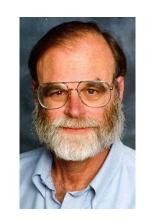


Problem Statement

- Data sets reaching 100s of TB, soon PBs
- Large data sets are here, solutions are not
- National infrastructure does not match needs
 - Facilities focused primarily on CPU cycles
- Even HPC projects choking on IO
- Scientists are "cheap", also pushing to the limit
- A similar vacuum led to BeoWulf ten years ago

Amdahl's Laws

Gene Amdahl (1965): Laws for a balanced system


- i. Parallelism: max speedup is S/(S+P)
- ii. One bit of IO/sec per instruction/sec (BW)

 <u>Amdahl number</u>
- iii. One byte of memory per one instruction/sec (MEM)

Modern multi-core systems move farther away from Amdahl's Laws (Bell, Gray and Szalay 2006)

- Distributed SQLServer cluster/cloud
 - 50 servers, 1.1PB disk, 500 CPU
 - Connected with 20 Gbit/sec Infiniband
 - Linked to 1500 core compute cluster
 - Extremely high speed seq I/O
 - Each node 1.5GB/s, 1150W
- Cost efficient: \$10K/GBps
- Excellent Amdahl number: 0.56
- But: hitting the "power wall"!!!!

Solid State Disks (SSDs)

- Much higher throughput with lower power consumption
 - 250MB/s sequential read, 200MB/s sequential write
 - 1-2W peak power
- Incorporating SSDs to server designs
 - Scale-up
 - Install SSDs into existing high end servers
 - Quickly running out of PCI BW
 - Scale down
 - Amdahl Blade: one SSD per core
 - Ideal Amdahl number and IOPS ratio

Cyberbricks/Amdahl Blades

- Scale down the CPUs to the disks!
 - Solid State Disks (SSDs)
 - 1 low power CPU per SSD

- OCZ Vertex 120GB, 250MB/s read, 10,000 IOPS, \$360
- Power consumption 0.2W idle, 1-2W under load
- Low power motherboards
 - Intel dual Atom N330 + NVIDIA ION chipset 28W at 1.6GHz
- Combination achieves perfect Amdahl blade
 - 200MB/s=1.6Gbits/s ⇔ 1.6GHz of Atom

Building a Low Power Cluster

Szalay, Bell, Huang, Terzis, White (HotPower09 paper):

Evaluation of many different motherboard + SSD combinations

CPU

Chipset

	~) >	1.10 1101		o market t
	ASUS	EeeBox	N270	945GSE
N	Intel	D945GCLF2	N330	945GC
Sweet Spot	Zotac	Ion	N330	ION
	AxiomTek	Pico 820	Z530	US15W
	Alix	3C2	LX800	AMD

Model

System

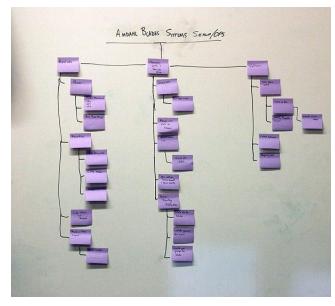
The ION Advantage

Zotac ION/ITX motherboard

- NVIDIA ION chipset for the Atom
- Supports 4GB of memory,
- PCI, 2xSATA channels (3 ports)
- 16x GPU cores
- Needs about 28-30W total
- Unified memory for Atom+GPU
- CUDA 2.2: "Zero Copy Option"

Our Hardware Configuration

- 36-node cluster using 1200W (same as one GW!)
- Zotac Atom/ION motherboards
 - 4GB of memory, N330 dual core Atom, 16 GPU cores
- Four rows of 9 nodes, different disk configurations


	C:	D:	<u>E:</u>
Row 1	SSD	SSD	SSD
Row 2	SSD	SSD	1TB
Row 3	SSD	1TB	1TB
Row 4	SSD	0.5TB	0.5TB

- Aggregate disk space 43.6TB
 - $63 \times 120GB SSD = 7.7 TB$
 - 27x 1TB Samsung F1 = 27.0 TB
 - − 18x.5TB Samsung M1= 9.0 TB

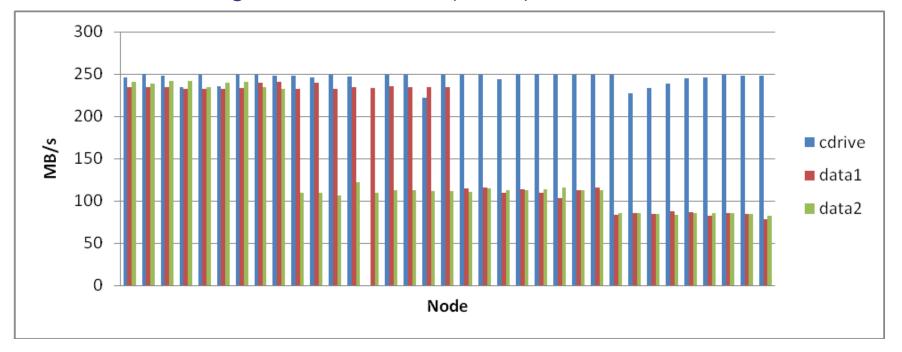
Software Used

- Windows 7 Release Candidate
- SQL Server 2008 Enterprise RTM
- SQLIO test suite
- PerfMon + SQL Performance Counters
- Built in Monitoring Data Warehouse
- SQL batch scripts for testing
- C# application with CUDA, driven from SQL Server
- DPV for looking at results

Data Layout

- Data derived from the SDSS database
- 1.2TB database table 'sliced' 36 ways, each replicated over three nodes
- Further 12 partitions pre-computed over the primary key and info stored on the head node
- Variable number of partitions used for a given job:
 - Dynamic load balancing

<u>Node</u>	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>
C Volume	A1	A2	А3	A4	A5	A6	A7	A8
Data 1	A2	А3	A4	A5	A6	Α7	A8	
Data 2	А3	A4	A5	A6	A7	A8		

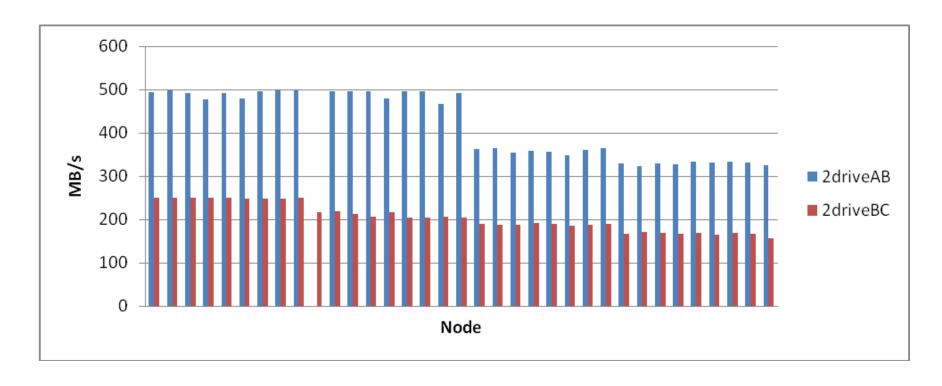

		<u>31</u>	<u>32</u>	<u>33</u>	<u>34</u>	<u>35</u>	<u>36</u>
• • •		A31	A32	A33	A34	A35	A36
	A31	A32	A33	A34	A35	A36	A1
A31	A32	A33	A34	A35	A36	A1	A2

Performance Tests

- Evaluate cluster performance
 - Try both pure SSD and hybrid nodes
 - Samsung F1 drives 1TB, 128MB/s at 7.5W
 - Samsung M1 drives 500GB, 85MB/s at 2.5W
- Run low level benchmarks
- Experiment with scalability, using SQL tests
- Compare real life apps, combining CUDA from within SQL Server
- "Photometric redshifts" for 300M galaxies from SDSS in 10 minutes, migrating an R module to CUDA and running it from SQL Server

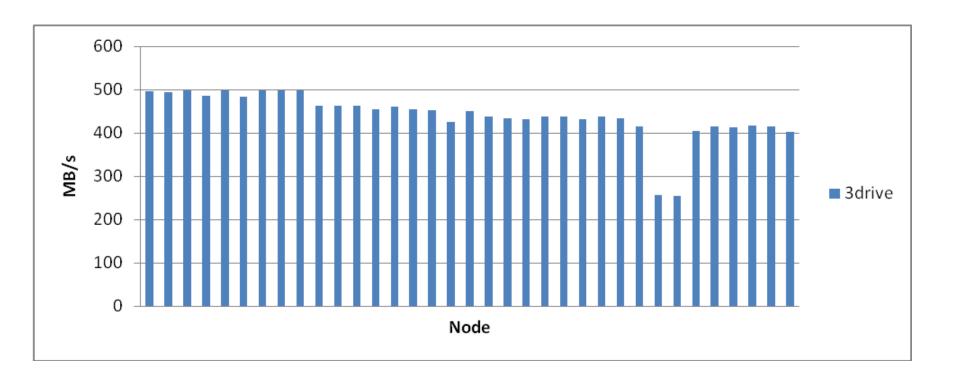
Single Drive IO Tests

- Performs as expected:
 - OCZ: 250MB/s (cdrive)
 - Samsung 1TB: 118MB/s (data1)
 - Samsung 500GB: 78MB/s (data2)

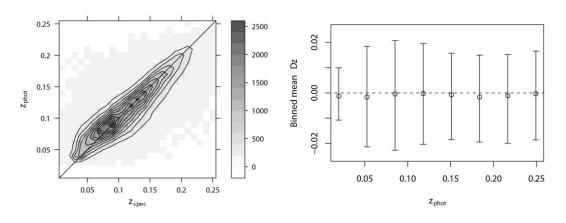


Two Drive IO Tests

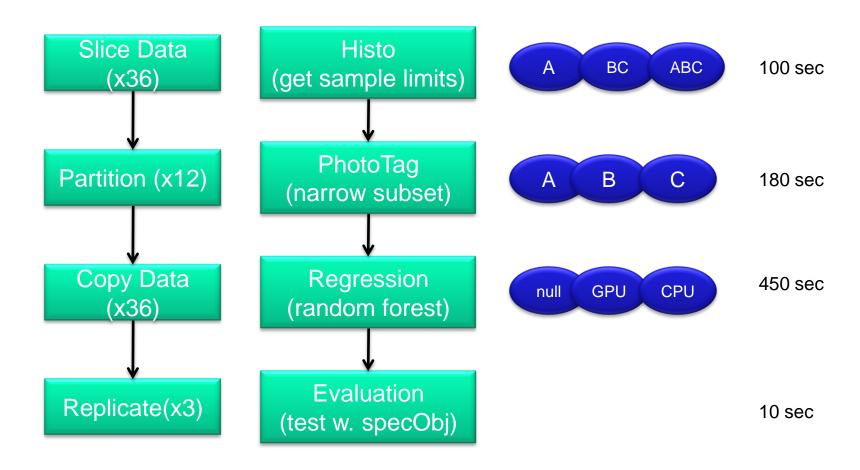
AB: Two SSDs max out at 500MB/s


AB: SSD+1TB: 365MB/s, SSD+0.5TB: 330MB/s

BC: 2SSD: 250MB/s, anything else: 160-200MB/s

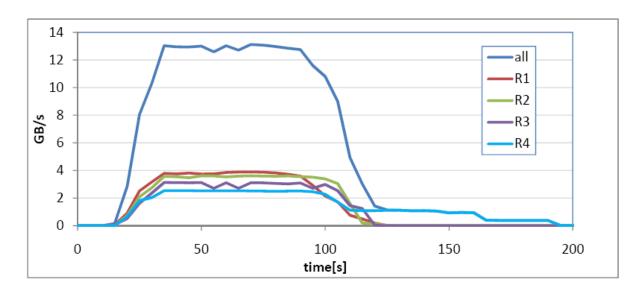

Three Drive IO Tests

- 3SSD: 500MB/s (no gain from 3rd drive)!
- SSD+2X: between 400 and 460MB/s!



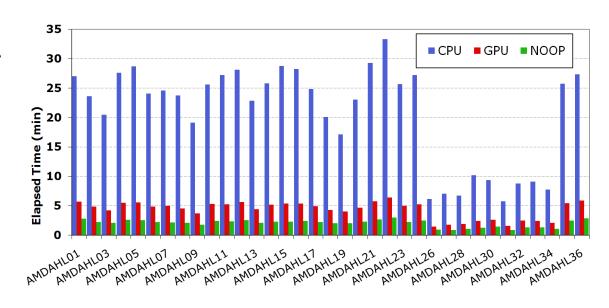
Photometric Redshifts

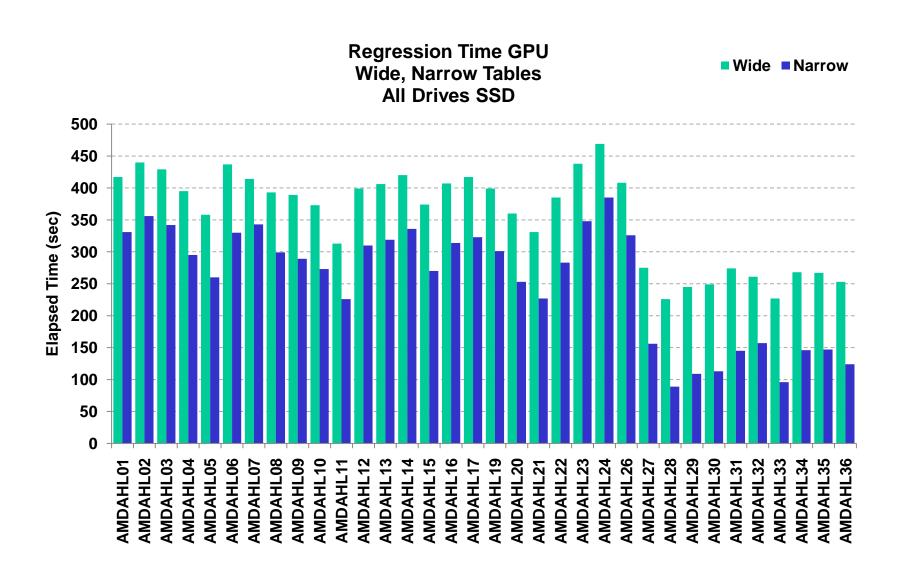
- Galaxies in SDSS have 5-band images
- Can be considered as a low resolution spectrum
 - → redshift → distance
- From a training set create regression trees
- Random Forest algorithm (Berman):
 - Use many tree-based regression estimators (20 here)
 - Average of the tree estimators is the forest estimator
 - Extremely robust
- 128M galaxies bright enough
- Soon more than 1B


Astronomy Test Workflow

For a data set of 544M objects =>128M galaxies (1.2TB)

Histogram Test


- Build histogram of 544 million objects from 1.2TB
- Reasonably complex selection criteria
- Distrubuted SQL query with dynamic load balancing
- Runs in 100 sec, average throughput: 13GB/sec
- SSD at 421MB/s, SSD+1TB at 397MB/s & 379 MB/s


Random Forest

- Three tests: IO only (NOOP), GPU, CPU
- Code developed in C#, with a wrapper around CUDA
- Lots of little 'traps', like tricking Windows into having a real monitor ("dongle"), SQL+CUDA now friends...
- Query:
 - 544M objects
 - CPU: 1500s
 - GPU: 300s!!
 - 10: 150s

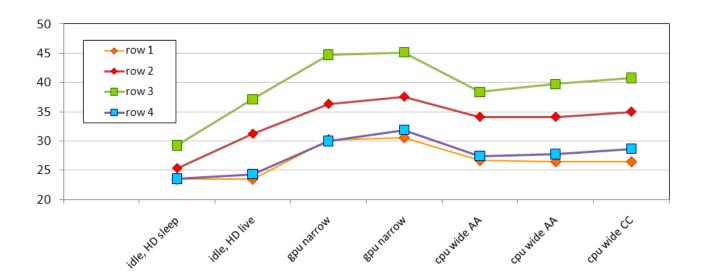
Wide and Narrow Tests

Comparisons

Test averages on the Amdahl cluster:

	NOOP	CPU	GPU	CPU/GPU	dC/dG
narrow	122	1252	259	4.67+-0.8	8.08+-0.8

For a typical partition (A02)


	NOOP	CPU	GPU	CPU/GPU	dC/dG
narrow	156	1530	331	4.62	7.85
wide	258	1570	417	3.76	8.25

Comparisons to GrayWulf (on partition A01):

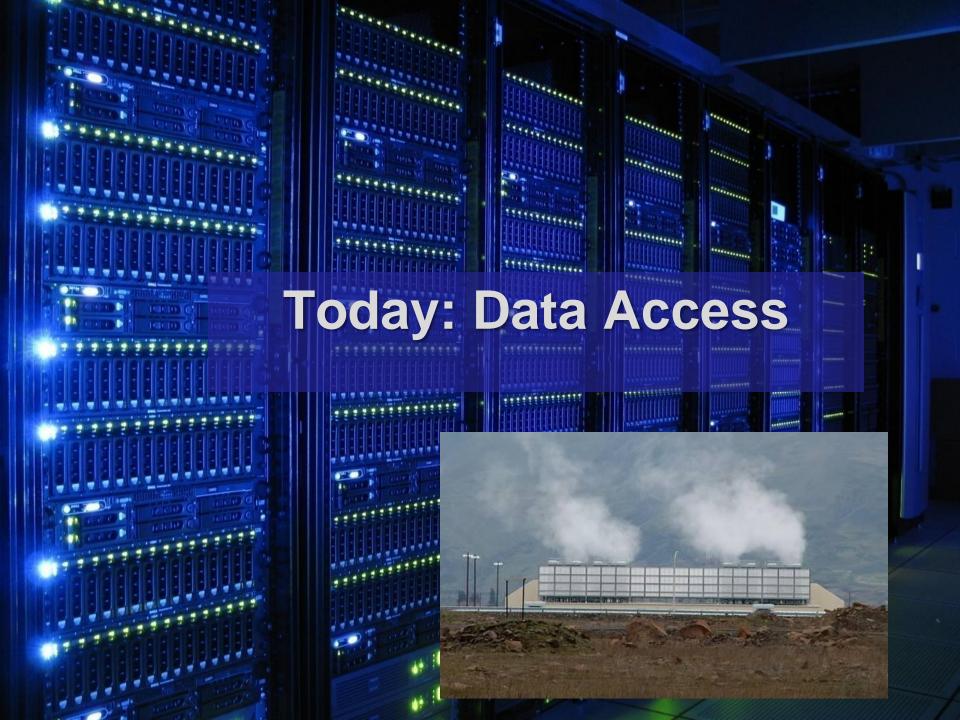
	Narrow				Wi	de		
	NOOP	CPU	GPU	delta	NOOP	CPU	GPU	delta
Amdahl01	156	1530	331	1374	258	1570	417	1312
GW	58	289		231	127	288		161
(G/A)	0.37	0.19	0.87	0.17	0.49	0.18	0.69	0.12

Power Consumption

- Total power between 885W and 1261W
- Lowest Row1 and Row4, highest Row3 (2x1TB)
- High GPU load contributes about 5W extra
- Little difference between lo and hi CPU loads

Conclusions

- 13 times more real sequential performance than a GrayWulf at a constant power!
- Hybrids give best tradeoff


```
1SSD + 2HD: 450MB/s 2.12TB 40W
```

2SSD + 1HD: 500MB/s 1.24TB 34W

- Real life, compute/data-intensive astronomy analysis in <5 mins lapse time, processing 1.2TB and doing 6.4B tree traversals
- GPUs: a factor of 8 speedup in a complex task

"Down-and-Out and Low on Power"

