GPU-accelerated data expansion for the Marching Cubes algorithm

San Jose (CA) | September 23rd, 2010
Christopher Dyken, SINTEF Norway
Gernot Ziegler, NVIDIA UK
Agenda

- Motivation & Background
- Data Compaction and Expansion
 - Histogram Pyramid algorithm and its variations
 - Optimizations and benchmark results
- Marching Cubes based on Histogram Pyramids
 - Mapping and performance considerations
 - Benchmark results
- Visualization of SPH simulation results
 - Videos
Motivation: Fast SPH visualization

- Smoothed-particle Hydrodynamics (SPH)
 - Meshless Lagrangian method:
 - Nodes (particles) are not connected
 - Node position varies with time
 - Models fluid and solid mechanics
 - Nodes form a density field

- High-quality visualization:
 1. Approximate density field
 2. Marching Cubes
 3. Render iso-surface
Extract iso-surface via Marching Cubes

- Scalar field is sampled over 3D grid
- Marching Cubes [Lorensen87]
 - Marches through a regular 3D grid of cells
 1. Each MC cell spans 8 samples
 2. Label corners as inside or outside iso-value
 3. Eight in/out labels give 256 possible cases
 4. Each case has a tessellation template
 - Devised such that tessellations of adjacent cells match
 - Vertices lie on lattice edges
 - positioned using linear interpolation
 - De-facto standard algorithm for this problem
1. For each cell:
 Determine MC case and # vertices of template

2. Determine total # vertices and output index of each MC cell’s vertices

3. During vertex output: calculate actual positions

Not trivially data-parallel!
Step 2 is Data Compaction & Expansion

- We want to answer:
 - How many triangles to draw?
 - What is the mapping between input and output?
 - **Classic**: At which output position \(j \) shall MC cell \(i \) write vertex \(k \)?
 - **Put differently**: Which MC cell \(i \) and vertex \(k \) does output position \(j \) belong to?

- Data compaction & expansion provide answers:
 - **Data compaction**:
 - Extract all cells that produce geometry
 - **Data expansion**:
 - Each cell that produces geometry issues 3-15 vertices
Data Compaction and Expansion

- **Problem definition**
 - We start with \(n \) input elements.
 - Input element \(j \) produces \(a_j \) output elements.
 - Discard all elements where \(a_j = 0 \).

- **An important algorithmic pattern!**
 - Trivial implementation in serial implementation (e.g. CPU).
 - **Non-trivial** on data-parallel architectures (e.g. GPU)!
Input or Output-centric solutions

- **Input-centric solution:**
 - For every input element
 - Compute output offsets
 - *Scatter* relevant input to output
 - Typical serial solution and *Data-Parallel Scan*

- **Output-centric solution:**
 - For every output element
 - *Determine* input element from output index
 - Histogram Pyramid (*HistoPyramid*): Reduction-based search structure
HistoPyramid: Stages of Algorithm

- **Input is Baselevel**
 - For each input element, init with number of output elements

- **Level Buildup**
 - Build further levels through reduction

- **HistoPyramid Traversal**
 - For each output index:
 Find corresponding input index (via HistoPyramid traversal)
HistoPyramid Buildup

- Build further levels from baselevel
 - Add two elements (reduction)
 - Number of elements halves each iteration
 - $\log_2 n$ iterations
 - Each iteration half the size of the previous iteration
 - Data-Parallel algorithm

- Top element equals number of output elements (Step 2A)
- Data of all reduction levels: 2:1 HistoPyramid
Output Allocation

- Output size is known from top element of HP
- Allocate output
- Start one thread per output element
- Each thread knows its output index
- Now use HistoPyramid as search structure for finding corresponding input element
HistoPyramid Traversal

- Each thread handles one output element
- key: variable, initially output index
- Binary Search through HP, from top-level to base-level
 - Reduction inputs x and y form key ranges $[0, x)$ and $[x, x+y)$
 - Choose fitting range for key
 - Subtract chosen range's start from key
- Note: For $a_j > 1$, several output threads will end up at same input element: key remainder is index within this set
HistoPyramid Traversal

Entry: key = Output position = 4

Key=key-0=1

Input pos=10, key remainder = 1
More observations on HP traversal

- Fully data-parallel algorithm (HP is read-only in traversal)
- Traversal steps/Data dependency: $\log_2(n)$
 - Note: A pyramid has less latency
- Traversal path follows roughly a line
 - Adjacent output elements have very similar traversal paths
 - Good cache coherence
 - Large chunks of output elements have identical paths from top
 - Good for many-thread broadcast
- Some elements are never visited
Optimization 1: Discard some partial sums

- **Observation:**
 - In traversal, after build-up has finished:
 - Only the *left* nodes are important
 - The *right* nodes needn't be read!
 - We can **discard** all the right nodes
 - Note: Number of all left nodes equals number of input elements
 - Similarities to the Haar-transform!
Optimization 2: k-to-1 reductions

- Reduction does not have to be 2-to-1
- Example: 4-to-1 reduction is also possible
 - Fewer levels of reductions -> fewer levels of traversal: \(\log_4(n) \)
 - Better for hardware (can fetch up to 4 values at once, reduce overall latency with fewer traversal steps)
 - HPMC from 2007 uses 4-to-1 reductions in 2D (texture mipmap-like)
 - Output extraction for consecutive elements follows space-filling curve in base level
 - Traversal: Adjacent HP levels accessed in mipmap-like fashion
 - Excellent texture cache behaviour
HP5 (5-to-1 HistoPyramid)

- Combines two previous optimizations:
 - Buildup: Every reduction adds five elements into one output, **BUT:**
 - Only four of the reduction elements are stored!
 - Fifth reduction element goes to computational sideband
 - only acts as temporary data during reduction
 - Traversal requires only first four elements
 - Fifth element is directly deducted during top-down path.
- Advantage of HP5:
 - Less data storage
 - more efficient traversal
The HP5 reduction

- For each group of 5 elements in input stream or sideband:
 - First 4 elements into HP5 level
 - The sum of the 5 elements into sideband
 - Done in parallel, level by level
 - Last sideband: total number of elements
The HP5 traversal

- Given a key, traverse from top maintaining an index
 - Fetch 4 adjacent values x, y, z, and w from HP5 level
 - Build key ranges
 - \([0, x)\]
 - \([x, x+y)\]
 - \([x+y, x+y+z)\]
 - \([x+y+z, x+y+z+w)\]
 - \([x+y+z+w, \infty)\]
 - Check range, adjust key and index.
HistoPyramid performance

- Data compaction: CUDA 3.2 SDK, Tesla C2050

<table>
<thead>
<tr>
<th>2 million input elements, whereof N% retained</th>
<th>Scan</th>
<th>Atomic Ops</th>
<th>HP 4-to-1</th>
<th>HP 5-to-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% retained</td>
<td>0.70 ms</td>
<td>0.37 ms</td>
<td>0.34 ms</td>
<td>0.28 ms (2.5x)</td>
</tr>
<tr>
<td>10% retained</td>
<td>0.80 ms</td>
<td>3.04 ms</td>
<td>0.47 ms</td>
<td>0.38 ms (2.1x)</td>
</tr>
<tr>
<td>25% retained</td>
<td>0.81 ms</td>
<td>7.47 ms</td>
<td>0.63 ms</td>
<td>0.53 ms (1.53x)</td>
</tr>
<tr>
<td>50% retained</td>
<td>0.83 ms</td>
<td>14.89 ms</td>
<td>0.93 ms</td>
<td>0.81 ms (1.02x)</td>
</tr>
<tr>
<td>90% retained</td>
<td>0.85 ms</td>
<td>26.75 ms</td>
<td>1.40 ms</td>
<td>1.25 ms (0.60x)</td>
</tr>
</tbody>
</table>
HistoPyramid performance

- Data compaction: CUDA 3.2 SDK, Tesla C2050

<table>
<thead>
<tr>
<th>2 million input elements, whereof N% retained</th>
<th>Scan</th>
<th>Atomic Ops</th>
<th>HP 4-to-1</th>
<th>HP 5-to-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1% retained</td>
<td>0.70 ms</td>
<td>0.37 ms</td>
<td>0.34 ms</td>
<td>0.28 ms (2.5x)</td>
</tr>
<tr>
<td>10% retained</td>
<td>0.80 ms</td>
<td>3.04 ms</td>
<td>0.47 ms</td>
<td>0.38 ms (2.1x)</td>
</tr>
<tr>
<td>25% retained</td>
<td>0.81 ms</td>
<td>7.47 ms</td>
<td>0.63 ms</td>
<td>0.53 ms (1.53x)</td>
</tr>
<tr>
<td>50% retained</td>
<td>0.83 ms</td>
<td>14.89 ms</td>
<td>0.93 ms</td>
<td>0.81 ms (1.02x)</td>
</tr>
<tr>
<td>90% retained</td>
<td>0.85 ms</td>
<td>26.75 ms</td>
<td>1.40 ms</td>
<td>1.25 ms (0.60x)</td>
</tr>
</tbody>
</table>
Explanation: HistoPyramids vs. Scan

- **Scan is** **input-centric**
 - Efficiently computes output offset for all input elements
 - Uses one thread per input elements to write output (scatter)
 - For few relevant input elements:
 - Redundantly computes output offsets for all input elements
 - Starts superfluous threads for all, and many irrelevant, input elements

- **HistoPyramids is** **output-centric**
 - Minimal amount of computations per input element
 - Uses one thread per output element to write output (gather)
 - **But:** requires HP traversal instead of a simple array look-up.
HistoPyramid-based Marching Cubes

- Recall the 3-step subdivision of marching cubes:
 1. For each cell, determine case and find required # vertices
 - Embarrassingly parallel
 - Performed in CUDA
 2. Find total number of vertices and output-input index mapping
 - Build 5-to-1 HistoPyramid
 - Performed in CUDA
 3. For each vertex, calculate positions
 - Embarrassingly parallel
 - Performed directly in an OpenGL vertex shader
Step 1: Cell MC Case and Vertex Count

- **Adjacent MC cells share corners**
 - Let a CUDA warp sweep through a 32x5x5 chunk of MC cells
 - Process XZ-slices slice by slice:
 - Check in/out state of 6 corners along Z, (1 state per cell)
 - Exchange for cells processed by this thread, (2 states per cell)
 - Pull results from previous slice, (4 states per cell)
 - Exchange results across warps (X-axis), (8 states per cell)
 - Use a 256-byte table to find number of vertices required for cell
 - Recycles scalar fieldfetches and in-out classifications
 - 32x5x5 MC cases in 33x6x6 fetches = 1.5 fetches per cell
Step 2: HistoPyramid 5-way Reduction

- HistoPyramid built level by level, from bottom to top
 - Reduction kernel uses 160 threads (5 warps)
 - All five warps fetch input sideband element as uint’s into shmem
 - Adjacent shared memory writes, no bank conflicts
 - Synchronize
 - One single warp sums and stores results in global mem
 - Each thread reads 5 adjacent elements from shared mem
 - Fetches with stride = 5, no bank conflicts
 - Output 4 elements to HistoPyramid Level (as uint4’s)
 - Store sum of the 5 elements in HistoPyramid sideband (as single uint’s)
Optimizing the HistoPyramid Reduction

- **Reduce global mem traffic:**
 - Sidebands are streamed through global mem between reductions
 - Combine **two reductions** into one kernel
 - Requires 800+160 uint’s of shmem (3.8 K), **free of bank conflicts**
 - Combine **three reductions** into one kernel
 - Requires 800+800 uint’s in shmem (6.3 K), **free of bank conflicts**
 - Combine **step 1 and three reductions** into one kernel
 - Each warp processes 32x5x5 = 800 MC cells, 4000 per block
 - Shares shared mem with reduction, **no extra shared mem required**

- **Reduce kernel invocation overhead**
 - Build the apex of the HistoPyramid using a single kernel
 - Reduces the number of kernel invocations
Step 3: Extract output vertices

- Performed **directly on the fly** in OpenGL vertex shader:
 - No input attributes
 - `gl_VertexID` is used as key for HistoPyramid traversal
 - Terminates in corresponding MC cell
 - MC case gives template tessellation
 - Key remainder specifies lattice edge for vertex in template tessellation
 - Vertex position found by sampling scalar field at edge end points

- Uses OpenGL 4’s **indirect draw**
 - Number of vertices to render fetched from buffer object
 - No CPU-GPU synchronization needed
Results: MC Implementation Approaches

- NVIDIA Compute SDK’s MC sample uses CUDPP
- HPMC library [http://www.sintef.no/hpmc]: HistoPyramids (4:1) in OpenGL GPGPU approach
- Our new development of HPMC uses CUDA HistoPyramid (5:1)

Key characteristics:
- Most often: 0 triangles per cell
- Maximally: 5 triangles per cell (=15 vertices)
- On average: 0.05 - 0.15 triangles per cell
 - Input (#cells) grows with cube of lattice grid resolution
 - Output (#triangles) grows with square of lattice grid resolution
256³ 8bit performance (Tesla C2050)

<table>
<thead>
<tr>
<th>Type</th>
<th>Triangles</th>
<th>FPS</th>
<th>MVPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smooth Cayley (iso=0.5)</td>
<td>445 522</td>
<td>72</td>
<td>1201</td>
</tr>
<tr>
<td>NV SDK sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenGL HP4MC</td>
<td>113 1868</td>
<td>113</td>
<td>1689</td>
</tr>
<tr>
<td>CUDA-OpenGL HP5MC</td>
<td>301 4985</td>
<td>301</td>
<td>4006</td>
</tr>
<tr>
<td>Speedup</td>
<td>2.6x / 4.2x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Triangles</th>
<th>FPS</th>
<th>MVPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bumpy Cayley (iso=0.5)</td>
<td>643 374</td>
<td>66</td>
<td>1098</td>
</tr>
<tr>
<td>NV SDK sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenGL HP4MC</td>
<td>102 1689</td>
<td>102</td>
<td>1689</td>
</tr>
<tr>
<td>CUDA-OpenGL HP5MC</td>
<td>242 4006</td>
<td>242</td>
<td>4006</td>
</tr>
<tr>
<td>Speedup</td>
<td>2.4x / 3.6x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Triangles</th>
<th>FPS</th>
<th>MVPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superbumpy and layered Cayley (iso=0.5)</td>
<td>3 036 608</td>
<td>34</td>
<td>571</td>
</tr>
<tr>
<td>NV SDK sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OpenGL HP4MC</td>
<td>47 774</td>
<td>47</td>
<td>774</td>
</tr>
<tr>
<td>CUDA-OpenGL HP5MC</td>
<td>72 1199</td>
<td>72</td>
<td>1199</td>
</tr>
<tr>
<td>Speedup</td>
<td>1.5x / 2.1x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
512³-ish 16-bit performance (Tesla C2050)

<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>Triangles</th>
<th>OpenGL HP4MC</th>
<th>CUDA-OpenGL HP5MC</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backpack (iso=0.4)</td>
<td>512x512x373</td>
<td>3,745,320</td>
<td>13 fps</td>
<td>43 fps</td>
<td>3.2x</td>
</tr>
<tr>
<td></td>
<td>(187 mb)</td>
<td>(0.039 tris/cell)</td>
<td>(1291 mvps)</td>
<td>(4129 mvps)</td>
<td></td>
</tr>
<tr>
<td>Head aneurysm (iso=0.4)</td>
<td>512x512x512</td>
<td>583,610</td>
<td>15 fps</td>
<td>78 fps</td>
<td>5.1x</td>
</tr>
<tr>
<td></td>
<td>(256 mb)</td>
<td>(0.004 tris/cell)</td>
<td>(2034 mvps)</td>
<td>(10399 mvps)</td>
<td></td>
</tr>
<tr>
<td>Christmas tree (iso=0.05)</td>
<td>512x499x512</td>
<td>5,629,532</td>
<td>10 fps</td>
<td>28 fps</td>
<td>2.7x</td>
</tr>
<tr>
<td></td>
<td>(250 mb)</td>
<td>(0.043 tris/cell)</td>
<td>(1358 mvps)</td>
<td>(3704 mvps)</td>
<td></td>
</tr>
</tbody>
</table>
CUHP5 Marching Cubes Showcase Video

http://www.youtube.com/watch?v=WS95KjUS_Ww
Summary

- Our SPH visualization approach is based on Marching Cubes
 - Requires high performance data compaction and expansion
 - Output size is considerably smaller than input size

- 5:1 HistoPyramid buildup and traversal
 - Optimizations: 5:1 instead of 4:1, leave out last leaf, shmem
 - Performance comparison for typical input-output ratio of 1-10%

- Implementing Marching Cubes
 - Implementation details
 - Performance

- Fastest Marching Cubes in the world?
CUHP5 Marching Cubes

Thank you!

Questions?

Chris Dyken <christopher.dyken@sintef.no>
Gernot Ziegler <gziegler@nvidia.com>
CUHP5 Marching Cubes

BONUS SLIDES
Build a scalar field from the SPH nodes

- We approximate using a quadratic tensor-product B-spline
 - Simple and runs well on a GPU
 - Spline space size controls blurring versus detail

- A quasi-interpolant builds the spline
 - Contribution equals basis at position
 - Scatter contributions using atomic adds
 - No need to solve a linear system!