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We focus on optimizing compute and memory-bandwidth-intensive GMM
computations for low-end, small-form-factor devices running on GPU-like
parallel processors. With special emphasis on tackling the memory
bandwidth issue that is exacerbated by a lack of CPU-like caches providing
temporal locality on GPU-like parallel processors, we propose modifications
to three well-known GMM computation reduction techniques. We find
considerable locality at the frame, CI-GMM, and mixture layers of GMM
compute, and show how it can be extracted by following a chunk-based
technique of processing multiple frames for every load of a GMM. On a
1,000-word, command-and-control, continuous-speech task, we are able to
achieve compute and memory bandwidth savings of over 60% and 90%
respectively, with some degradation in accuracy, when compared to existing
GPU-based fast GMM computation techniques.
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ASR Application Domains Summary

 Traditional fast GMM techniques map well onto GPU-like parallel

architectures.

 Significant temporal locality at every stage of GMM compute exists

and can be extracted without significant overhead.

 Three layers optimized:

 Frame layer

 CI-GMM layer

 Mixture layer

 Savings obtained:

 Compute: ~60%

 Memory bandwidth: ~90%

 These savings are critical for achieving high-quality speech

recognition on low-end GPU-like platforms.

Results*

* Kshitij Gupta, John D. Owens, “Three-Layer Optimizations for Fast GMM Computations on GPU-like Parallel Processors”, in 
Proceedings of the Eleventh Biannual Speech Recognition and Understanding Workshop, 2009.
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