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Once upon a time in computer
architecture ...




Introduction
Programming Accelerator-based machines

* Prehistory (<2007)
SMP machines (1960s !)
NUMA architectures (1970s)
Vector machines (1980s-90s)
Multicore chips (2000s)

* GPGPU for masses ? (from 2007)
CPUs are now deprecated ?
Rewrite all codes for accelerators
Pure offloading model
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Introduction
Programming Accelerator-based machines

* Pure offloading model CPU GPU

CUDA 1.x (2007 — 2008)
Synchronous cards

Ignore CPUs

Concentrate on efficient kernels
Complex memory accesses

Pre-process input

Upload input

CUDA heros (eg. V.Volkov) Compute on GPU
Port standard libraries to CUDA

CUBLAS Download result

CUFFT

GPUCV...

Post-process input
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Introduction
Programming Accelerator-based machines

* Multi-GPU era CPU GPUs
CUDA 2.x (2008 — 2009)

Asynchronous transfers Distribute work
S1070 servers \

Still Ignore CPUs (in general)
Suitable for regular applications
Massively parallel problems
Use previously written kernels
New problems
Parallel programming for real
PCI bus = bottleneck

Pre/Post-processing is costly Gather results
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Introduction
Programming Accelerator-based machines

* GPU computing era
CUDA 3.x (2009 — ?)
End of GPGPU
Hybrid machines
Tightly coupled CPUs and GPUs
Take advantage of all ressources
MUCH more complicated
Load balancing
Who does what ?
Heterogeneous capabilities
Data management
Numerous data transfers
Fully asynchronous model
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* Applications
Programming paradigm
BLAS kernels, FFT, ...

* Compilers
Languages
Code generation/optimization

* Runtime systems
Resources management
Task scheduling

* Architecture
Memory interconnect

Introduction
Challenging issues at all stages

HPC Applications

Compiling
environment

Specific
librairies

Runtime system

Operating System

Hardware
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* Applications
Programming paradigm
BLAS kernels, FFT, ...

* Compilers
Languages
Code generation/optimization

* Runtime systems
Resources management
Task scheduling

* Architecture
Memory interconnect

Introduction
Challenging issues at all stages

Expressive interface

HPC Applications

Compiling
environment

Specific
librairies

Runtime system

Operating System

Hardware

Execution Feedback
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Outline

* The StarPU runtime system

e Task Scheduling
Load balancing
Improving data locality

- Evaluation on dense linear algebra algorithms
Synthetic “LU” decomposition
Mixing PLASMA and MAGMA (Cholesky & QR)

» Scheduling parallel tasks

* Adding support for MPI in StarPU
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The StarPU runtime system
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The StarPU runtime system

The need for runtime systems

* “do dynamically what can’t

be done statically anymore” HPC Applications
Parallel Parallel
Compilers Libraries

* Library that provides
Task scheduling
I\/Iemory Mmanagement

* Compilers and libraries _
generate (graphs of) parallel Runtime system
tasks

Additional information is
welcome!

Operating System
CPU GPU
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The StarPU runtime system

Data management library

 StarPU provides a Virtual HPC Applications
Shared Memory subsystem Parallel Parallel
Weak consistency Compilers Libraries
Replication
Single writer
High level API

Partitioning filters

StarPU
*Input & ouput of tasks =

reference to VSM data Drivers (CUDA, OpenCL)
CPU GPU
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The StarPU runtime system

Task scheduling

eTasks = HPC Applications
Data input & output Parallel Parallel
R_’efer_ence to VSM _data Compilers Libraries
Multiple implementations
E.g. CUDA + CPU
iImplementation '
Eendenmes with other ‘
tas ‘
Scheduling hints \\‘ C)—()
tarPU
«StarPU provides an Open
Scheduling platform o \JDA, OpenCL)
Scheduling algorithm = f & | (Arw, By, Cr) );pu
plug-ins spu
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The StarPU runtime system

Task scheduling

* Who generates the code ?

StarPU Task = ~function pointers

StarPU don't generates code
* Programming heros ?

e Libraries era
PLASMA + MAGMA
FFTW + CUFFT...

HPC Applications

Parallel Parallel
Compilers Libraries

Ve

/ D00

* Rely on compilers
PGl accelerators

cpu

gpu
spu

CAPS HMPP...

ta rPU

\JDA, OpenCL)
(Arw, Br, Cr) lFPU
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The StarPU runtime system
Execution model

Application

I ]
: : |
I Memory Scheduling engine =
I | Management 1 A
| (DSM) I E
. =)
: GPU driver CPU#?(HVEF 1 U
|

RAM GPU CPU#k

A ﬁéﬁ
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The StarPU runtime system
Execution model

I ]
: : |
I Memory Scheduling engine =
I | Management 1 A
| (DSM) I E
. =)
: GPU driver CPU#?(HVEF 1 U
|

RAM GPU CPU#k

A ﬁéﬁ
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The StarPU runtime system
Execution model

Application

I- Il B BN B B B B O O . Il B B = . -I
I Memory Scheduling engine =
I | Management 1 A
| (DSM) I E
. =)
: GPU driver CPU#(lfl{rlver 1 N

|

RAM GPU CPU#k

A ﬁéﬁ
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The StarPU runtime system
Execution model

Application

Memory Scheduling engine

Management

CPU driver
#k

R
StarPU

RAM GPU CPU#k
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The StarPU runtime system
Execution model

Application

Memory Scheduling engine

Management

CPU driver
#k

R
StarPU
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The StarPU runtime system
Execution model

Application

Scheduling engine

' [

I Memory 15

I | Management 1 A

1 P —
. 1 3

| CPU driver  y

| #k I

|| I B I = = B B B B B =N

centre de recherche
BORDEAUX - SUD-OUEST




The StarPU runtime system
Execution model

Application

Memory Scheduling engine

Management

CPU driver
#k

StarPU

GPU driver

erche
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The StarPU runtime system
Execution model

Application

Scheduling engine

Memory
Management
(DSM)

|

! | :

GPU driver bzl dinecen I
#k I

StarPU

RAM GPU CPU#k

A ﬁéﬁ
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Task Scheduling
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Why do we need task scheduling ?
Blocked Matrix multiplication
Things can go (really) wrong even on trivial problems !
Static mapping ?
Not portable, too hard for real-life problems
Need Dynamic Task Scheduling

Performance models

™ ViTE :: patho.sgemm.trace —Ox

File View Preferences Help

* L-’ [a a '« » - A [ fIINoarrows No events
2450 D 4 g22 pg og D76 Efieh D912 e TR T
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arog
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Scale containers/states: '_{ |~ Change position: [<] I +] Zoom: |1073% j
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Predicting task duration
Load balancing

*Task completion time

estimaton I
History-based cpu #1 | \ ]
User-defined cost cpu#2 | |
functon === - — 53 -= - - - — -
Parametric cost model CPU#S FmmmE

gpu#l [T T 1 ] I

*Can be used to improve gpu#2 [ [

scheduling

E.g. Heterogeneous
Earliest Finish Time

centre de recherche

BORDEAUX - SUD-OUEST




26

Predicting task duration
Load balancing

*Task completion time

esttmaton S
History-based cpu #1 | | ] ]
User-defined cost cpu#2 [ I
functon - — — — — — e
Parametric cost model Cpu #3 S ] i* ] -

gpu#1 T
*Can be used to improve gpu#2 [ [ [
scheduing

E.g. Heterogeneous
Earliest Finish Time
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Predicting task duration
Load balancing

*Task completion time

estimaton S
History-based cpu #1 | o ] ]
User-defined cost cpu#2 \ : I
functon - - — — - R
Parametric cost mode| CPU #3 HEEEE ] S ] -

gpu #1 TG I

*Can be used to improve gpu#2 [ EE

scheduling -
E.g. Heterogeneous Time

Earliest Finish Time
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Predicting task duration
Load balancing

*Task completion time

esttmaton I
History-based cpu #1 | \ ]
User-defined cost cpu#2 | |
functon === - = — 53 -= - - - — -
Parametric cost mode| CPU#S FmmEE

gpu#l [T T I

*Can be used to improve gpu#2 [ [

scheduling

E.g. Heterogeneous
Earliest Finish Time
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Predicting data transfer overhead
Motivations

» Hybrid platforms
Multicore CPUs and GPUs
PCl-e bus is a precious ressource

e Data locality vs. Load balancing
Cannot avoid all data transfers
Minimize them

HE

» StarPU keeps track of

on-goig data movements .

data replicates
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Predicting data transfer overhead
Offline bus benchmarking

 Offline bus benchmarking
When StarPU is launched for the first
time
Measure bandwidth and latency
Stored as files
Loaded when StarPU is initialized

e Detect CPU/GPU affinity
Control a GPU from the closest CPU
Significant impact on bus usage

o Straightforward cost prediction
Latency + size * bandwidth
Could be improved in many ways
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Impact of scheduling policy on a
synthetic LU decomposition

(without pivoting !)
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Scheduling in a hybrid environment

Performance models

* LU without pivoting (16GB input matrix)
8 CPUs (nehalem) + 3 GPUs (FX5800)

800 60
700 50
600 40
M Greed
°00 Itasie ’
400 model 30
M prefetch
300 | data 20
200 model
100 10
0 0

Speed (GFlops) Transfers (GB)
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Scheduling in a hybrid environment

Performance models

* LU without pivoting (16GB input matrix)
8 CPUs (nehalem) + 3 GPUs (FX5800)
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Scheduling in a hybrid environment

Performance models

* LU without pivoting (16GB input matrix)
8 CPUs (nehalem) + 3 GPUs (FX5800)
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Scheduling in a hybrid environment

Performance models

* LU without pivoting (16GB input matrix)
8 CPUs (nehalem) + 3 GPUs (FX5800)
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Mixing PLASMA and MAGMA with
StarPU

(in collaboration with UTK)

Cholesky & QR decompositions
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Mixing PLASMA and MAGMA with StarPU

« State of the art algorithms
PLASMA (Multicore CPUS)
Dynamically scheduled with Quark
MAGMA (Multiple GPUS)
Hand-coded data transfers
Static task mapping

« General SPLAGMA design
Use PLASMA algorithm with « magnum tiles »
PLASMA kernels on CPUs, MAGMA kernels on GPUs
Bypass the QUARK scheduler

« Programmability
Cholesky: ~half a week
QR : ~2 days of works
Quick algorithmic prototyping
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Mixing PLASMA and MAGMA with StarPU

* Cholesky decomposition

5 CPUs (Nehalem) + 3 GPUs (FX5800)
Efficiency > 100%

1000 T 4

— +— 3GPUs +5 CPUs — +— 3GPUs +5 CPUs

900
800
700
600
500
400
300
100

Performance (Gflop/s)
Speedup against one GPU

1 [3-,*'--E+----E|-m-E}m--E}----E}m--E+---vE’r----B“--E--"-E----%--E-----IZ-I-----E--"-E"---E]

)
0 ' L ' 0_5T L ! @
5120 15360 25600 35840 46080 5120 15360 25600 35840 46080

Matrix order Matrix order
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Mixing PLASMA and MAGMA with StarPU

* Cholesky decomposition
5 CPUs (Nehalem) + 3 GPUs (FX5800)
Efficiency > 100%
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Mixing PLASMA and MAGMA with StarPU

* Memory transfers during Cholesky decomposition

Total amount of data transfers
70 . I

| | | | |
no support for locality ——+—
60 - with support for locality —~—<--

~2.5x less
transfers

Transferred data (GB)

0 1 2 3 4 5 6 7 8
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Mixing PLASMA and MAGMA with StarPU

* QR decomposition
Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

1100

1000

900

800

700

600

500

400

Speed (in Gflop/s)

300

200

100

0 ] | 1 | | ] |
0 5000 10000 15000 20000 25000 30000 35000 40000

Matrix order
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Mixing PLASMA and MAGMA with StarPU

* QR decomposition
Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

1100 | | 1 1 1 | |
ALL
1000 F4 GPUs e e
3 GPUs - %
900 F2 GPUs --—x--— i
1 GPU —+—
N Sntinlelnieietetatatetetiatatel tateielateieateteiiietet - it -l MAGMA

700

600

500
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300

200

100

0 ] | 1 | | ] |
0 5000 10000 15000 20000 25000 30000 35000 40000

Matrix order
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Mixing PLASMA and MAGMA with StarPU

* QR decomposition
Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

1100 | I 1 I I ! I

1000 F4 GPUs Bl o

o0 |5 GPUS - T +12 CPUs

800 | onaa || ~200GFlops

......
......

700 E ___________________________________________________ -
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*

_ Peak : 12 cores
AO0 e "_:“':.'."'.'x'. """""""""""" -X '_"_",".':'—'X"’"_': """""""""""""""""""""""" h
mi e ~150 GFlops

300 [ T .

200

100

0 ] | 1 | | ] |
0 5000 10000 15000 20000 25000 30000 35000 40000
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Mixing PLASMA and MAGMA with StarPU

 « Super-Linear » efficiency in QR?
Kernel efficiency
sgeqrt
CPU: 9 Gflops GPU: 30 Gflops (Speedup : ~3)
stsqrt
CPU: 12Gflops GPU: 37 Gflops (Speedup: ~3)
somgqr
CPU: 8.5 Gflops GPU: 227 Gflops (Speedup: ~27)
Sssmqr

CPU: 10Gflops GPU: 285Gflops (Speedup: ~28)
Task distribution observed on StarPU

sgeqrt: 20% of tasks on GPUs
Sssmqr: 92.5% of tasks on GPUs
Taking advantage of heterogeneity !
Only do what you are good for
Don't do what you are not good for
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Scheduling parallel tasks




Parallel tasks

Why do we need parallel tasks ?

* Take advantage of multicore architectures

* Task parallelism may not be suited at a fine grain
Use other parallel paradigms
eg. OpenMP
Use existing parallel libraries
eg. do not reimplement parallel BLAS ...

* Alleviate granularity concerns

Less tasks
Large enough tasks (suited for the GPU)
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Parallel tasks

Scheduling parallel tasks

» StarPU allocates processing units
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Parallel tasks

Scheduling parallel tasks

T
v
T
vV
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Parallel tasks

Scheduling parallel tasks

» StarPU allocates processing units

—
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Parallel tasks

Scheduling parallel tasks

» StarPU allocates processing units

|
!
|
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Adding support for MPI in StarPU




Accelerating MPI applications with StarPU

* Keep MPI SPMD style

Static distribution of data
Scheduling within the node only

No load balancing between MPI processes

* Inter-process data dependencies
MPI communications triggered by StarPU data availability
Support from StarPU's memory management
Automaticallly construct MPI datatype
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Accelerating MPI applications with StarPU

* Provided API
starpu_mpi_{send,recv}
starpu_mpi_{isend,irecv}
starpu_mpi_{test,wait}
starpu_mpi_{send,recv} detached
starpu_mpi_* array

» Detached calls
No need to explicitly test/wait for the request
Automatic progression

« Automatic data dependencies

MPI transfers ~ StarPU tasks
Accelerating legacy codes
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Accelerating LU/MPI with StarPU

LU decomposition over StarPU/MPI

* LU decomposition 3000

MPI+multiGPU o

-g_ 2000

» Static MPI distribution &

2D block cyclic 3 T

~SCALAPACK & 1000

No pivoting ! 500 L

° 0 4(;96 81|92 12I288 16384

 Algorithmic work required Problem Size (MB)

Collaboration with UTK
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onclusion
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Conclusion

Summary

« StarPU
Freely available under LGPL
Available on Linux, OS/X, Windows
Open to external contributors!

« Task Scheduling
Required on hybrid platforms
Auto-tuned performance models

« Combined PLASMA and MAGMA
» Parallel tasks

o MPI extensions

56

HPC Applications

Parallel
Compilers

Parallel
Libraries

Runtime system

Operating System

CPU

GPU
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Conclusion

Future work

« Implement more algorithms
LU, Hessenberg
Communication Avoiding algorithms
Hybrid Scalapack
Provide higher level constructs (eg. reductions)

HPC Applications

Compiling Specific
environment librairies
« Provide a back-end for compilers
StarSs, XscalableMP, HMPP Runtime system

Operating System

« Support new architectures
Intel SCC, Fermi cards, ... Hardware

« Dynamically adapt granularity
Divisible tasks
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Conclusion

Future work

« Implement more algorithms
LU, Hessenberg
Communication Avoiding algorithms
Hybrid Scalapack

Provide higher level constructs (eg. HPC Applications
reductions) s .
Compiling Specific
environment librairies

« Provide a back-end for compilers

StarSs, XscalableMP, HMPP Runtime system

Operating System

« Support new architectures Hardware
Intel SCC, Fermi cards, ...

Thanks for your attention !
« Dynamically adapt granularity Any queStiOn P

Divisible tasks
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Performance Models
Our History-based proposition

« Hypothesis
Regular applications
Execution time independent from data content
Static Flow Control

« Conseguence
Data description fully characterizes tasks
Example: matrix-vector product

<« 1024
512 ¢- X {1024 =] 1024
Unique Signature : ((1024, 512), , 1024)

Per-data signature
CRC(1024, 512) = 0x951ef83b
Task signature
CRC(CRC(1024, 512), , CRC(1024)) = 0x79df36e2
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Performance Models
Our History-based proposition

» Generalization is easy
Task f(D1, ..., Dn)

Data
Signature(Di) = CRC(p1, p2, ..., pk)
Task ~ Series of data
Signature(D1, ..., Dn) = CRC(sign(D1), ..., sign(Dn))

e Systematic method
Problem independent
Transparent for the programmer
Efficient
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Evaluation
Example: LU decomposition

100.0 %
Speed (GFlop/s) 50.0 %

10.0 %
ref. 89.98 +2.97 130.64 £1.66 5.0 %

2" iter 103.62 130.23

>4iter 103.92 135.90 +[0.00 T T
+0U.40 Number of samples
Faster
No code change ! Dynamic calibration
More stable Simple, but accurate
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