
The Future of GPU Computing

Bill Dally

Chief Scientist & Sr. VP of Research, NVIDIA

Bell Professor of Engineering, Stanford University

November 18, 2009



The Future of Computing

Bill Dally

Chief Scientist & Sr. VP of Research, NVIDIA

Bell Professor of Engineering, Stanford University

November 18, 2009



Outline

Single-thread performance is no longer scaling

Performance = Parallelism

Efficiency = Locality

Applications have lots of both

Machines need lots of cores (parallelism) and an 

exposed storage hierarchy (locality)

A programming system must abstract this

The future is even more parallel



Single-threaded processor 

performance is no longer scaling



Mooreôs Law

In 1965 Gordon Moore predicted 

the number of transistors on an 

integrated circuit would double 

every year.

Later revised to 18 months

Also predicted L3 power scaling 

for constant function

No prediction of processor 

performance

Moore, Electronics 38(8) April 19, 1965



More
Transistors

More
Value

More
Performance

Architecture Applications



The End of ILP Scaling 

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

Dally et al., The Last Classical Computer, ISAT Study, 2001



Explicit Parallelism is Now Attractive

1e-4

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1980 1990 2000 2010 2020

Perf (ps/Inst)

Linear (ps/Inst)

30:1

1,000:1

30,000:1

Dally et al., The Last Classical Computer, ISAT Study, 2001



Single-Thread Processor 

Performance vs Calendar Year

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
. 

V
A

X
-

25%/year

52%/year

20%/year

Source: Hennessy & Patterson, CAAQA, 4th Edition



Single-threaded processor 

performance is no longer scaling

Performance = Parallelism



Chips are power limited

and most power is spent moving data



CMOS Chip is our Canvas

20mm



4,000 64b FPUs fit on a chip

20mm
64b FPU

0.1mm2

50pJ/op

1.5GHz



Moving a word across die = 10FMAs

Moving a word off chip = 20FMAs

20mm
64b FPU

0.1mm2

50pJ/op

1.5GHz

64b 1mm 

Channel

25pJ/word
1

0
m

m
 2

5
0

p
J
, 

4
c
y
c
le

s

64b Off-Chip 

Channel

1nJ/word

64b Floating Point



Chips are power limited

Most power is spent moving data

Efficiency = Locality



Performance = Parallelism

Efficiency = Locality



Scientific Applications

Large data sets

Lots of parallelism

Increasingly irregular (AMR)

Irregular and dynamic data structures

Requires efficient gather/scatter

Increasingly complex models

Lots of locality

Global solution sometimes bandwidth 

limited

Less locality in these phases



Performance = Parallelism

Efficiency = Locality

Fortunately, most applications have lots of both.

Amdahlôs law doesnôt apply to most future applications.



Exploiting parallelism and locality requires:

Many efficient processors

(To exploit parallelism)

An exposed storage hierarchy

(To exploit locality)

A programming system that abstracts this



Tree-structured machines

P P P P

L1 L1 L1 L1

Net

L2

Net

L3



Optimize use of scarce bandwidth

Provide rich, exposed storage hierarchy

Explicitly manage data movement on this hierarchy

Reduces demand, increases utilization

Compute

Flux

States

Compute

Numerical

Flux

Element

Faces

Gathered

Elements

Numerical

Flux

Gather

Cell

Compute

Cell

Interior

Advance

Cell

Elements

(Current)

Elements

(New)

Read-Only Table Lookup Data

(Master Element)

Face

Geometry

Cell

Orientations

Cell

Geometry



Fermi is a throughput computer

512 efficient cores

Rich storage 

hierarchy
Shared memory

L1

L2

GDDR5 DRAM

D
R

A
M

 I
/F

H
O

S
T

 I
/F

G
ig

a
 T

h
re

a
d

D
R

A
M

 I
/F

D
R

A
M

 I/F
D

R
A

M
 I/F

D
R

A
M

 I/F
D

R
A

M
 I/F

L2



Fermi



Avoid Denial Architecture

Single thread processors are in denial about parallelism 

and locality

They provide two illusions:

Serial execution - Denies parallelism

Tries to exploit parallelism with ILP - inefficient & limited 

scalability

Flat memory - Denies locality

Tries to provide illusion with caches ïvery inefficient 

when working set doesnôt fit in the cache

These illusions inhibit performance and efficiency



CUDA Abstracts the GPU Architecture

Programmer sees many cores and 

exposed storage hierarchy, but is isolated 

from details.



CUDA as a Stream Language

Launch a cooperative thread array

foo<<<nblocks, nthreads>>>(x, y, z) ;

Explicit control of the memory hierarchy

__shared__ float a[SIZE] ;

Also enables communication between threads of a 

CTA

Allows access to arbitrary data within a kernel



Examples

146X

Interactive 

visualization of 

volumetric white 

matter connectivity

36X

Ionic placement for 

molecular dynamics 

simulation on GPU

19X

Transcoding HD video 

stream to H.264

17X

Fluid mechanics in 

Matlab using .mex file 

CUDA function

100X

Astrophysics N -body 

simulation

149X

Financial simulation 

of LIBOR model with 

swaptions

47X

GLAME@lab: an M-

script API for GPU 

linear algebra

20X

Ultrasound medical 

imaging for cancer 

diagnostics

24X

Highly optimized 

object oriented 

molecular dynamics

30X

Cmatch exact string 

matching to find 

similar proteins and 

gene sequences


