
Assign one or
more
orientations to
each keypoint

Select stable
ones as
“keypoints”.
Assign pos &
size

Detect scale-
space extrema
to find potential
points

Temporal
Integration:

Majority voting to
display speed limit

in the last few
frames

Classification:
FFT correlations to
find the speed limit

in the candidate
location

Approach Detection
Runtime

Classification
Runtime

Total
Runtime♠

Success Rate♦ Mapping to GPU

Feature-
based

65 ms†

(15 fps)
N/A 65ms 80% detection CUDA is used to parallelize Sobel filtering, maximum-reduction, and vertices for voting patterns. The

graphics pipeline (OpenGL) is used to accelerate radial symmetry voting.

Template-
based

65 ms‡ 40 ms‡ 125 ms‡

(8 fps)
90% recognition with NO true negatives
and NO false positives

Mapping the pipeline to CUDA kernels was straightforward since all stages involve data-parallel
computation. CUFFT library is utilized.

SIFT-based N/A N/A 300 ms‡

(3 fps)
75% recognition with 4 true negatives
and 9 false positives

siftGPU[4] is used. Almost all stages which perform SIFT feature extraction are performed on the GPU.
Matching is also done on the GPU.

Feature-based approach provides faster detection. However, it
can only detect circular EU speed limit signs.

Template-based and SIFT-based approaches can recognize both
EU and rectangular US speed limit signs.

In feature-based approach, increasing the number of examined
candidates improves success rate, but increases the runtime.

CLAHE improves template-based success rate from 66% to 90%.
Also, it eliminates all true negatives and false positives.

In template-based approach, having more composite filters with
additional sizes and in-plane rotations improves success rate, but
increases runtime. Success rate can also be improved by
covering more out-of-plane rotations. This would also require
additional filters (and hence increase runtime), since having more
out-of-plane rotations in a single filter hurts its distinctiveness.

To improve the success rate of SIFT-based approach, image size
is doubled, initial Gaussian blur is reduced, and DoG treshold is
decreased (first two help recognizing small signs, third helps
recognizing low contrast signs). However, success rate is still low
since:
speed-limit signs lack complexity (small, no texture, simple
shapes and constant color regions) → small number of features
are extracted → often same number of matches are returned by
different templates
we can’t use CLAHE (creates too much noise that SIFT cannot
handle)

SIFT-based approach has the slowest runtime since it consists of
different stages which are computationally intensive and require
large GPU memory.

Template-based and SIFT-based approaches are good/bad at:

References

It is possible to combine different stages of alternative approaches
and generate hybrid pipelines.

Overall speed-limit sign recognition algorithms are mostly data-
parallel. Thus, GPU computing can be used to improve the
runtimes. This allows real-time processing even on resource-
constrained systems which cannot be achieved by CPU-based
implementations.

New video
frame

Replace above with
the GPU, which:
simplifies design
is cheap
is programmable

Speed-limit Sign Recognition with GPU Computing
Pınar Muyan-Özçelik*, Vladimir Glavtchev*§, Jeff Ota†, John D. Owens*
*University of California, Davis, †BMW Group Technology Office in Palo Alto, §NVIDIA Corporation in Santa Clara

Goal

We investigate the use of different
GPU-based implementations for
performing real-time speed limit sign
recognition on a resource-
constrained embedded system.

We juxtapose these alternative
approaches in terms of:
success rate
run-time
how well it can be mapped to the
GPU.

Also we determine:
best parameter combinations
(recognition rate vs performance)
advantages of using a GPU instead
of CPU
conditions which make a speed-limit
sign easy/hard to recognize

Motivation
Automotive tasks can be grouped as:
computer vision (most tasks)
signal processing
graphics
networking

GPUs are good fit for all the above
except the networking tasks.

Hence, this study serves as a proof
of concept for the use of GPU
computing in automotive tasks.

Implementation and Results
Template-based Approach
(extension of Javidi et al.’s approach [2])

[Courtesy of BMW and Opel]

SIFT-based Approach
(SIFT: Scale Invariant Feature Transform [3])

Preprocessing:
CLAHE to
enhance
contrast

Detection: FFT
correlations to

output candidate
location and size

detection
composite filters

w/ different
sizes

classification
composite filters
w/ different in-
plane rotations

Feature-based Approach

Templates:

CLAHE:
(Contrast Limited Adaptive Histogram
Equalization)

20
.
.
.

90

110
120
130

Composite
Filter:
(kth-law nonlinear
MACE filter
generated offline
w/ Matlab)

…

…(also rotate
around X-

axis)…

Pipeline:

[Before] [After]

† On Intel Core2 6300 @ 1.86GHz 1.7GB RAM and 128MB GeForce Quadro NVS 150M (1 SM) ♠Includes preprocessing time
‡ On Intel Core2 Duo T8300 @ 2.4GHz 4GM RAM and 128MB GeForce 8400M GS (2 SM) ♦Success rate on 18 minutes of footage with 121 EU speed limit signs

Conclusions

[1] N. Barnes and A. Zelinsky. Real-time radial symmetry for speed sign
detection. In IEEE Intelligent Vehicles Symposium (IV), pp. 566-571, June 2004.

[2] B. Javidi, M.-A. Castro, S. Kishk, and E. Perez. Automated detection and
analysis of speed limit signs. Technical Report JHR 02-285, University of
Connecticut, 2002.

[3] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

[4] C. Wu. SiftGPU: A GPU Implementation of Scale Invariant Feature Transform
(SIFT), http://cs.unc.edu/~ccwu/siftgpu, 2007.

Scene examples

Template-based SIFT-based

Template-based SIFT-based

Template-based SIFT-based

Template-based Template-based

SIFT-based different weather and road
conditions (E1, E2)
rejecting signs that have a
dominant difference (E3, E4)
recognizing signs with
insignificant modification (E5)

initially big signs
(E14)
very rotated signs
(E15)
partially occluded
signs (E16)

SIFT-based small signs (E12). avoids
failure due to viewpoint change
when sign gets closer (E13)
lots of noise (E8,E9). makes
CLAHE work (E10, E11)
recognition as a whole
(E6,E7). bad when part of sign
is occluded (E16)

very small signs
(E17)
big part of the sign
is missing (E18)
video is flickering
(all white scene
every other frame)

Pipeline:

Preprocessing:
Sobel edge
detect with

thresholding

New video
frame

Detection Step 1:
Radial symmetry
voting: outputs an

intensity map

Detection Step 2:
Maximum reduction

to find top speed
limit sign candidate

locations

[Input Image]

[Sobel result: detected edges]

[Radial symmetry voting results]

[Detected speed-limit signs]

Radial symmetry[1]
voting:

Pixels vote in the
direction of their
gradient. Votes

accumulate as they
overlap to form an

overall voting image.

Processor Core Config. Detection Runtime Execution Rate Speedup

Dual-Core Intel Atom 230 @ 1.6GHz 2 235 ms 4.25 fps --

Intel Core2 6300 @ 1.86GHz 2 130 ms 7.4 fps ~1.8X

NVIDIA GeForce 9200M GS 128MB 1 : 8 65 ms 15 fps ~3.6X

NVIDIA GeForce 8600 GTS 256MB 4 : 32 23 ms 43.5 fps ~10.2X

E1: country 80
80, 80

E2: snowy 60
60, 60

E3: no-U-turn
none, none

E5: stained 60
60, 60

E4: end of 50
none, none

E6: 2m width
none, 20

E7: 12t weight
none, 120

E8: motion blur 100
100, none

E9: part shade
30

30, none

E10: sun is
behind 60

60, none

E11: light beam
effect 120

120, none

E12: small 30
30, none

E13: large viewpoint change 100
100, 130

E14: initially big
60

none, 60

E15: very rotated
70

none, 70

E16: partially
occluded 70

none, 70

E17: very small 30
none, none

E18: big missing part 60
none, none

CLAHE improves recognition by enhancing
the contrast of the scene.

Pipeline:

[Courtesy of Actel]

New video
frame

Extract SIFT
features

Temporal
Integration:

Majority voting to
display speed limit

in the last few
frames

R
ec

og
ni

tio
n:

templates
represented by

their SIFT features
(generated offline)

Perform SIFT
matching to
find speed
limit in the
current frame

Ex
tr

ac
tin

g
SI

FT
 fe

at
ur

es
:

Generate
descriptor
(feature vector)
for each
keypoint to
provide
invariance to
viewpoint and
illumination
change

Detecting extrema:

[Gaussian pyramid]

[DoG pyramid]

[extrema:
maxima, minima]

SIFT keypoints:

[location] [scale and orientation]

[scene]

[scene with keypoints]

Template-based SIFT-based

	Slide Number 1

