TECHNOLOGY
CONFERENCE

Using Virtual Texturing to Handle Massive
Texture Data

San Jose Convention Center - Room A1 | Tuesday, September, 21st, 14:00 - 14:50

J.M.P. Van Waveren — id Software Evan Hart — NVIDIA

PRESENTED BY nVIDIA.

How we describe our environment ?

= Polygonal boundary representations

— convenient / compressed description of the material world

» Tiling / repeating / blending textures

— primitive forms of texture compression ?

eresenrener @8 MVIDIA.

Today

= Polygonal boundary representations

— convenient / compressed description of the material world

Talawnma~x /| vAaArnmAatim~ /I KlAanAin~s FAvEFILIras
LIS 7 TS pPeuUlllig 7 Mlielhidinigg Centun o

L]
nrirmaitriviAn fArmme Anf fAvhiira ~AmMArAaccecinn ?

rll BN WV I N e W -\ ‘_v---r'- - arar s o

eresenrener @8 MVIDIA.

Tonight ?

DAalvikAanal hAaiinAAarms reanracAantatrinnc
|| \J\JSVI IGAN AW Al T AL J [] \orll el | I WA I Wl o

~AarvviAaninnt | ~rAarmnracenAd AAaccrintian Af FlhAa mAafrAarial wiAvl A

R L R I A e R R
Talawnma~x /| vAaArnmAatim~ /I KlAanAin~s FAvEFILIras
LIS 7 TS pPeuUlllig 7 Mlielhidinigg Centun o

L] L] L] L]
nrirmaitriviAn fArmme Anf fAvhiira ~AmMArAaccecinn ?

rll BN WV I N e W -\ ‘_v---r'- ~— arar i~ s @

eresenrener @8 MVIDIA.

Unique texture detail

eresenrener @8 MVIDIA.

Very large textures

——

eresenrener @8 MVIDIA.

Virtual Texture vs. Virtual Memory

= fall back to blurrier data without stalling execution
» lossy compression is perfectly acceptable

eresenrener @8 MVIDIA.

Universally applied virtual textures

o
Al
[® ‘\%

eresenrener @8 MVIDIA.

Virtual textures with virtual pages

eresenrener @8 MVIDIA.

Physical texture with physical pages

A EEEE LR e
L i

L d g g a8
d d d d d i d d d d d d d d d d b d i i
L d d d d d d d d d d 4 d d d d d d d 4 d d d d d a 4 4 a4 4
Ll
L L
L

eresenrener @8 MVIDIA.

Virtual to Physical Translation

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

Virtual Texture Pyramid with Sparse Page Residency

PR E & L LA

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

Virtual Texture Pyramid with Sparse Page Residency

PR E & L LA

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

Virtual Texture Pyramid with Sparse Page Residency

PR E & L LA

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

ERRASAELARAR ﬁ'\.\"“"m:‘: -

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

(0,0)

TLERAN

MARRAE!

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

(0,0) i
-ﬁ"!q

(0,0)

TLERAN

MARRAE!

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation

(0,0) i
-ﬁ"!q

(0,0)

TLERAN

MARRAE!

Quad-tree of Sparse Texture Pyramid

eresenrener @8 MVIDIA.

Virtual to Physical Translation
:“%!;Ba'

Physical Page Texture

i

NN
physical = (virtual - A) x (C/D) + B

eresenrener @8 MVIDIA.

Virtual to Physical Translation
':°'°3!;Ba

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency gx

. gcale=C/D

eresenrener @8 MVIDIA.

Virtual to Physical Translation

':°'°3!;Ba

Physical Page Texture

Virtual Texture Pyramid with Sparse Page Residency gx

. gcale=C/D
bias = A -B x scale

eresenrener @8 MVIDIA.

Virtual to Physical Translation

m'”ﬁBa :
D|==

Physical Page Texture

i

"\ scale=C/D
bias = A-B x scale
physical = virtual x scale + bias

eresenrener @8 MVIDIA.

Optimized virtual to physical translations

= Store complete quad-tree as a mip-mapped texture
— FP32x4

» Use a mapping texture to store the scale and bias
— 8:8 + FP32x4

» Calculate the scale and bias in a fragment program
— 8:8:8:8
— 5:6:5

eresenrener @8 MVIDIA.

Texture Filtering

» Bilinear filtering without borders
= Bilinear filtering with borders
* Trilinear filtering (mip mapped vs. two translations)

» Anisotropic filtering
— 4-texel border (max aniso= 4)
— explicit derivatives + TXD (texgrad)
— implicit derivatives works surprisingly well

eresenrener @8 MVIDIA.

Which pages need to be resident?

» Feedback rendering
— separate rendering pass
— or combined with depth pass
— factor 10 smaller is ok
» Feedback analysis
— run as parallel job on CPU
— run on the GPU
— ~ .5 msec on CPU for 80 x 60

eresenrener @8 MVIDIA.

How to store huge textures?

= diffuse + specular + normal + alpha + power = 10 channels

— 128k x 128k x 12 channels = 256 GigaBytes (uncompressed)
— 53 GigaBytes DXT compressed (1 x DXT1 + 2 x DXT5)

= use brute force scene visibility to throw away data
— down to 20 - 50 GigaBytes (uncompressed)
— 4 - 10 GigaBytes DXT compressed

eresenrener @8 MVIDIA.

Need variable bit rate compression!

= DCT-based compression
— 300 - 800 MB

= HD-Photo compression
— 170 - 450 MB

eresenrener @8 MVIDIA.

What does this look like per page?

= 128 x 128 texels per page
— 120 x 120 payload + 4 texel border on all sides
— 192 kB uncompressed
— 40 kB DXT compressed
— 1 - 6 kB DCT-based or HD-Photo compressed

eresenrener @8 MVIDIA.

Can’t render from variable bit rate

= Transcode DCT-based or HD-Photo to DXT

— Significant computational load
— 1 to 2 milliseconds per page on a single CPU core

eresenrener @8 MVIDIA.

Pipeline overview

memory optical

teedback [Analysis cache storage

eresenrener @8 MVIDIA.

GPU Transcoding Motivation

* Transcode rate tied to quality / performance
— Drop frames - Image is lower detail
— Wait for results - frame rate degrades

* Densely occluded environment may desire in excess of 46
MTex/s

* DCT-based transcoding can exceed 20 ms per frame
* HD-Photo transcoding can exceed 50 ms per frame

eresenrener @8 MVIDIA.

Transcoding Analysis

 Several jobs (pages) per frame

 Jobs occur in several stages
— Entropy decode
— Dequantization
— Frequency transform
— Color space transformation
— DXT compression

eresenrener @8 MVIDIA.

Transcoding Pipeline

Entropy Decode
(~20-25%)

Frequency Transform
(25-50%)

DXT Compression
(25-50%)

rresenreney @24 MVIDIA.

Transcoding Breakdown

» Entropy Decode
—20-25% CPU time

» Dequantization + Frequency transform
—25-50% CPU time

* Color transform + DXT compression
—25-50% CPU time

eresenrener @8 MVIDIA.

» Entropy Decode

— Extremely paralle

e Color transform +
— Extremely paralle

Transcoding Parallelism

, hundrec
DXT com

, hundrec

— Semi-parallel, dozens to hundreds
» Dequantization + Frequency transform

s to thousands
Dression

s to thousands

eresenrener @8 MVIDIA.

Entropy Decode

« Huffman based coding schemes
— Variable bit-width symbol
— Run-length encoding

* Serial dependencies in bit stream
 Substantial amount of branching

eresenrener @8 MVIDIA.

Huffman Decode Basics

Bitstream

Position

eresenrener @8 MVIDIA.

Huffman Decode Basics

Bitstream

HEEEEEEE --- B

Position

eresenrener @8 MVIDIA.

Huffman Decode Basics

Bitstream

Position

eresenrener @8 MVIDIA.

Huffman GPU Processing

 Long serial dependencies limit parallelism
 Relatively branchy (divergence)
 Relatively few threads

« Can perform reasonably with very many small
streams

— Not the case here
» CPU offers better efficiency today

eresenrener @8 MVIDIA.

Frequency Transform

 Block-based transform from frequency domain

« iDCT of macro blocks

— Inherently parallel at the block level

— Uses NVPP derived iDCT kernel to batch several
blocks into a single CTA

— Shared memory allows CTA to efficiently transition
from vertical to horizontal phase

eresenrener @8 MVIDIA.

Macroblock

Luminance
Chrominance

.
= ..+.+

* Image broken into macro blocks
— 16x16 for DCT with color encoded as 4:2:0
— Blocks are 8x8

eresenrener @8 MVIDIA.

CUDA iDCT

2D iDCT is separable

— 8x8 block has two stages 8-way parallel
— Too little parallelism for a single CTA

* Luminance and Chrominance blocks may require
different quantization

* Group 16 blocks into a single CTA

— Store blocks in shared memory to enable fast
redistribution between vertical and horizontal phase

eresenrener @8 MVIDIA.

iDCT Workload

* 64 Macroblocks per 128x128 RGB page
* 6 Blocks per macroblock (4 lum. + 2 chroma)

* 8 Threads per block

* 3072 Threads per RGB page
— Fills roughly 1/5t% of the GTX 480

eresenrener @8 MVIDIA.

DXT Compression

* DXT relies on 4x4 blocks
— 1024 blocks in one 128x128 image
* Thread per block works well

— There is finer parallelism, but communication can be
too much

— Careful packing of data useful to prevent register
bloat

eresenrener @8 MVIDIA.

DXT Blocks

* 4x4 texel block
* Min color, Max color, and 16 2-bit indices

eresenrener @8 MVIDIA.

CUDA DXT Compression

* All operations performed on integer colors
— Matches CPU reference implementation

— Allows packing of 4 colors into a 32-bit word
* 4x better register utilization

« CTA is aligned to Macroblock boundaries

— Allows fetch of 4:2:0 data to shared memory for
efficient memory utilization

* Presently 32x32 texel region

eresenrener @8 MVIDIA.

Putting it Together

* CPU Entropy Decode needs to work on large blocks
— Dozens of tasks per frame

* GPU kernels desire larger sets
— All pages as a single kernel launch is best for utilization

— Parameters, like quantization level and final format, can
vary per page

* Must get data to the GPU efficiently

eresenrener @8 MVIDIA.

Solution CPU-side

» CPU task handles entropy decode directly to
locked system memory

» CPU task generates tasklets for the GPU

— Small job headers describing the offset and
parameters for a single CTA task

eresenrener @8 MVIDIA.

Solution GPU-Side

» Tasks broken into two natural kernels
— Frequency transform
— DXT compression
» Kernels read one header per CTA to guide work
— Offset to input / result
— Quantization table to use
— Compression format (diffuse or normal/specular)

eresenrener @8 MVIDIA.

One more thing

 CPU -> GPU bandwidth can be an issue

— Solution 1
 Stage copies to happen in parallel with computation
» Forces an extra frame of latency

— Solution 2

 Utilize zero copy and have frequency transform read from
CPU

 Allows further bandwidth optimization

eresenrener @8 MVIDIA.

Split Entropy Decode

» Huffman coding for DCT typically truncates the
coefficient matrix

* CPU decode can prepend a length and pack
multiple matrices together

* GPU fetches a block of data, and uses matrix
lengths to decode run-length packing

 Can easily save 50% of bandwidth

eresenrener @8 MVIDIA.

Run Length Decode

 Fetch data from system mem into shared mem
» Read first element as length

* If threadldx < 64 and threadldx < length copy
» Advance pointer

» Refill shared memory if below low water mark
» Repeat for all blocks

eresenrener @8 MVIDIA.

Results

* CPU performance increase
— 20+ ms max (Core i/)
— ~4 ms max (Core i7)

 GPU costs
— <= 3ms (GTS 450)

» Better image quality and/or better frame rate
— Particularly on moderate (2-4 core CPUs)

eresenrener @8 MVIDIA.

Conclusions

* Virtual Texturing offers a good method for
handling large datasets

* Virtual texturing can benefit from GPU offload

* GPU can provide a 4x improvement resulting in
better image quality

eresenrener @8 MVIDIA.

Thanks

id Software
NVIDIA Devtech

eresenrener @8 MVIDIA.

