will
be compatible with all future Quadro and GeForce vari-
ants. The latest CUDA Software Development Kit (SDK)
is version 1.1, which runs on Microsoft Windows XP
(x86 and x86-64) and Linux (Fedora 7, RedHat Enter-
prise Linux 3.x–5.x, SUSE Linux Enterprise Desktop 10-
SP1, OpenSUSE 10.1/10.2, and Ubuntu 7.04, all on x86
or x86-64). Developers can download the CUDA SDK
from Nvidia’s website. Licensing is free.

General information about CUDA:
• www.nvidia.com/object/cuda_home.html

List of Nvidia GPUs compatible with CUDA:
• www.nvidia.com/object/cuda_learn_products.html

CUDA sample source code:
• www.nvidia.com/object/cuda_get_samples.html

Download the CUDA SDK:
• www.nvidia.com/object/cuda_get.html

Specifications of Nvidia GeForce 8800 GPUs:
• www.nvidia.com/page/geforce_8800.html

8

are large, power-hungry chips, so cramming many of them into
a small space requires special attention to cooling and energy.

When evaluating all these factors, keep in mind that
CUDA isn’t the only option for software development on
Nvidia GPUs. CUDA is merely Nvidia’s platform. In some
ways, RapidMind’s Multicore Development Platform is
superior. RapidMind supports multiple processor architec-
tures, including Nvidia’s GPUs, ATI’s GPUs, IBM’s Cell BE,
and Intel’s and AMD’s x86. This flexibility lets developers
target the architecture currently delivering the best per-
formance—without rewriting or even recompiling the
source code. RapidMind’s C++ extensions appear less de-
pendent on the processor’s microarchitecture than CUDA’s
extensions are. However, without independent benchmarks,
we can’t judge whether RapidMind or CUDA delivers better
performance on Nvidia GPUs. Also, RapidMind doesn’t
publicly disclose the price of its platform, whereas CUDA is
a free download from the Nvidia website.

Because of the steep learning curve involved, and the
new code that must be written, developers will probably

resist making a switch after adopting a particular develop-
ment platform for their high-performance computing appli-
cation. Compare the example source code in this article with
the example code in our recent RapidMind article—there’s
nothing in common, even though both platforms essentially
do the same thing.

For that reason, some developers would rather wait for
a solution to parallel processing that isn’t tied to one ven-
dor’s proprietary technology. They prefer an architecture-
independent, industry-standard solution widely supported by
tool vendors. (Indeed, some developers perceive a need for an
entirely new programming language.) AMD, IBM, Intel,
Microsoft, and other companies are working in the direction of
standard parallel-processing extensions to C/C++, but it’s far
from certain that their efforts will converge anytime soon.
Therefore, developers needing high performance right now
must choose a nonstandard approach. CUDA is a strong con-
tender, but it’s only one option among many.

© I N - S T A T J A N U A R Y 2 8 , 2 0 0 8 M I C R O P R O C E S S O R R E P O R T

Parallel Processing With CUDA

SUBSCRIPTION INFORMATION

To subscribe to Microprocessor Report, contact our customer service department in Scottsdale, Arizona by phone, 480.483.4441;
fax, 480.483.0400; email, epotter@reedbusiness.com; or Web, www.MDRonline.com.

*Sales tax applies in the following states: AL, AZ, CO, DC, GA, HI, ID, IN, IA, KS, KY, LA, MD, MO, NV, NM, RI, SC, SD, TN, UT, VT, WA,
and WV. GST or HST tax applies in Canada.

U.S. & Canada* ElsewhereOne year
Web access only $895 $895
Hardcopy only $1,295 $1,495
Both Hardcopy and Web access $1,395 $1,595

Two years U.S. & Canada* Elsewhere
Web access only $1,495 $1,495
Hardcopy only $1,795 $1,895
Both Hardcopy and Web access $1,895 $1,995

