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Once upon a time in computer 
architecture ...
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Introduction
Programming Accelerator-based machines

• Prehistory (<2007)
• SMP machines (1960s !)

• NUMA architectures (1970s)

• Vector machines (1980s-90s)

• Multicore chips (2000s)

• GPGPU for masses ? (from 2007)
• CPUs are now deprecated ?

• Rewrite all codes for accelerators

• Pure offloading model
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Introduction
Programming Accelerator-based machines

• Pure offloading model
• CUDA 1.x (2007 – 2008)

– Synchronous cards

• Ignore CPUs

• Concentrate on efficient kernels
– Complex memory accesses
– CUDA heros (eg. V.Volkov)

• Port standard libraries to CUDA
– CUBLAS
– CUFFT
– GPUCV...

CPU GPU

Pre-process input

Post-process input

Compute on GPU

Upload input

Download result
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Introduction
Programming Accelerator-based machines

• Multi-GPU era
• CUDA 2.x (2008 – 2009)

– Asynchronous transfers
– S1070 servers

• Still Ignore CPUs (in general)

• Suitable for regular applications

– Massively parallel problems
– Use previously written kernels

• New problems
– Parallel programming for real
– PCI bus = bottleneck
– Pre/Post-processing is costly

CPU GPUs

Distribute work

Gather results
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Introduction
Programming Accelerator-based machines

• GPU computing era
• CUDA 3.x (2009 – ?)

– End of GPGPU
– Hybrid machines

• Tightly coupled CPUs and GPUs
– Take advantage of all ressources
– MUCH more complicated

• Load balancing
– Who does what ?
– Heterogeneous capabilities

• Data management
– Numerous data transfers
– Fully asynchronous model

M.M.

CPU

CPU

CPU

CPU M.GPU

M.GPU

M.M.

CPU

CPU

CPU

CPU M.GPU

M.GPU
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Introduction
Challenging issues at all stages

• Applications
• Programming paradigm

• BLAS kernels, FFT, …

• Compilers
• Languages

• Code generation/optimization

• Runtime systems
• Resources management

• Task scheduling

• Architecture
• Memory interconnect

Compiling 
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific 
librairies
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Introduction
Challenging issues at all stages

• Applications
• Programming paradigm

• BLAS kernels, FFT, …

• Compilers
• Languages

• Code generation/optimization

• Runtime systems
• Resources management

• Task scheduling

• Architecture
• Memory interconnect

Compiling 
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific 
librairies

Expressive interface

Execution Feedback
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• The StarPU runtime system

• Task Scheduling
• Load balancing

• Improving data locality

• Evaluation on dense linear algebra algorithms
• Synthetic “LU” decomposition

• Mixing PLASMA and MAGMA (Cholesky & QR)

• Scheduling parallel tasks

• Adding support for MPI in StarPU

Outline
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The StarPU runtime system



11

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel 
Libraries

• “do dynamically what can’t 
be done statically anymore”

• Library that provides
• Task scheduling
• Memory management

• Compilers and libraries 
generate (graphs of) parallel 
tasks

• Additional information is 
welcome!

The need for runtime systems

GPU …

The StarPU runtime system
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Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel 
Libraries

• StarPU provides a Virtual 
Shared Memory subsystem

• Weak consistency

• Replication

• Single writer

• High level API
– Partitioning filters

•Input & ouput of tasks = 
reference to VSM data

Data management library

GPU …

The StarPU runtime system
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Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel 
Libraries

•Tasks =
• Data input & output

– Reference to VSM data
• Multiple implementations

– E.g. CUDA + CPU 
implementation

• Dependencies with other 
tasks

• Scheduling hints

•StarPU provides an Open 
Scheduling platform

• Scheduling algorithm = 
plug-ins

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)
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Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel 
Libraries

• Who generates the code ?
• StarPU Task = ~function pointers
• StarPU don't generates code

• Programming heros ?

• Libraries era
• PLASMA + MAGMA
• FFTW + CUFFT...

• Rely on compilers
• PGI accelerators
• CAPS HMPP...

The StarPU runtime system
Task scheduling

GPU …f
cpu
gpu
spu

(ARW, BR, CR)
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The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A B

BA
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The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Submit task « A += B »

A+= B

A B

BA
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The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

Schedule task

A+= B

A B

BA
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The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A

Fetch data



19

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A A

Fetch data



20

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A+= B

B B

BA

A A

Fetch data



21

The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver
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Management

(DSM)

RAM GPU
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The StarPU runtime system
Execution model

Scheduling engine

Application

GPU driver

Memory
Management

(DSM)

RAM GPU

CPU driver
#k

CPU#k

...

S
ta

rP
U

A B

BA



23

Task Scheduling
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Why do we need task scheduling ?
Blocked Matrix multiplication

2 Xeon cores

Quadro FX5800

Quadro FX4600

 Things can go (really) wrong even on trivial problems !
• Static mapping ?

– Not portable, too hard for real-life problems
• Need Dynamic Task Scheduling

– Performance models 
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Predicting task duration
Load balancing

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

•Task completion time 
estimation

• History-based

• User-defined cost 
function

• Parametric cost model

•Can be used to improve 
scheduling

• E.g. Heterogeneous 
Earliest Finish Time
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Time
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Predicting data transfer overhead
Motivations

• Hybrid platforms
• Multicore CPUs and GPUs

• PCI-e bus is a precious ressource

• Data locality vs. Load balancing
• Cannot avoid all data transfers

• Minimize them

• StarPU keeps track of
• data replicates

• on-goig data movements

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A
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Predicting data transfer overhead
Offline bus benchmarking

• Offline bus benchmarking
• When StarPU is launched for the first 

time

• Measure bandwidth and latency
– Stored as files

• Loaded when StarPU is initialized

• Detect CPU/GPU affinity
• Control a GPU from the closest CPU

• Significant impact on bus usage

• Straightforward cost prediction
• Latency + size * bandwidth

• Could be improved in many ways

M.M.

CPU

CPU

CPU

CPU M.GPU

GPU

CPU

CPU

CPU

CPU

M.M.

B

M.GPU

M.GPU A

M.B

A
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Impact of scheduling policy on a 
synthetic LU decomposition

(without pivoting !)
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Scheduling in a hybrid environment

• LU without pivoting (16GB input matrix)
• 8 CPUs (nehalem) +  3 GPUs (FX5800)

Performance models

Speed (GFlops)
0

100
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500
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700
800

Greedy
task 
model
prefetch
data 
model

Transfers (GB)
0

10

20

30

40

50

60
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Scheduling in a hybrid environment
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Mixing PLASMA and MAGMA with 
StarPU

(in collaboration with UTK)

Cholesky & QR decompositions
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• State of the art algorithms
• PLASMA (Multicore CPUs)

– Dynamically scheduled with Quark

• MAGMA (Multiple GPUs)

– Hand-coded data transfers

– Static task mapping

• General SPLAGMA design

• Use PLASMA algorithm with « magnum tiles »

• PLASMA kernels on CPUs, MAGMA kernels on GPUs

• Bypass the QUARK scheduler

• Programmability

• Cholesky: ~half a week

• QR : ~2 days of works

• Quick algorithmic prototyping

Mixing PLASMA and MAGMA with StarPU
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• Cholesky decomposition 
• 5 CPUs (Nehalem) + 3 GPUs (FX5800)

• Efficiency > 100%

Mixing PLASMA and MAGMA with StarPU
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• Cholesky decomposition 
• 5 CPUs (Nehalem) + 3 GPUs (FX5800)

• Efficiency > 100%

Mixing PLASMA and MAGMA with StarPU
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• Memory transfers during Cholesky decomposition

Mixing PLASMA and MAGMA with StarPU

~2.5x less
transfers
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

MAGMA
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• QR decomposition
• Mordor8 (UTK) : 16 CPUs (AMD) + 4 GPUs (C1060)

Mixing PLASMA and MAGMA with StarPU

+12 CPUs
~200GFlops

Peak : 12 cores
~150  GFlops
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• « Super-Linear » efficiency in QR?
• Kernel efficiency

– sgeqrt

– CPU: 9 Gflops GPU: 30 Gflops (Speedup : ~3)

– stsqrt

– CPU: 12Gflops GPU: 37 Gflops (Speedup: ~3)

– somqr

– CPU: 8.5 Gflops GPU: 227 Gflops (Speedup: ~27)

– Sssmqr

– CPU: 10Gflops GPU: 285Gflops (Speedup: ~28)

• Task distribution observed on StarPU

– sgeqrt: 20% of tasks on GPUs 

– Sssmqr: 92.5% of tasks on GPUs

• Taking advantage of heterogeneity !

– Only do what you are good for

– Don't do what you are not good for

Mixing PLASMA and MAGMA with StarPU
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Scheduling parallel tasks
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• Take advantage of multicore architectures

• Task parallelism may not be suited at a fine grain

• Use other parallel paradigms
– eg. OpenMP

• Use existing parallel libraries
– eg. do not reimplement parallel BLAS …

• Alleviate granularity concerns

• Less tasks

• Large enough tasks (suited for the GPU)

Parallel tasks
Why do we need parallel tasks ?
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Parallel tasks

• StarPU allocates processing units

Time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

cpu #0

Scheduling parallel tasks
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Time

cpu #3
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Parallel tasks

• StarPU allocates processing units

Time

cpu #3

cpu #2

cpu #1

cpu #0

gpu #1gpu #1

gpu #2

Scheduling parallel tasks
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Parallel tasks

• StarPU allocates processing units

Time

cpu #3

cpu #2

cpu #1

cpu #0

gpu #1gpu #1

gpu #2

Scheduling parallel tasks
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Adding support for MPI in StarPU
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Accelerating MPI applications with StarPU

• Keep MPI SPMD style
• Static distribution of data
• Scheduling within the node only

– No load balancing between MPI processes

• Inter-process data dependencies
• MPI communications triggered by StarPU data availability

• Support from StarPU's memory management
– Automaticallly construct MPI datatype
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Accelerating MPI applications with StarPU

• Provided API
• starpu_mpi_{send,recv}

• starpu_mpi_{isend,irecv}

• starpu_mpi_{test,wait}

• starpu_mpi_{send,recv}_detached

• starpu_mpi_*_array

• Detached calls
• No need to explicitly test/wait for the request

• Automatic progression

• Automatic data dependencies
• MPI transfers ~ StarPU tasks

• Accelerating legacy codes
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Accelerating LU/MPI with StarPU 

• LU decomposition
• MPI+multiGPU

• Static MPI distribution
• 2D block cyclic
• ~SCALAPACK
• No pivoting !

• Algorithmic work required
• Collaboration with UTK
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Conclusion
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Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel 
Libraries

• StarPU

• Freely available under LGPL

• Available on Linux, OS/X, Windows

• Open to external contributors!

• Task Scheduling

• Required on hybrid platforms

• Auto-tuned performance models

• Combined PLASMA and MAGMA

• Parallel tasks

• MPI extensions

Conclusion
Summary

GPU …
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• Implement more algorithms

• LU, Hessenberg

• Communication Avoiding algorithms

• Hybrid Scalapack

• Provide higher level constructs (eg. reductions)

• Provide a back-end for compilers

• StarSs, XscalableMP, HMPP

• Support new architectures

• Intel SCC, Fermi cards, …

• Dynamically adapt granularity

• Divisible tasks

Conclusion
Future work

Compiling 
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific 
librairies
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• Implement more algorithms

• LU, Hessenberg

• Communication Avoiding algorithms

• Hybrid Scalapack

• Provide higher level constructs (eg. 
reductions)

• Provide a back-end for compilers

• StarSs, XscalableMP, HMPP

• Support new architectures

• Intel SCC, Fermi cards, …

• Dynamically adapt granularity

• Divisible tasks

Conclusion
Future work

Compiling 
environment

HPC Applications

Runtime system

Operating System

Hardware

Specific 
librairies

Thanks for your attention !
Any question ?
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Performance Models
Our History-based proposition

• Hypothesis
• Regular applications

• Execution time independent from data content

– Static Flow Control

• Consequence
• Data description fully characterizes tasks

• Example: matrix-vector product

– Unique Signature : ((1024, 512), 1024, 1024)

– Per-data signature

– CRC(1024, 512) = 0x951ef83b

– Task signature

– CRC(CRC(1024, 512), CRC(1024), CRC(1024)) = 0x79df36e2

1024

512 1024x 1024=
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Performance Models
Our History-based proposition

• Generalization is easy
• Task f(D1, … , Dn)

• Data
– Signature(Di) = CRC(p1, p2, … , pk)

• Task ~ Series of data
– Signature(D1, ..., Dn) = CRC(sign(D1), ..., sign(Dn))

• Systematic method
• Problem independent

• Transparent for the programmer

• Efficient
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Evaluation
Example: LU decomposition

• Faster 

• No code change !

• More stable

 

(16k x 16k) (30k x 30k)

ref. 89.98 ± .2 97 130.64 ± .1 66

1st iter 48.31 96.63

2nd iter 103.62 130.23

3rd iter 103.11 133.50

≥ 4 iter 103.92 
± .0 46

135.90 ± .0 00

Speed (GFlop/s)

• Dynamic calibration

• Simple, but accurate
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