

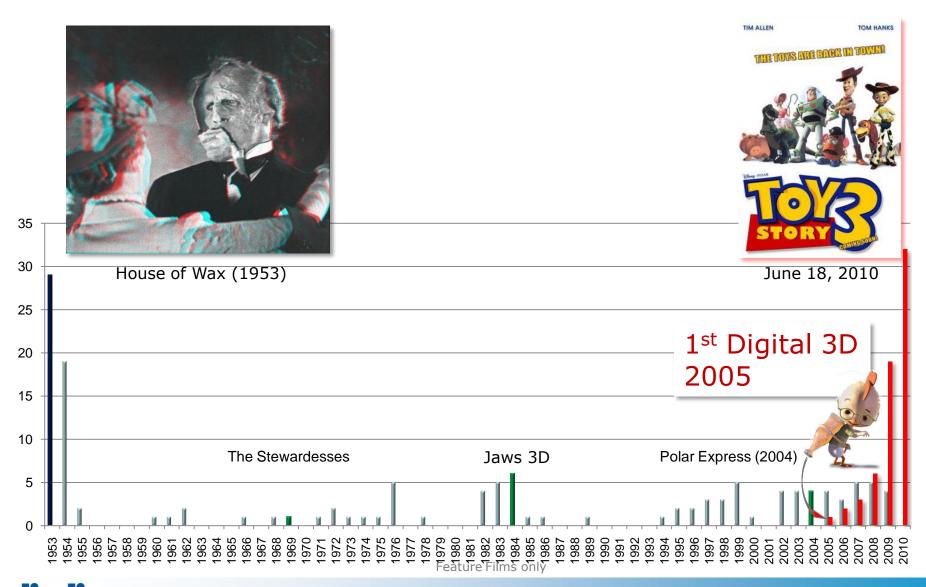
helps companies find growth opportunities, create winning strategies & business plans in the digital entertainment value chain.

Services include strategic consulting and market analysis with an understanding of the industry value chain and technologies.

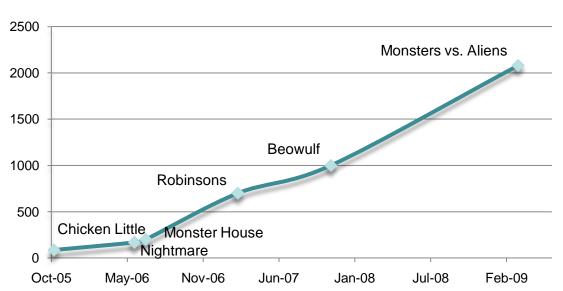
digdia.com

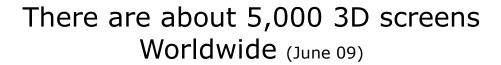
(dĭj-dēa) helping companies find opportunities empowered by digital media

Digital 3D


From Theater to Home

Why Now & How it Works


Rev B Image: Pocoyo


Why Now & Why This Time?

The Number of 3D Screens Grow

\$60M B.O. (as of 9/25) #1 for first two weeks

Digital Cinema Enabled 3D

But, 3D is now a Catalyst for Digital Cinema

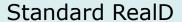
- Monster House (2006) x 4 2D Box Office
- Beowulf (2007) x 3.1, (x 12 in Russia)
- Hannah Montana (2008) x 3.9*
- Journey to the Center of the Earth (2008) x 3.7
- Monsters vs. Aliens (2009) x 3.1

3D Screens typically demand \$3.50 to \$5 premium over 2D

Live 3D Events go for 2x to 5x normal ticket prices, sell more concessions, and put butts in seats mid-week.

* Estimated multiple based on comparison with High School Musical 3 (2009). (IMDbPro)

The Theater



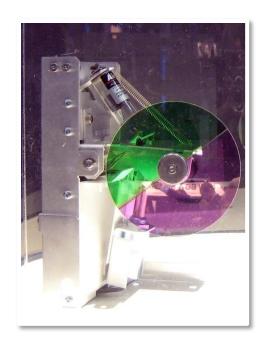
Theater in Eindhoven, NL

The 3D Projector - Polarized

RealD XL

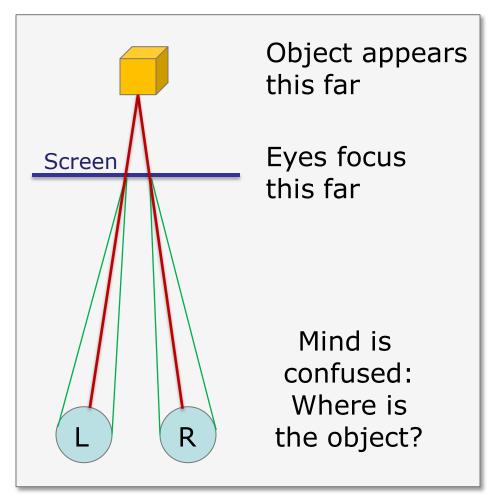
RealD w/Sony 4K

masterImage


- Circularly polarized (head can tilt)
- Silver screen to preserve polarization
- RealD XL uses wasted light 30% efficient
- RealD Sony 4K overlays two 2K images
- masterImage
- Xpand uses active glasses

XpanD

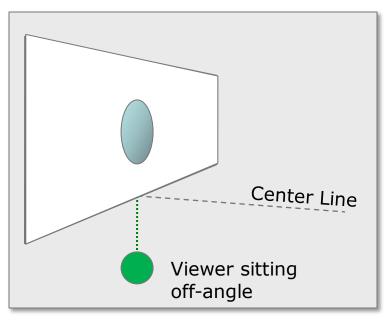
The 3D Projector - Spectrum



Left Right

- Dolby puts spinning filter between light and DLP to offset RGB
- Existing Matte White screen can be used
- Glasses use 50-layers of film and are more expensive (~\$23)
- Glasses are washed and reused
- Slightly less ghosting than polarized system
- ~15% efficient

Vergence Accommodation Conflict



Marty Banks, Univ. of Calif. Berkeley study

- A prime source of eye strain (headaches)
- Percival's Zone of Comfort is subjective acceptable VAC range
- Theory: if conflict times are kept short, strain is minimized.
- Images can be "adjusted" to minimize this problem.
 GPU is needed in Post or in Real Time.

Keystone Perception/Correction

Marty Banks, Univ. of Calif. Berkeley study

- The mind corrects for keystone distortion when viewing a 2D picture.
- The mind does not correct for this distortion when viewing a stereo 3D picture
- Is there an opportunity here?

Luminance

Issue:

- 3D optics throws away light
- SMPTE suggests 15 Ft-L luminance
- Most 3D projection are closer to 3 Ft-L

Solutions:

- Adjust Image Color in Post and/or with LUTs in projector
- Mechanical solutions:
 - Use higher gain screen
 - Crank up the bulb (shorter life)
 - Use smaller screen (<40')
 - Use optical doubling

Barco stacked projectors

LUT = Look Up Table Ft-L = Foot Lamberts

3D Sound Systems

IOSONO in Mann 6 (L.A.) 380 speakers

Sound can be 3D, too.

IOSONO system creates
32 virtual sound sources for
each seat in the theater

Audio may be a different kind of application for GPU technology

Live 3D Alternative Content

NBA All Stars

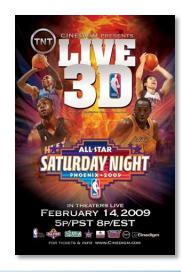
3ALITY Cameras

IDC Satellites

Cinedigm Theater Network

86 Screens

Doremi Server



Turner Production Truck
3ality/Quantel Postproduction
Sensio encoding

\$20/Seat + Beer (one example)

Live 3D Ads & Games

3D Advertisements are starting to show up.

Generating such images during a live event can be a GPU challenge.

Live 3D Games in Theaters

Production

3D Camera Rig used to shoot

(1954 Universal)

Cameras

Cameras may have Adjustable or Fixed:

Convergence

Interocular

21st Century 3D

(Panasonic cameras)

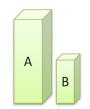
Convergence Interaxial

(Sony cameras)

False Perspective Issue

Q: How do you get a 5'6"
Elijah Wood to look like a 3'5" Hobbit while standing next to the 5'11" wizard played by Ian McKellen?

A: Use False Perspective


Camera and actors setup

A

B

But, with 3D cameras, False Perspective doesn't work

As seen on 2D screen

So, one can use Dimensionalization

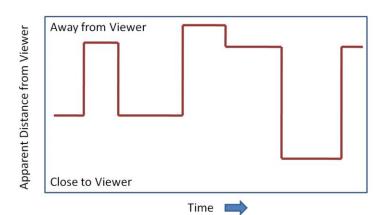
Post

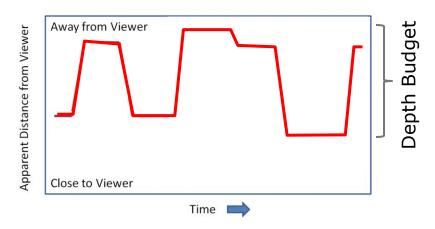
Da Vinci Digital Intermediate Station

Dimensionalization

2D movies can be made to look 3D

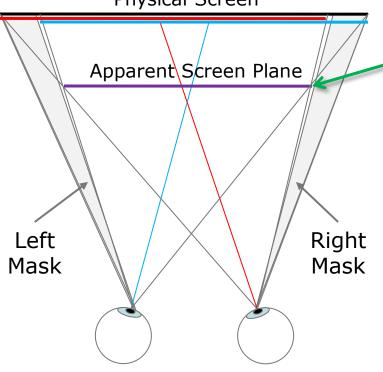
- 1. Each object is digitized
- 2. Objects are "moved" forward and back as Director wishes
- 3. Closer objects are given depth and shape as needed
- 4. Hidden images are reconstructed
- 5. Final adjustments are made


Dimensionalization is perhaps the most challenging imaging task.


Many steps are semiautomated,

but improvements still are needed.

Depth Budget & Grading



- DPs and Editors need to avoid rapid extreme depth changes to avoid eye strain
- Older people take longer to adjust
- "Fading" between depths can help
- "Depth Grading" in Post can help
- Can be challenging for 3D Live events
- Automated tools are still needed.

Floating Window

Physical Screen

Masks are exaggerated to show process

Floating Window

- Avoids L-R image conflicts at the sides
- Image is floated towards viewer
- L image masks left side;
 R image masks right side.

Opportunity: Imaging tools to help manage Floating Windows.

Ghosting

- "Ghosting" or crosstalk between L & R images is most evident in high contrast areas of a scene.
- Polarized systems have the most ghosting, but other systems have ghosting, too.

Most ghosting can be removed by a "ghost-busting" step.

Colors are adjusted on one image to offset crosstalk from the other image.

Before R

seen from R eye

Ghost-busted R (L is also ghost-busted)

seen from R eye

Post Tools

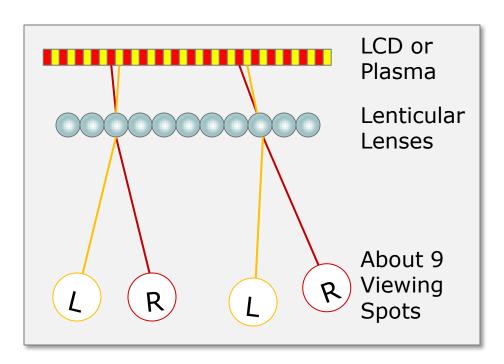
Quantel 3D Station

 Animation tools are mostly custom (example RenderMan, Pixar)

- Editing and DI tools are 2D oriented with shoehorned 3D features
- Tools designed with 3D in mind are just starting to appear

Render farm at ILM

Home



3D TV

	DLP Active Shutter	Plasma Active Shutter	LCD Active Shutter	LCD Micro Polarized	DLP Projector Active Shutter
Samsung	✓	✓	✓		
LG		✓			
Mitsubishi	✓				
Hyundai				✓	
Panasonic		✓			
Sony			✓	✓	
ViewSonic			✓		✓
InFocus					✓

Autostereo 3D TV

- Philips licenses their Lenticular Lens system to a number of display companies (but no longer markets their own 3D displays)
- Alioscopy also has a Lenticular Lens system for their own displays

These displays are used primarily for Digital Signage. Example: 3D Movie Ads in Theaters

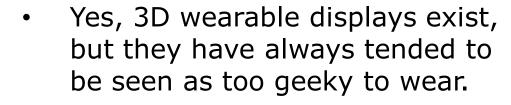
Live Interactive 3D Digital Signage is coming

3D PC & Games

- 3D computer monitors are used for Games and Industrial applications
- As 3D content becomes available* on the web, people will watch 3D videos from their PC
- When can we expect 3D Web-to-TV?

* 3D anaglyph YouTube already exists

nVidia RF actuated Active Shutter Glasses

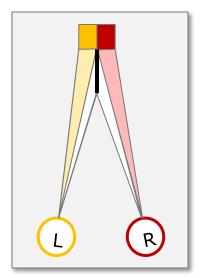


Sony PS 3

3D Eyewear

 Sony and others are trying to make wearable displays fashionable.

Tom Hanks with Sony wearable 3D displays.

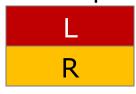

Viewer sees 3D images and what is around them

Mobile 3D

- 3D displays on phones and portable TV devices exist
- These displays are auto-stereoscopic 3D using "Parallax Barrier", which is good for only one viewer
- Fujifilm is introducing a 3D camera & picture frame, and is said to be working on a printer for making lenticular prints
- Challenge is GPU vs. power

ETRI 3D DMB Receiver

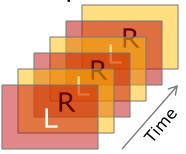
3Dinlife
Digital Frame



Fujifilm 3D Camera

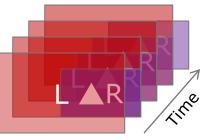
3D Formats to the Home

Spacial Compression



100% Bandwidth, 50% Resolution

GPU must Encode and Decode


Anaglyph

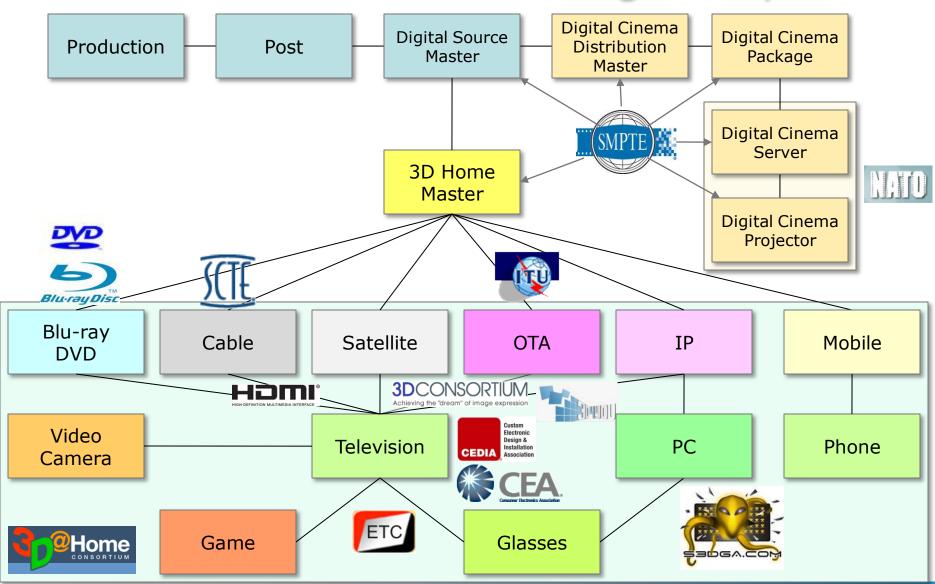
100% Bandwidth, Distorted Image

2D + Delta

(Metadata)

140 to 170%
Bandwidth,
100% Resolution
(or some compromise)

Display Size vs. Interocular


How best to compensate content for screen size?

Interocular Image adjustments may be needed in real time.

Some Home 3D Working Groups

Services include strategic consulting and market analysis

A report will be available on 3D at:

digdia.com

Please leave contact information for a 15% discount

