Introduction to GPU VSIPL

Dan Campbell*, Andrew Kerr+
*Georgia Tech Research Institute
+School of Electrical and Computer Engineering
dan.campbell@gtri.gatech.edu

23 September 2010
Outline

• VSIPL Background
• Using VSIPL
• GPU VSIPL
• Conclusion
VSIP - Vector Signal Image Processing Library

- Portable API for linear algebra, image and signal processing
 - Aimed at Embedded / Desktop / Cluster environments

- Goal: Improve productivity, maintain performance
 - High level math kernels \rightarrow fewer lines of code
 - No rewrite required to move platforms; rewrite to tune may be needed
 - Scalable parallelism under the hood (map file \rightarrow automap)

- Fairly mature technology:
 - Original API Specification approved April 2000, continued growth since
 - Supported by DARPA in mid ’90s, Navy, AFRL, HPCMO, ODUSD (S&T) transition support since; consortium effort

- Lots of demos, in fairly wide use:
 - Aegis, JSF, others
 - Historically 90%+ speed of hand-optimized
VSIPL – Key Features

- Integrated memory model; direct, first-class coherence controls
- Direct support for mathematical objects
 - Scalars, vectors, matrices, tensors: first-class, lightweight objects attached to heavyweight memory model
 - Heavyweight state objects: e.g. FFT plan, QRD
- Flexible precision and type support: includes floating point, fixed point, integer; complex, boolean, index
- Functional coverage driven by SP application needs & architecture opportunities
 - Basic math: operators, trig, clamps, exponents, max, etc
 - Linear algebra: operators, scatter/gather, system solvers (LLS, QRD, Covariance, Toeplitz, LUD, Cholesky, general, SVD)
 - Signal Processing: FFT, Convolution/Correlation, Windowing, FIR/IIR Filters, histograms, RNG
 - Defined subsets: Core & Core Lite
VSPL Website: http://www.vsipl.org

- Full API Specification Documents
- Reference Implementations
- VSPL Implementation Validation Test Suite
- Profile Definitions
- Links to implementations
Outline

• VSIPL Background
• Using VSIPL
• GPU VSIPL
• Conclusion
VSIP Memory Model

• Blocks are the primary memory abstraction
 • Opaque representation of a dense array
 • Portable, complete encapsulation of memory management
 • All blocks have a type: int, float, boolean, etc; real or complex
 • Optionally associated with app-supplied pointer
 • Ownership state set via admit() & release(); controls coherence

• Views are the primary mathematical abstraction
 • Opaque representation of math objects such as vectors, matrices
 • All views have an underlying block (and thus fixed type)
 • Mapped to block via offset, per-dimension stride and length
 • May be remapped easily; mapping is lightweight
 • All math functions operate on views; corresponding block must be in admitted state
VSIPPL Blocks and Views

- **Blocks**
 - Linear regions of contiguous elements
 - int, float, complex – translated to interleaved format on block admit
 - Owned by VSIPPL – opaque to application
 - Explicit admit and release operations implement VSIPPL consistency model

- **Views**
 - fundamental mathematical objects
 - map elements of block into object
 - offset, row stride, column stride, row length, column length
 - subviews take slices of existing views
 - enable flexible data layout
VSIP Memory Model – Simple Example

vsip_scalar_f *d4 = malloc(sizeof(vsip_scalar_f)*LENGTH);
vsip_block_f *b4 = vsip_blockbind_f (d4, LENGTH, VSIP_MEM_NONE);
vsip_vview_f *v4 = vsip_vbind_f (b4, 0, 1, LENGTH);

vsip_vfill_f (1.0f, v4); /* This is an error! */

vsip_blockadmit_f (b4, VSIP_FALSE); /* No copy here */
vsip_vfill_f (1.0f, v4);
vsip_blockrelease_f (b4, VSIP_TRUE); /* Copies data to malloc’d array */

for (i=0; i<LENGTH; i++) printf ("%f ", d4[i]);

for (i=0; i<LENGTH; i++) d4[i] = 0.4f;
vsip_blockadmit_f (b4, VSIP_TRUE); /* Copy from user array */
for (i=0; i<LENGTH; i++) printf ("%f ", vsip_vget_f(v4, i));
VSIP Memory Model – Additional Elements

• Some operations leverage heavyweight state objects
 • FFT
 • Random Number Generator
 • FIR/IIR
 • Convolution/Correlation
 • LU/QR/Cholesky/SV Decompositions

• Import / Export functionality
 • Heavyweight state objects can be exported to memory for retention
 • Exported objects not portable
VSIP Toy Example

```c
#define LENGTH 10
vsip_vview_f *v1 = vsip_vcreate_f (LENGTH, VSIP_MEM_NONE);

vsip_block_f *b2 = vsip_blockcreate_f (LENGTH, VSIP_MEM_NONE);
vsip_vview_f *v2 = vsip_vbind_f (b2, 0, 1, LENGTH);

vsip_block_f *b3 = vsip_blockcreate_f (LENGTH*2+3, VSIP_MEM_NONE);
vsip_vview_f *v3 = vsip_vbind_f (b3, 3, 2, LENGTH);

vsip_vramp_f (0, 0.2f, v1);
vsip_vramp_f (1, -0.1f, v2);
vsip_vfill_f (-44.0f, v3);
vsip_vadd_f (v1, v2, v3);

for (i=0; i<LENGTH; i++) printf ("%f ", vsip_vget_f(v3, i));

Output: 1.0 1.1 1.2 1.3 1.4 1.5........
Application Example: Range Doppler Map

- Simple Range/Doppler data visualization demo
- Intro app for new VSIPL programmer
- Speedup TASP ➔ GPU-VSIPL
- No changes to source code

<table>
<thead>
<tr>
<th>Section</th>
<th>GTX480 Time (ms)</th>
<th>X5650 (1 core) Time (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseband</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeropad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast time FFT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Time FFT⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow time FFT, 2x CT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log₁₀</td>
<td></td>
<td>²</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Total:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VSIP Example – RD Map 1

/* Admit input blocks for VSIP processing */
vsip_blockadmit_f(d->data_if_block,VSIP_TRUE);
vsip_cblockadmit_f(d->filter_block,VSIP_TRUE);

/* Admit output & scratchpad blocks for VSIP processing */
vsip_blockadmit_f(d->rd_map_mag_block,VSIP_FALSE);
vsip_cblockadmit_f(d->data_bb_block,VSIP_FALSE);
vsip_cblockadmit_f(d->data_padded_block,VSIP_FALSE);

/* Multiply IF signals by synthesized carriers */
vsip_rcvmul_f(d->data_if_vview,d->carrier_cvview,d->data_bb0_cvview);

/* Apply low-pass filters */
vsip_cfirflt_f(d->data_lpf_fir,d->data_bb0_cvview,d->data_bb_cvview);

/* Initialize padded data to zeros */
vsip_vfill_f((float)0,d->z_re_vview);
vsip_vfill_f((float)0,d->z_im_vview);
/* Copy data row-by-row from real input to complex workspace */
for(i = 0; i < p->num_pulses; i++) {
    vsip_cvputoffset_f(d->data_bb_row_cvview,i*p->samples_per_pulse);
    vsip_cvputoffset_f(d->z_short_row_cvview,i*p->num_range_bins);
    vsip_cvcopy_f_f(d->data_bb_row_cvview,d->z_short_row_cvview);
}

/* Compute FFT of each pulse of the data */
vsip_ccfftmip_f(d->fft_plan_fast,d->z_cmview);

/* Multiply rows element-wise */
for(i = 0; i < p->num_doppler_bins; i++) {
    vsip_cvputoffset_f(d->z_long_row_cvview,i*p->num_range_bins);
    vsip_cvjmul_f(d->z_long_row_cvview,d->s_cvview,d->z_long_row_cvview);
}

/* Map Back to Range Domain (in fast-time dimension) */
vsip_ccfftmip_f(d->inv_fft_plan_fast,d->z_cmview);
/* Compute Slow Time FFT of Matched Filtered Data */

/* Transpose */
vsip_cmtrans_f(d->rd_map_cmview,d->rd_map_trans_cmview);

/* Compute FFT across pulses */
vsip_ccfftmip_f(d->fft_plan_slow,d->rd_map_trans_cmview);

/* Transpose */
vsip_cmtrans_f(d->rd_map_trans_cmview,d->rd_map_cmview);

/* Compute Magnitude of range-Doppler Map */
vsip_vcmagsq_f(d->rd_map_cview,d->rd_map_mag_vview);
vsip_vlog10_f(d->rd_map_mag_vview,d->rd_map_mag_vview);

/* Copy results to host */
vsip_blockrelease_f (d->rd_map_mag_block, VSIP_TRUE);
VSIIPL Platform Issues

- VSIIPL API compliant software is portable, however...
- Accelerator-based VSIIPL implementations have different performance considerations than pure CPU
  - Small operations more costly
  - Release/admit, get/put much more costly
  - Higher dimensionality is more efficient
- CPU implementations more tolerant of application memory errors
Outline

• VSIPL Background
• Using VSIPL
• GPU VSIPL
• Conclusion
VSIPL & GPU: Well Matched

- VSIPL is great for exploiting GPUs
  - High level API with good coverage for dense linear algebra
  - Allows non experts to benefit from hero programmers
  - Explicit but abstracted memory access controls
  - API precision flexibility

- GPUs are great for VSIPL users
  - Improves prototyping by speeding algorithm testing
  - Cheap addition allows more engineers access to HPC
  - Large speedups without needing explicit parallelism at application level
GPU-VSIPL Implementation

• **GPU VSIPL**: Implementation of VSIPL for CUDA GPUs

• **Fully encapsulated CUDA backend**
  - Leverages CUFFT library
  - All VSIPL functions accelerated
  - No CUDA-specific memory management required

• **Functional Coverage:**
  - Single precision floating point, some basic integer
  - Matrix, Vector & Scalar, complex & real support
  - Elementwise, FFT, FIR, histogram, RNG, support
  - Several linear system solvers
  - All of Core Lite Profile, most of Core Profile, some additional
GPU-VSIPL Functional Coverage

- What’s covered from VSIPL Core
  - Data Types
    - real, complex, integer, boolean, index
  - View Types
    - Matrix, vector
  - Element-wise Operators
    - arithmetic, trigonometric, transcendental, scatter/gather, logical, and comparison
  - Signal Processing
    - FFT (in-place, out-of-place, batched)
    - Fast FIR filter, window creation, 1D correlation
    - Random number generation, histogram
  - Linear Algebra
    - generalized matrix product
    - QR decomposition, least-squares solver
- What’s Not (yet)
  - Linear Algebra
    - Covariance, Linear Least Squares Solver
- What’s Added Beyond VSIPL Core
  - Scalar and matrix versions of element-wise vector operators
  - Matrix utility functions
Some GPU VSPIPL Performance

Matrix-vector product

- QR Decomposition

Complex In-place FFT

1D Correlation

Graphs showing performance metrics for different operations and signal sizes.
**Application Performance: RD Map**

- Simple Range/Doppler data visualization demo
- Intro app for new VSIPL programmer
- 53x Speedup TASP → GPU-VSIPL
- **No changes to source code**

<table>
<thead>
<tr>
<th>Section</th>
<th>GTX480 Time (ms)</th>
<th>X5650 (1 core) Time (ms)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit</td>
<td>0.81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Baseband</td>
<td>0.75</td>
<td>127.09</td>
<td>169</td>
</tr>
<tr>
<td>Zeropad</td>
<td>0.83</td>
<td>10.73</td>
<td>12.9</td>
</tr>
<tr>
<td>Fast time FFT</td>
<td>0.59</td>
<td>513.89</td>
<td>871</td>
</tr>
<tr>
<td>Multiply</td>
<td>14.01</td>
<td>13.13</td>
<td>0.93</td>
</tr>
<tr>
<td>Fast Time FFT⁻¹</td>
<td>0.61</td>
<td>513.70</td>
<td>842</td>
</tr>
<tr>
<td>Slow time FFT, 2x CT</td>
<td>5.68</td>
<td>503.42</td>
<td>88.6</td>
</tr>
<tr>
<td>log₁₀</td>
<td>.</td>
<td>²</td>
<td>0.90</td>
</tr>
<tr>
<td>Release</td>
<td>9.36</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Total:</strong></td>
<td><strong>33.82</strong></td>
<td><strong>1806.10</strong></td>
<td><strong>53.4</strong></td>
</tr>
</tbody>
</table>
Optimization Techniques: Template Kernels

- Template kernels for specialization
- Example: guard conditionals in inner loops
  - Boolean template parameter may short-circuit conditional expression
  - Optimizer removes control flow entirely for `notConditional=true` specialization

```cpp
template <bool notConditional> __global__ void kernel(int *A, int N) {
 int tid = threadIdx.x + blockDim.x * blockIdx.x;

 if (notConditional || tid < N) { // conditional expression that may be short-circuited at compile time
 A[tid] = f(A[tid]);
 }
}
```

```cpp
bool notCconditional = !(N % blockSize.x); // true if N is multiple of blockSize
kernel< notConditional ><<< gridSize, blockSize >>>(A, N);
```

- `notConditional = true`: no control flow, 13 instructions, 17 registers
- `notConditional = false`: control flow, 16 instructions, 23 registers
Optimization Techniques: Template Kernels

- Template kernels and functors for real and complex-valued operators

```cpp
struct F_mul_f {
 __device__ float operator()(float a, float b) { return a*b; }
};

struct F_cmul_f {
 __device__ float2 operator()(float2 a, float2 b) {
 return make_float2(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);
 }
};

template<bool notConditional, typename binary_operator_T, typename view_T, typename T>
__global__ void kernel_vsip_vbinary_f(view_T A, const T *a, view_T B, const T *b, view_T R, T *r) {
 int tid = threadIdx.x + blockDim.x * blockIdx.x;
 if (notConditional || tid < R.length) {
 binary_operator_T f;
 r[tid] = f(a[tid], b[tid]);
 }
}

... // vsip_vmul_f
kernel_vsip_vbinary_f< notConditional, F_mul_f, vsip_vview_f, float ><<< grid, block >>>(

// vsip_cvmul_f
kernel_vsip_vbinary_f< notConditional, F_cmul_f, vsip_cvview_f, float2 ><<< grid, block >>>(
```
Optimization Techniques: QR Decomposition

- Matrix decompositions are common operations in signal processing applications
- Standard algorithms:
  - have computationally intensive serialized procedures
  - require fine-grain synchronization and communication across threads
  - are composed of memory-bound primitive operations

- GPU VSIPL implements Blocked Householder QR decomposition
  - applies $r$ reflections in one matrix-matrix product
  - dominant computation is compute-bound
  - coarse-grain serialization of kernels
  - kernel-level parallelism offers performance opportunity on Fermi-class GPUs

**Speedup on GTX280 compared to Intel MKL on Intel Xeon at 2.83 GHz with 6MB L2**
Optimization Techniques: QR Decomposition

\[ A = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix} \]

1.) Input matrix is partitioned into blocks \( A_1, A_2, \ldots A_p \), each with \( r \) columns.
Optimization Techniques: QR Decomposition

\[ A = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix} \]

2.) A Householder reflection is computed from the first column
Optimization Techniques: QR Decomposition

\[ A = \begin{bmatrix} P_1 A_1 & A_2 & A_3 \end{bmatrix} \]

3.) and applied to the remaining columns in \( A_1 \).
Optimization Techniques: QR Decomposition

\[ A = [P_1 A_1 \quad A_2 \quad A_3] \]

4.) A Householder reflection is computed from the second column
Optimization Techniques: QR Decomposition

\[ A = \begin{bmatrix} P_2 P_1 A_1 & A_2 & A_3 \end{bmatrix} \]

5.) and applied to the remaining columns in \( A_1 \).
Optimization Techniques: QR Decomposition

6.) After \( r \) reflections are applied to block \( A_1 \), \( W \) is computed from \( Y \).

Then, matrix \([A_2 \ A_3 \ \cdots \ A_p]\) and \( Q \) are updated according to

\[
A_{[2\ldots p]} \leftarrow A_{[2\ldots p]} + Y W^T A_{[2\ldots p]} \\
Q \leftarrow Q + Q W Y^T
\]

**Algorithm 2** Computation of \( W \) and \( Y \) from \( V \) and \( B \) [1]

1: \( Y = V(1 : \text{end}, 1) \)
2: \( W = -B(1) \cdot V(1 : \text{end}, 1) \)
3: for \( j = 2 \) to \( r \) do
4: \( v = V(:, j) \)
5: \( z = -B(j) \cdot v - B(j) \cdot W Y^H v \)
6: \( W = [W \ z] \)
7: \( Y = [Y \ v] \)
8: end for

**References**

Optimization Techniques: QR Decomposition

7.) Applying the block Householder update $I + YW^T$ to $A$ is equivalent to performing the first $r$ Householder reflections according to the original algorithm.

Problem sizes for matrix-vector product are much smaller.

$Q$ is updated strictly with matrix-matrix products.
Optimization Techniques: QR Decomposition

\[ R = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix} \]

8.) Repeat with the next block until all of \( A \) is triangularized.
Optimization Techniques: QR Decomposition

- Dominant computations in Blocked Householder Reflections are compute-bound
  - WY computation consists of matrix-matrix products with up to 32 columns
  - A and Q updates are matrix products with dimensions that are multiples of 32 with no fringes
  - A and Q updates may be performed in parallel with memory-bound operations

Table: Runtime in seconds for phases of blocked Householder QR on GPUs

<table>
<thead>
<tr>
<th>Operation</th>
<th>GeForce GTX 280</th>
<th>GeForce GTX 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem size</td>
<td>6656 x 3328</td>
<td>8192 x 4096</td>
</tr>
<tr>
<td>Householder</td>
<td>0.326</td>
<td>0.565</td>
</tr>
<tr>
<td>A = P · A</td>
<td>0.952</td>
<td>1.45</td>
</tr>
<tr>
<td>WY Computation</td>
<td>1.25</td>
<td>1.86</td>
</tr>
<tr>
<td>A ← (I + WY^T)^T A</td>
<td>0.534</td>
<td>0.971</td>
</tr>
<tr>
<td>Q ← Q(I + WY^T)</td>
<td>1.36</td>
<td>2.79</td>
</tr>
<tr>
<td>Total (seconds)</td>
<td>4.43</td>
<td>7.629</td>
</tr>
<tr>
<td>GFLOP/s</td>
<td>129 GFLOP/s</td>
<td>143 GFLOP/s</td>
</tr>
</tbody>
</table>
Outline

• VSIPL Background
• Using VSIPL
• GPU VSIPL
• Conclusion
GPU VSIFL Summary

- GPU VSIFL: CUDA performance without CUDA optimization

- Information on GPU VSIFL website: [http://gpu-vsipl.gtri.gatech.edu](http://gpu-vsipl.gtri.gatech.edu)

- Available for free download
  - Windows 32/64; Linux 32/64; OSX
  - Unsupported, no redistribution permitted
  - Other licenses available

- Commercially supported version available from:

GPU VSIPL

GPU VSIFL is an implementation of Vector Signal Image Processing Library that targets Graphics Processing Units (GPUs) supporting NVIDIA CUDA platform. By leveraging processing capabilities of GPUs, VSIFL can achieve considerable speedup without any specialized development for GPUs. Our [sample application](http://GPU VSIPL) achieved a 75x speedup on the GPU simply by linking it with GPU VSIFL.

**Distribution**

GPU VSIFL is currently released as a binary-only static library with the restriction that the library not be redistributed. This should enable internal development and testing to see if GPU VSIFL meets your needs. If you wish to distribute applications developed with GPU VSIFL, please contact us to arrange a separate licensing agreement.

**Validation**

All releases are verified with the [VSIPL CoreLite Test Suite](http://www.runtimecomputing.com/). GPU VSIFL was presented at the [High Performance Embedded Computing Workshop 2008](http://www.runtimecomputing.com/). Read the [GPU VSIPL license](http://www.runtimecomputing.com/).

**Download GPU VSIPL**

GPU VSIFL is distributed as a binary built for the following platforms:

- Windows 32/64-bit
- Linux
- Linaro 32/64
- Mac OSX

**Download GPU VSIPL** [11 August 2009]

For announcements on new updates to GPU VSIFL, and discussion about the software, please subscribe to the [GPU VSIPL mailing list](http://www.runtimecomputing.com/).

**Functionality**

Vector Signal Image Processing Library is a signal processing library specified by the VSIPL Forum. It is intended to support the development of platform-independent signal processing applications.

GPU VSIFL is compliant with the [VSIPL CoreLite Profile](http://www.runtimecomputing.com/), which includes the following VSIPL functions as well:

- vector and matrix operations
- complex numbers
- elementary arithmetic, logical, and comparison operators
- linear algebra procedures
- generalized matrix product
- fast Fourier transform
- convolution
- Fast Fourier Transform