Hoomd blue

- Fast and flexible many-particle dynamics on the GPU

Joshua A. Anderson
Many-particle dynamics - examples

- **polymer systems**
 - Dissipative Particle Dynamics (DPD)

- **tethered nanospheres**
 - Brownian Dynamics

- **surfactant coated surfaces**
 - DPD with constraints

- **polymer nanocomposites**
 - coarse-grained Molecular Dynamics

- **supercooled liquids**
 - Molecular Dynamics

- **supercooled liquids**
 - 2D Molecular Dynamics
Live demo

Demo of HOOMD-blue outside of presentation
Benefits of GPU computing

<table>
<thead>
<tr>
<th>Papers with CPU jobs...</th>
<th>Papers with GPU jobs...</th>
</tr>
</thead>
<tbody>
<tr>
<td>run thousands of serial jobs - often one month of CPU time for each</td>
<td>run thousands of single GPU jobs - one day of GPU time for each</td>
</tr>
<tr>
<td>compute a phase diagram for one polymer architecture</td>
<td>compute phase diagrams for six polymer architectures</td>
</tr>
<tr>
<td>study one supercooled liquid model</td>
<td>provide an in-depth comparison of four different models</td>
</tr>
<tr>
<td>study three monodisperse tethered nanospheres</td>
<td>study the effects of varying polydispersity</td>
</tr>
</tbody>
</table>

The Glotzer Group @ University of Michigan
Calculate accelerations

\(\vec{r}_i(t) \)
\(\vec{v}_i(t) \)

\[
\begin{align*}
\vec{r}_i(t) & \\
\vec{v}_i(t) & \\
\text{Calculate accelerations} & \\
\vec{r}_i(t + \delta t) & \\
\vec{v}_i(t + \delta t) &
\end{align*}
\]
Pair potential

Example - Lennard-Jones
for each particle i in parallel
load position $pos[i]$
compute cell index ci
$cur_size = \text{atomicInc} length[ci]$
write (ci, $pos[i]$) to $cell_list[ci][cur_size]$
Cell list performance

![Graph showing time vs. N for different configurations.]

- Host w/ memcpy
- Host w/o memcpy
- S1070 (sort)
- GTX 480 (simple)

10.8 GB/s
8.248 GFLOPs
for each particle i in parallel
load position $pos[i]$
compute cell index ci
for each nearby cell cn
 for each particle p in cn
 load $cell_list[cn][p]$
 if distance < $rcut$
 append to $n_list[][i]$
Neighbor list on GF100 and G200

GF100

```plaintext
for each particle i in parallel
    load position pos[i]
    compute cell index ci
    for each nid from 0 to 27
        cn=ld.global adj_list[ci][nid]
        for each particle p in cn
            ld.global cell_list[cn][p]
            if distance < rcut
                append to n_list[][i]
```

G200

```plaintext
for each particle i in parallel
    load position pos[i]
    compute cell index ci
    for each nid from 0 to 27
        cn=tex2D adj_list[ci][nid]
        for each particle p in cn
            tex2D cell_list[cn][p]
            if distance < rcut
                append to n_list[][i]
```

Notes
- Semi-random memory reads performed from L1
- Activate 48k L1 for best perf.
- Spatial sorting (later) increases cache hit ratio
- Bottleneck becomes the incoherent `n_list` append (only 1 in 8 writes pass the distance test)
Neighbor list performance

![Graph showing performance comparison between Host, S1070 (tex2D), and GTX 480 (L1).]

- **Host**: 56.6 GB/s, 85.6 GFLOPs, 91% cache hits
- **S1070 (tex2D)**: 208.3 GB/s, 315 GFLOPs, 96% cache hits

The Glotzer Group @ University of Michigan
for each particle \(i \) in parallel

1. load position \(\text{pos}[i] \)
2. for each neighbor \(n \)
 1. \(j = \text{n_list}[n][i] \)
 2. load \(\text{pos}[j] \)
 3. load coeff for \(\text{type}_i, \text{type}_j \)
 4. compute interaction \(i,j \)
3. write total interaction on \(i \)
Pair forces on Fermi vs. Tesla

GF100

for each particle \(i \) in parallel
load position \(\text{pos}[i] \)
\(\text{nextj} = \text{ld.global} \ n\text{_list}[n][i] \)
for each neighbor \(n \)
curj = nextj
\(\text{nextj} = \text{ld.global} \ n\text{_list}[n+1][i] \)
\(\text{tex1Dfetch} \ \text{pos}[\text{curj}] \)
\(\text{ld.shared} \ \text{coeffs[typei][typej]} \)
compute interaction \(i,j \)
write total interaction on \(i \)

G200

Notes
- Switching the \(\text{pos[\text{curj}]} \) read to use L1 reduces performance
- I’m not sure why...... 48k L1 \(\gg \gg \) 8k tex cache
- Have tried a number of transformations without success
- The coefficient \(\text{ld.shared} \) can be converted to \(\text{ld.global} \) with no performance hit

Notes
- Semi-random memory reads performed via \(\text{tex1Dfetch} \)
Pair force performance

- **Host**: 131.9 GB/s, 89.83 GFLOPs, 60% cache hits
- **S1070 (tex1Dfetch)**: 63.01 GB/s, 89.83 GFLOPs, 60% cache hits
- **GTX 480 (tex1Dfetch)**: 63.01 GB/s, 89.83 GFLOPs, 60% cache hits
Spatial sorting reorders particles

Random pair: 50.4 ms

Sorted pair: 12.3 ms 4.2x speedup!
template< class evaluator> __global__ void
gpu_compute_pair_forces_kernel(float4 *d_force, float4 *d_pos, gpu_nlist_array nlist,
 typename evaluator::param_type *d_params,
 ...) { extern __shared__ typename evaluator::param_type s_params[]
// load data from d_params into s_params ...
__syncthreads(); unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
// load in data for particle idx ...
for (int neigh_idx = 0; neigh_idx < n_neigh; neigh_idx++)
{ // access current neighbor ...
 // calculate dr^2 (with periodic boundary conditions) ...
 float rsq = dx*dx + dy*dy + dz*dz;
 unsigned int typpair = typpair_idx(__float_as_int(posi.w), __float_as_int(posj.w));
 typename evaluator::param_type param = s_params[typpair];

 evaluator eval(rsq, rcutsq, param);
 eval.evalForceAndEnergy(force_divr, pair_eng, energy_shift);

 // tally results into force ...
 d_force[idx] = force;
}

class EvaluatorPairLJ
{
 public:
 typedef Scalar2 param_type;
 DEVICE EvaluatorPairLJ(Scalar _rsq, Scalar _rcutsq, const param_type& _params)
 : rsq(_rsq), rcutsq(_rcutsq), lj1(_params.x), lj2(_params.y) { }
 DEVICE void evalForceAndEnergy(Scalar& force_divr, Scalar& pair_eng)
 {
 if (rsq < rcutsq && lj1 != 0)
 {
 Scalar r2inv = Scalar(1.0)/rsq;
 Scalar r6inv = r2inv * r2inv * r2inv;
 force_divr= r2inv * r6inv * (Scalar(12.0)*lj1*r6inv - Scalar(6.0)*lj2);
 pair_eng = r6inv * (lj1*r6inv - lj2);
 }
 }
 protected:
 Scalar rsq, rcutsq, lj1, lj2;
};

class EvaluatorPairGauss
{
 //...
for each member \(g \) in parallel
i = load group_idx[g]
load \(pos[j] \)
load \(vel[j] \)
load \(force[j] \)
compute updated quantities
write \(pos[j] \)
write \(vel[j] \)

Notes
- Member list is maintained in a sorted order
- This reduces the number of wasted memory transactions
Feature sheet

Integration
- NVT (Nosé-Hoover)
- NPT
- Brownian Dynamics
- Dissipative Particle Dynamics
- NVE
- FIRE energy minimization

Bond forces
- harmonic
- FENE

Angle forces
- harmonic
- CGCMM

Dihedral/Improper forces
- harmonic

Simulation types
- 2D and 3D
- Replica exchange (via script)

Snapshot formats
- MOL2
- DCD
- PDB
- XML

Pair forces
- Lennard Jones
- Gaussian
- CGCMM
- Morse
- Table (arbitrary)
- Yukawa
- PME *(in development)*

Many-body forces
- EAM *(in development)*

Hardware support
- All recent NVIDIA GPUs
- Multi-core CPUs via OpenMP
from hoomd_script import *

init.read_xml(filename='init.xml')

lj = pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

integrate.mode_standard(dt=0.005)
integrate.nvt(T=1.2, tau=0.5)

run(10e3)
Overall performance

lj-fluid - N=64000

Performance (time steps per second)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GPU GTX 480</td>
<td>HOOMD: 824</td>
</tr>
<tr>
<td>1 GPU S2050</td>
<td></td>
</tr>
<tr>
<td>1 GPU S1070</td>
<td></td>
</tr>
<tr>
<td>8 CPU cores E5540</td>
<td>46.6</td>
</tr>
<tr>
<td>1 CPU core E5540</td>
<td>9.41</td>
</tr>
<tr>
<td>64 CPU cores E5540</td>
<td>LAMMPS: 678</td>
</tr>
<tr>
<td>32 CPU cores E5540</td>
<td></td>
</tr>
<tr>
<td>8 CPU cores E5540</td>
<td>123</td>
</tr>
<tr>
<td>1 CPU core E5540</td>
<td>16.6</td>
</tr>
<tr>
<td>1 GPU GTX 480</td>
<td>OpenMM: 92.3</td>
</tr>
<tr>
<td>1 GPU S2050</td>
<td>68.8</td>
</tr>
<tr>
<td>1 GPU S1070</td>
<td>58.3</td>
</tr>
</tbody>
</table>
... more performance

polymer systems

N=20000

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 319
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 588

N=6908

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 265
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 450

N=18400

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 93.3
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 653

N=20000

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 319
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 588

tethered nanospheres

N=36360

- 1 GPU
 - GTX 480
 - Performance (time steps per second)
 - 966
- 1 CPU
 - E5540
 - Performance (time steps per second)
 - 4078

N=18400

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 283
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 4078

N=20000

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 966
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 4078

supercooled liquids

N=64000

- 1 GPU
 - GTX 480
 - Performance (time steps per second)
 - 966
- 1 CPU
 - E5540
 - Performance (time steps per second)
 - 4078

N=20000

- 1 GPU
 - GTX 480
 - HOOMD
 - Performance (time steps per second)
 - 966
- 1 CPU
 - E5540
 - LAMMPS
 - Performance (time steps per second)
 - 4078

polymer systems

tethered nanospheres

supercooled liquids

surfactant coated surfaces

polymer nanocomposites

The Glotzer Group @ University of Michigan
Acknowledgements

HOOMD-blue is open source!

- Contributions from around the world
 - Joshua Anderson, Aaron Keys, Trung Dac Nguyen, Carolyn Phillips (University of Michigan)
 - Rastko Sknepnek (Northwestern)
 - Alex Travesset (Iowa State University)
 - Axel Kohlmeyer, David Lebard, and Ben Levine (Temple)
 - Igor Morozov, Kazennov Andrey, Bystriy Roman (Russian Academy of Sciences)
for each particle \(i \) in parallel
load position \(pos[i] \)
compute cell index \(ci \)
cur_size = \texttt{atomicInc} length[\(ci \)]
write \((ci, pos[i])\) to \(\text{cell_list}[ci][\text{cur_size}] \)

Notes
- \texttt{atomicInc} in L2 cache - fast!
- Typically \(\sim 30 \) possible collisions
- Spatial sorting (later) \(\text{increases} \) chances that collisions occur within the same block/warp

\textbf{GF100}

\begin{tabular}{|c|c|c|c|}
\hline
\(x,y,z \) & \(x,y,z \) & \(x,y,z \) & \(x,y,z \) & \(x,y,z \) \\
\hline
\end{tabular}

\textbf{G200}

\begin{tabular}{|c|c|c|c|c|}
\hline
\(x,y,z \) & \(x,y,z \) & \(x,y,z \) & \(x,y,z \) & \(x,y,z \) \\
\hline
\end{tabular}

Read from global memory identify cell
Store cell,index pairs in shared memory

\begin{tabular}{|c|c|c|c|}
\hline
(3,0) & (1,1) & (3,2) & (2,3) & (1,4) \\
\hline
\end{tabular}

Sort the pairs using cell as the sort key
Done in parallel with a bitonic sort

\begin{tabular}{|c|c|c|c|}
\hline
(1,2) & (1,4) & (2,3) & (3,0) & (3,2) \\
\hline
\end{tabular}

Identify common sequences

\begin{tabular}{|c|c|c|c|}
\hline
(1,2) & (1,4) & (2,3) & (3,0) & (3,2) \\
\hline
\end{tabular}

- Only one \texttt{atomicAdd} per unique sequence is needed