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Outline

Single-thread performance is no longer scaling

Performance = Parallelism

Efficiency = Locality

Applications have lots of both

Machines need lots of cores (parallelism) and an 

exposed storage hierarchy (locality)

A programming system must abstract this

The future is even more parallel



Single-threaded processor 

performance is no longer scaling



Mooreôs Law

In 1965 Gordon Moore predicted 

the number of transistors on an 

integrated circuit would double 

every year.

Later revised to 18 months

Also predicted L3 power scaling 

for constant function

No prediction of processor 

performance

Moore, Electronics 38(8) April 19, 1965



More
Transistors

More
Value

More
Performance

Architecture Applications



The End of ILP Scaling 
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Explicit Parallelism is Now Attractive
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Single-Thread Processor 

Performance vs Calendar Year
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Single-threaded processor 

performance is no longer scaling

Performance = Parallelism



Chips are power limited

and most power is spent moving data



CMOS Chip is our Canvas

20mm



4,000 64b FPUs fit on a chip
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0.1mm2

50pJ/op

1.5GHz



Moving a word across die = 10FMAs

Moving a word off chip = 20FMAs
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Chips are power limited

Most power is spent moving data

Efficiency = Locality



Performance = Parallelism

Efficiency = Locality



Scientific Applications

Large data sets

Lots of parallelism

Increasingly irregular (AMR)

Irregular and dynamic data structures

Requires efficient gather/scatter

Increasingly complex models

Lots of locality

Global solution sometimes bandwidth 

limited

Less locality in these phases



Performance = Parallelism

Efficiency = Locality

Fortunately, most applications have lots of both.

Amdahlôs law doesnôt apply to most future applications.



Exploiting parallelism and locality requires:

Many efficient processors

(To exploit parallelism)

An exposed storage hierarchy

(To exploit locality)

A programming system that abstracts this



Tree-structured machines
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Optimize use of scarce bandwidth

Provide rich, exposed storage hierarchy

Explicitly manage data movement on this hierarchy

Reduces demand, increases utilization
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Fermi is a throughput computer

512 efficient cores

Rich storage 

hierarchy
Shared memory

L1
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GDDR5 DRAM
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Fermi



Avoid Denial Architecture

Single thread processors are in denial about parallelism 

and locality

They provide two illusions:

Serial execution - Denies parallelism

Tries to exploit parallelism with ILP - inefficient & limited 

scalability

Flat memory - Denies locality

Tries to provide illusion with caches ïvery inefficient 

when working set doesnôt fit in the cache

These illusions inhibit performance and efficiency



CUDA Abstracts the GPU Architecture

Programmer sees many cores and 

exposed storage hierarchy, but is isolated 

from details.



CUDA as a Stream Language

Launch a cooperative thread array

foo<<<nblocks, nthreads>>>(x, y, z) ;

Explicit control of the memory hierarchy

__shared__ float a[SIZE] ;

Also enables communication between threads of a 

CTA

Allows access to arbitrary data within a kernel



Examples

146X

Interactive 

visualization of 

volumetric white 

matter connectivity

36X

Ionic placement for 

molecular dynamics 

simulation on GPU

19X

Transcoding HD video 

stream to H.264

17X

Fluid mechanics in 

Matlab using .mex file 

CUDA function

100X

Astrophysics N -body 

simulation

149X

Financial simulation 

of LIBOR model with 

swaptions

47X

GLAME@lab: an M-

script API for GPU 

linear algebra

20X

Ultrasound medical 

imaging for cancer 

diagnostics

24X

Highly optimized 

object oriented 

molecular dynamics

30X

Cmatch exact string 

matching to find 

similar proteins and 

gene sequences


