
1StarPU a runtime system for Scheduling
Tasks,

or
How to get portable performance on

accelerator-based platforms without the
agonizing pain

NVIDIA GPU Technology Conference – San Jose (USA) – September 2010

Cédric Augonnet Samuel Thibault Raymond Namyst

INRIA Bordeaux, LaBRI, University of Bordeaux

2

Once upon a time in computer
architecture ...

3

Introduction
Programming Accelerator-based machines

• Prehistory (<2007)
• SMP machines (1960s !)

• NUMA architectures (1970s)

• Vector machines (1980s-90s)

• Multicore chips (2000s)

• GPGPU for masses ? (from 2007)
• CPUs are now deprecated ?

• Rewrite all codes for accelerators

• Pure offloading model

4

Introduction
Programming Accelerator-based machines

• Pure offloading model
• CUDA 1.x (2007 – 2008)

– Synchronous cards

• Ignore CPUs

• Concentrate on efficient kernels
– Complex memory accesses
– CUDA heros (eg. V.Volkov)

• Port standard libraries to CUDA
– CUBLAS
– CUFFT
– GPUCV...

CPU GPU

Pre-process input

Post-process input

Compute on GPU

Upload input

Download result

5

Introduction
Programming Accelerator-based machines

• Multi-GPU era
• CUDA 2.x (2008 – 2009)

– Asynchronous transfers
– S1070 servers

• Still Ignore CPUs (in general)

• Suitable for regular applications

– Massively parallel problems
– Use previously written kernels

• New problems
– Parallel programming for real
– PCI bus = bottleneck
– Pre/Post-processing is costly

CPU GPUs

Distribute work

Gather results

6

Introduction
Programming Accelerator-based machines

• GPU computing era
• CUDA 3.x (2009 – ?)

– End of GPGPU
– Hybrid machines

• Tightly coupled CPUs and GPUs
– Take advantage of all ressources
– MUCH more complicated

• Load balancing
– Who does what ?
– Heterogeneous capabilities

• Data management
– Numerous data transfers
– Fully asynchronous model

M.M.

CPU

CPU

CPU

CPU M.GPU

M.GPU

M.M.

CPU

CPU

CPU

CPU M.GPU

M.GPU

7

Introduction
Challenging issues at all stages

• Applications
• Programming paradigm

• BLAS kernels, FFT, …

• Compilers
• Languages

• Code generation/optimization

• Runtime systems
• Resources management

• Task scheduling

• Architecture
• Memory interconnect

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
librairies

8

Introduction
Challenging issues at all stages

• Applications
• Programming paradigm

• BLAS kernels, FFT, …

• Compilers
• Languages

• Code generation/optimization

• Runtime systems
• Resources management

• Task scheduling

• Architecture
• Memory interconnect

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
librairies

Expressive interface

Execution Feedback

9

• The StarPU runtime system

• Task Scheduling
• Load balancing

• Improving data locality

• Evaluation on dense linear algebra algorithms
• Synthetic “LU” decomposition

• Mixing PLASMA and MAGMA (Cholesky & QR)

• Scheduling parallel tasks

• Adding support for MPI in StarPU

Outline

10

The StarPU runtime system

11

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

• “do dynamically what can’t
be done statically anymore”

• Library that provides
• Task scheduling
• Memory management

• Compilers and libraries
generate (graphs of) parallel
tasks

• Additional information is
welcome!

The need for runtime systems

GPU …

The StarPU runtime system

12

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

• StarPU provides a Virtual
Shared Memory subsystem

• Weak consistency

• Replication

• Single writer

• High level API
– Partitioning filters

•Input & ouput of tasks =
reference to VSM data

Data management library

GPU …

The StarPU runtime system

13

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

•Tasks =
• Data input & output

– Reference to VSM data
• Multiple implementations

– E.g. CUDA + CPU
implementation

• Dependencies with other
tasks

• Scheduling hints

•StarPU provides an Open
Scheduling platform

• Scheduling algorithm =
plug-ins

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)

14

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

• Who generates the code ?
• StarPU Task = ~function pointers
• StarPU don't generates code

• Programming heros ?

• Libraries era
• PLASMA + MAGMA
• FFTW + CUFFT...

• Rely on compilers
• PGI accelerators
• CAPS HMPP...

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)

15

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A B

BA

16

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Submit task « A += B »

A+= B

A B

BA

17

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Schedule task

A+= B

A B

BA

18

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A

Fetch data

19

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A A

Fetch data

20

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A A

Fetch data

21

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

B B

BA

A A

Offload computation

A+= B

22

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A B

BA

23

Task Scheduling

24

Why do we need task scheduling ?
Blocked Matrix multiplication

2 Xeon cores

Quadro FX5800

Quadro FX4600

 Things can go (really) wrong even on trivial problems !
• Static mapping ?

– Not portable, too hard for real-life problems
• Need Dynamic Task Scheduling

– Performance models

25

Predicting task duration
Load balancing

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

•Task completion time
estimation

• History-based

• User-defined cost
function

• Parametric cost model

•Can be used to improve
scheduling

• E.g. Heterogeneous
Earliest Finish Time

26

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

•Task completion time
estimation

• History-based

• User-defined cost
function

• Parametric cost model

•Can be used to improve
scheduling

• E.g. Heterogeneous
Earliest Finish Time

•Task completion time
estimation

• History-based

• User-defined cost
function

• Parametric cost model

•Can be used to improve
scheduling

• E.g. Heterogeneous
Earliest Finish Time

Predicting task duration
Load balancing

27

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

•Task completion time
estimation

• History-based

• User-defined cost
function

• Parametric cost model

•Can be used to improve
scheduling

• E.g. Heterogeneous
Earliest Finish Time

Predicting task duration
Load balancing

28

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

•Task completion time
estimation

• History-based

• User-defined cost
function

• Parametric cost model

•Can be used to improve
scheduling

• E.g. Heterogeneous
Earliest Finish Time

Predicting task duration
Load balancing

29

Predicting data transfer overhead
Motivations

• Hybrid platforms
• Multicore CPUs and GPUs

• PCI-e bus is a precious ressource

• Data locality vs. Load balancing
• Cannot avoid all data transfers

• Minimize them

• StarPU keeps track of
• data replicates

• on-goig data movements

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A

30

Predicting data transfer overhead
Offline bus benchmarking

• Offline bus benchmarking
• When StarPU is launched for the first

time

• Measure bandwidth and latency
– Stored as files

• Loaded when StarPU is initialized

• Detect CPU/GPU affinity
• Control a GPU from the closest CPU

• Significant impact on bus usage

• Straightforward cost prediction
• Latency + size * bandwidth

• Could be improved in many ways

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A

31

Impact of scheduling policy on a
synthetic LU decomposition

(without pivoting !)

32

Scheduling in a hybrid environment

• LU without pivoting (16GB input matrix)
• 8 CPUs (nehalem) + 3 GPUs (FX5800)

Performance models

Speed (GFlops)
0

100
200
300
400
500
600
700
800

Greedy
task
model
prefetch
data
model

Transfers (GB)
0

10

20

30

40

50

60

33

Scheduling in a hybrid environment

• LU without pivoting (16GB input matrix)
• 8 CPUs (nehalem) + 3 GPUs (FX5800)

Performance models

Speed (GFlops)
0

100
200
300
400
500
600
700
800

Greedy
task
model
prefetch
data
model

Transfers (GB)
0

10

20

30

40

50

60

34

Scheduling in a hybrid environment

• LU without pivoting (16GB input matrix)
• 8 CPUs (nehalem) + 3 GPUs (FX5800)

Performance models

Speed (GFlops)
0

100
200
300
400
500
600
700
800

Greedy
task
model
prefetch
data
model

Transfers (GB)
0

10

20

30

40

50

60

35

Scheduling in a hybrid environment

• LU without pivoting (16GB input matrix)
• 8 CPUs (nehalem) + 3 GPUs (FX5800)

Performance models

Speed (GFlops)
0

100
200
300
400
500
600
700
800

Greedy
task
model
prefetch
data
model

Transfers (GB)
0

10

20

30

40

50

60

36

Mixing PLASMA and MAGMA with
StarPU

(in collaboration with UTK)

Cholesky & QR decompositions

37

• State of the art algorithms
• PLASMA (Multicore CPUs)

– Dynamically scheduled with Quark

• MAGMA (Multiple GPUs)

– Hand-coded data transfers

– Static task mapping

• General SPLAGMA design

• Use PLASMA algorithm with « magnum tiles »

• PLASMA kernels on CPUs, MAGMA kernels on GPUs

• Bypass the QUARK scheduler

• Programmability

• Cholesky: ~half a week

• QR : ~2 days of works

• Quick algorithmic prototyping

Mixing PLASMA and MAGMA with StarPU

38

• Cholesky decomposition
• 5 CPUs (Nehalem) + 3 GPUs (FX5800)

• Efficiency > 100%

Mixing PLASMA and MAGMA with StarPU

39

• Cholesky decomposition
• 5 CPUs (Nehalem) + 3 GPUs (FX5800)

• Efficiency > 100%

Mixing PLASMA and MAGMA with StarPU

40

• Memory transfers during Cholesky decomposition

Mixing PLASMA and MAGMA with StarPU

~2.5x less
transfers

41

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

42

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

MAGMA

43

• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

Peak : 12 cores
~150 GFlops

44

• « Super-Linear » efficiency in QR?
• Kernel efficiency

– sgeqrt

– CPU: 9 Gflops GPU: 30 Gflops (Speedup : ~3)

– stsqrt

– CPU: 12Gflops GPU: 37 Gflops (Speedup: ~3)

– somqr

– CPU: 8.5 Gflops GPU: 227 Gflops (Speedup: ~27)

– Sssmqr

– CPU: 10Gflops GPU: 285Gflops (Speedup: ~28)

• Task distribution observed on StarPU

– sgeqrt: 20% of tasks on GPUs

– Sssmqr: 92.5% of tasks on GPUs

• Taking advantage of heterogeneity !

– Only do what you are good for

– Don't do what you are not good for

Mixing PLASMA and MAGMA with StarPU

45

Scheduling parallel tasks

46

• Take advantage of multicore architectures

• Task parallelism may not be suited at a fine grain

• Use other parallel paradigms
– eg. OpenMP

• Use existing parallel libraries
– eg. do not reimplement parallel BLAS …

• Alleviate granularity concerns

• Less tasks

• Large enough tasks (suited for the GPU)

Parallel tasks
Why do we need parallel tasks ?

47

Parallel tasks

• StarPU allocates processing units

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

cpu #0

Scheduling parallel tasks

48

Parallel tasks

• StarPU allocates processing units

Time

cpu #3

gpu #1

cpu #2

cpu #1

cpu #0

gpu #1

gpu #2

Scheduling parallel tasks

49

Parallel tasks

• StarPU allocates processing units

Time

cpu #3

cpu #2

cpu #1

cpu #0

gpu #1gpu #1

gpu #2

Scheduling parallel tasks

50

Parallel tasks

• StarPU allocates processing units

Time

cpu #3

cpu #2

cpu #1

cpu #0

gpu #1gpu #1

gpu #2

Scheduling parallel tasks

51

Adding support for MPI in StarPU

52

Accelerating MPI applications with StarPU

• Keep MPI SPMD style
• Static distribution of data
• Scheduling within the node only

– No load balancing between MPI processes

• Inter-process data dependencies
• MPI communications triggered by StarPU data availability

• Support from StarPU's memory management
– Automaticallly construct MPI datatype

53

Accelerating MPI applications with StarPU

• Provided API
• starpu_mpi_{send,recv}

• starpu_mpi_{isend,irecv}

• starpu_mpi_{test,wait}

• starpu_mpi_{send,recv}_detached

• starpu_mpi_*_array

• Detached calls
• No need to explicitly test/wait for the request

• Automatic progression

• Automatic data dependencies
• MPI transfers ~ StarPU tasks

• Accelerating legacy codes

54

Accelerating LU/MPI with StarPU

• LU decomposition
• MPI+multiGPU

• Static MPI distribution
• 2D block cyclic
• ~SCALAPACK
• No pivoting !

• Algorithmic work required
• Collaboration with UTK

55

Conclusion

56

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

• StarPU

• Freely available under LGPL

• Available on Linux, OS/X, Windows

• Open to external contributors!

• Task Scheduling

• Required on hybrid platforms

• Auto-tuned performance models

• Combined PLASMA and MAGMA

• Parallel tasks

• MPI extensions

Conclusion
Summary

GPU …

57

• Implement more algorithms

• LU, Hessenberg

• Communication Avoiding algorithms

• Hybrid Scalapack

• Provide higher level constructs (eg. reductions)

• Provide a back-end for compilers

• StarSs, XscalableMP, HMPP

• Support new architectures

• Intel SCC, Fermi cards, …

• Dynamically adapt granularity

• Divisible tasks

Conclusion
Future work

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
librairies

58

• Implement more algorithms

• LU, Hessenberg

• Communication Avoiding algorithms

• Hybrid Scalapack

• Provide higher level constructs (eg.
reductions)

• Provide a back-end for compilers

• StarSs, XscalableMP, HMPP

• Support new architectures

• Intel SCC, Fermi cards, …

• Dynamically adapt granularity

• Divisible tasks

Conclusion
Future work

Compiling
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific
librairies

Thanks for your attention !
Any question ?

59

60

61

Performance Models
Our History-based proposition

• Hypothesis
• Regular applications

• Execution time independent from data content

– Static Flow Control

• Consequence
• Data description fully characterizes tasks

• Example: matrix-vector product

– Unique Signature : ((1024, 512), 1024, 1024)

– Per-data signature

– CRC(1024, 512) = 0x951ef83b

– Task signature

– CRC(CRC(1024, 512), CRC(1024), CRC(1024)) = 0x79df36e2

1024

512 1024x 1024=

62

Performance Models
Our History-based proposition

• Generalization is easy
• Task f(D1, … , Dn)

• Data
– Signature(Di) = CRC(p1, p2, … , pk)

• Task ~ Series of data
– Signature(D1, ..., Dn) = CRC(sign(D1), ..., sign(Dn))

• Systematic method
• Problem independent

• Transparent for the programmer

• Efficient

63

Evaluation
Example: LU decomposition

• Faster

• No code change !

• More stable

(16k x 16k) (30k x 30k)

ref. 89.98 ± .2 97 130.64 ± .1 66

1st iter 48.31 96.63

2nd iter 103.62 130.23

3rd iter 103.11 133.50

≥ 4 iter 103.92
± .0 46

135.90 ± .0 00

Speed (GFlop/s)

• Dynamic calibration

• Simple, but accurate

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

