Computer Vision Algorithms for Automating HD Post-Production

Hannes Fassold, Jakub Rosner
2010-09-22
Overview

- Harris/KLT feature point detection
- KLT feature point tracking
- Real-time HD stabilization

Application

- Image warping
- Image inpainting
- Re-Timing (Time-Stretching)
- Restoration of damaged / missing frames
Feature point detection

Introduction

- Find ‘reliable’ feature points in image
 - Usage
 - Camera calibration
 - Tracking
 - ...
 - Reliable feature points have sufficient structure in their local neighborhood
 - E.g. point within homogeneous area not reliable
 - Reliable feature points typically look corner-like
Feature point detection

Measures

- Structure matrix G
 - 2 x 2 matrix G encodes structure information for an rectangular area $W(p)$ around a point p
 - Gradient image \rightarrow Central Difference, Sobel or Sharr operator

 $$G = \sum_{x \in W(p)} \nabla I(x) \cdot \nabla I(x)^T$$

- Cornerness measures
 - **Harris** measure: $\lambda = \det(G) - k \cdot \text{trace}(G)^2$
 - **KLT** measure: λ = minimum eigenvalue of G
 - λ small or zero \rightarrow homogeneous image area
 - λ big \rightarrow corner, richly textured area
Feature point detection Algorithm

- As in OpenCV routine `cvGoodFeaturesToTrack`
- Algorithm steps
 1. Calculate cornerness \(\lambda \) for all pixels
 2. Calculate maximum cornerness \(\lambda_{max} \) in image
 3. Discard all pixels which \(\lambda \) smaller than a fraction of \(\lambda_{max} \) (e.g. < 5%)
 4. Non-maxima suppression (discard 'weak' local maxima)
 5. Minimum distance enforcement
- Minimum distance enforcement
 - Ensures that every feature point has a certain minimum distance to all other points
 - Avoids clumping of most feature points in richly textured image regions
 - Some issues with it which force us to do it on CPU (more later) …
Feature point detection
Steps 1-4, CUDA implementation

- All kernels make extensive usage of shared memory
- Cornerness calculation
 - Three kernels for convolution, structure matrix, cornerness (KLT formula)
- Determine maximum cornerness λ_{max}
 - Is a reduction operation \rightarrow CUDPP library
- Discard feature points with low cornerness
 - Set a 'discard flag' for each pixel to be discarded
- Non-maxima suppression
 - Kernel is variation of dilate operator
- (Before 5) Transfer non-discarded pixels to CPU
 - Before transfer, all discarded pixels are filtered out by a compaction operation \rightarrow CUDPP library
Feature point detection
Step 5

- Minimum distance enforcement
 - Given: 'candidate list' (all pixels which haven't been discarded)
 - Iterate through list, starting with candidates with highest cornerness, and add them to output list
 - Before adding a candidate, its distance to all points already in output list is checked

- Issues
 - Process is inherently serial → forces us to do on CPU
 - OpenCV implementation not efficient for several thousand points
 - Developed alternative method
 - Principle: When adding a candidate, the circular area around it is marked as 'occupied'.
 - Linear complexity
 - Automatic switching between OpenCV and alternative method
Feature point detection

Results
Feature point detection
Results
Feature point detection
Runtime comparison

- GPU impl.: CUDA, GTX 280
- CPU impl.: OpenCV (using IPP), 2.4 Ghz Xeon Quad-Core
- Window size = 5 x 5, Maximum # of features = 10000

Runtime for the steps 1 – 4 (feature point detection without minimum distance enforcement)

Runtime for step 5 (minimum distance enforcement)
Feature point tracking

Introduction

- Feature point tracking
 - Given a sparse set of feature points in current image I (e.g. found by feature point detection), find their position in subsequent image J

- Important low-level task in computer vision
 - Used for object tracking, camera motion estimation, structure from motion, ...

- KLT algorithm (Kanade, Lucas, Tomasi)
 - Very popular method
 - Reasonably fast, fully automatic, sufficient quality
 - For each frame I in sequence
 - Detect new features in I and add them to already existing ones
 - Track all features from I to subsequent image J
Feature point tracking
Algorithm principle

- Dissimilarity function $\varepsilon(v) = \sum_{p \in W(p)} (J(x + v) - I(x))^2$
 - p ... point, v ... motion vector,
 $W(p)$... $n \times n$ window centered at p
- For each point p, find motion v that minimizes $\varepsilon(v)$
- Minimization of $\varepsilon(v)$
 - Gradient descent method
 (iterative method, Gauss-Newton type)
 - Gradient descent methods need 'good' initial value v_0
 - Create multi-resolution image pyramid
 - Do minimization on each level of pyramid
 - Solution of level $m + 1$ is used as initialization for level m
Feature point tracking Algorithm

- Pseudo-Code
 - For one Pyramid Level, for one point
 - Typically: \(W(p) = 5 \times 5 \) pixel, maxIter = 10, eps = 0.03

1. Set initial motion vector \(v_1 = (0,0)^T \)
2. Spatial image gradient \(\nabla I = \frac{\partial I}{\partial (x,y)} \)
3. Calc. structure matrix \(G = \sum_{x \in W(p)} \nabla I(x) \cdot \nabla I(x)^T \)
4. for \(k = 1 \) to maxIter
 a) Image difference \(\eta(x) = I(x) - J(x + v^k) \)
 b) Calc. mismatch vector \(b = \sum_{x \in W(p)} \eta(x) \cdot \nabla I(x) \)
 c) Calc. updated motion \(v_{k+1} = v_k + G^{-1}b \)
 d) if \(\| v_{k+1} - v_k \| < \text{eps} \) then stop (converged)
5. Report final motion vector \(v \)
Feature point tracking
CUDA implementation

- Gaussian image pyramid
 - Convolution + subsampling

- Feature point tracking (key issues)
 - One kernel call for each pyramid level
 - One thread = one point
 - GPU under-utilization if # points is too small (e.g. some hundred points)
 - Reduce # of texture fetches, especially in inner loop
 - Each thread needs lot of shared memory
 - Especially for bigger window sizes (9x9, 11x11, ..) this leads to low multiprocessor occupancy
 - Difficult to find best compromise (thread block size, # registers per threads…)
 - Lot of experimentation necessary, need to implement different variants
Feature point tracking
Results
Feature point tracking
Runtime comparison

- GPU impl.: CUDA, GTX 280
- CPU impl.: OpenCV (using IPP), 2.4 Ghz Xeon Quad-Core
- FullHD (1920 x 1080), window size = 5 x 5, #levels = 6, maxIter = 10, eps = 0.03
Feature point tracking

Application: Stabilization

Problem
- Annoying film experience due to image ‘vibration’
- Possible reasons:
 - shaky camera
 - instability in film transport during film scanning (worn out perforations)

What we want
- Reduce/remove these vibrations
- ... but leave intended (typically, smooth) camera motion intact
Feature point tracking
Application: Realtime HD Stabilization

- Algorithm outline
 - Track feature points throughout sequence
 - Robustly estimate 'global' motion between consecutive frames
 - 2-parameter translational model (dx, dy)
 - Higher-parameter model possible (e.g. affine model)
 - Filter signal to get amount of correction
 - Warp frames with correction

![Graph showing vibration over frame number with raw and filtered data]
Feature point tracking
Stabilization Demo

- Stabilization with 2-parameter translational model
 - Works **realtime** (> 25 fps) for Full HD resolution
 - GPU: GTX 285, CPU: QuadCore Xeon
 - [Video_Steyrer_gasse]
Image warping

Introduction

- Given an source image I and a nonlinear mapping M, calculate the mapped image $M(I)$

- Image warping examples
 - Rotation, Scaling, ..
 - Arbitrary mesh deformations

- Mapping function M
 - Typically defined pixel-wise
Image warping
Algorithm

- Use accumulator image A and weight image W
 - floating-point or fixed-point

Algorithm

- For each source pixel p
 - Determine destination location $\text{dst} = M(p)$
 - Increment the four surrounding pixels in accumulator and weight image $\rightarrow \text{bilinear writing}$

- Warped image $M(I) = \frac{A}{W}$
 - Pixel-wise division
 - Pixels with weight zero are marked as 'holes' (no source pixel mapped to them)
Image warping
CUDA implementation

- Issues
 - Atomic operations necessary for resolving read-write hazards
 → significant performance penalty for pre-Fermi hardware
 - Reduce performance penalty
 - Determine a target region where most of threads of the current thread block will likely map to
 - Assume some sort of smoothness in mapping function M
 - Target region is cached in shared memory
 - Thread maps into target region → do shared memory atomic operation
 - Thread doesn't map into target region → do global memory atomic operation (slower)
Image inpainting

Introduction

- Image inpainting
 - Fill up undefined regions in an image in the best way
 - Lot of literature about inpainting algorithms
 - Propagate structure & texture clever into hole
 - Still a hard task

- Goal
 - Develop simple and fast inpainting algorithm
 - Good parallizable
 - Suitable for holes occurring in warped images
 - Thin, crack-like appearance
Image inpainting
Algorithm

- **Approach**
 - Uses accumulator image A and weight image W
 - Determine set of hole border pixels
 - For each border pixel
 - Propagate its intensity into the hole along a fixed set of directions (e.g. 16)

- **Border pixel intensity propagation**
 - Trace the line from border pixel into hole interior (Bresenham)
 - For each visited pixel p its value in A and W is updated

\[
W(p) = W(p) + \frac{1}{d_{curr}} \quad A(p) = A(p) + \frac{1}{d_{curr}} g_b
\]

- Inpainted image $I_{holefilled} = \frac{A}{W}$
Key issues
- One thread = one border pixel
- One kernel call per direction
 - All threads trace into same directions
- Atomic operations not used
 - Speed reasons
 - Float atomic operations not supported for pre-Fermi GPUs
 - R/W Hazards can not occur for 8 main directions
 - R/W Hazards can occur (very seldomly) for 8 secondary directions →
 Induces negligible differences between CPU & GPU inpainting result
- Warp divergence
 - Due to different paths the threads of a warp are tracing
 - Possible improvement: Group thread id’s by some spatial relationship
Image warping & inpainting
Runtime comparison

- GPU impl.: CUDA, GTX 285
- CPU impl.: Own optimized impl., one CPU-thread (but uses multi-threaded IPP-functions), Intel Xeon Quad-Core 3.0 Ghz
- Average runtime over sequence, warping functions = motion fields, ~ 1.3 % of warped images to be inpainted
Since 1699, when French explorers landed at the great bend of the Mississippi river and celebrated the first Mardi Gras in North America, New Orleans has preserved a fascinating mixture of cultures. It was French, then Spanish, then French again, then sold to the U.S. Athrough all these years, and even into the 1900s, others arrived from everywhere: Acadians (Cajuns), Africans, indige-
Image inpainting & warping
Application: Time-Stretching

- **Time-Stretching effect**
 - Insert synthetically generated frames in video sequence to achieve slow-motion effect

- **Generate synthetic frame between image I_1 and I_2**
 - Calculate pixel-wise motion (optical flow) between I_1 and I_2
 - Fast GPU methods available
 - Scale motion according to desired timepoint
 - Warp I_1 with scaled motion
 - Fill holes in warped image
Image inpainting & warping
Demo: Time-Stretching

- Stretching Factor 2.0
- [DemoVideo, TU Munich pedestrian area]
Image inpainting & warping
Application: Restore damaged frames

- Use neighbor frames to generate 'replacement' for damaged frame
Acknowledgments

- Silesian University, Poland
 - Jakub Rosner
- JOANNEUM RESEARCH, Austria
 - Florian Putz, Hermann Fuerntratt, Werner Bailer, Peter Schallauer, Georg Thallinger
- Work was supported by European Union projects
 - 2020 3D Media (http://www.20203dmedia.eu)
 - FascinatE (http://www.fascinate-project.com)
 - PrestoPRIME (http://www.prestoprime.eu)