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Summary
The merger of 2 black holes is expected to be a
common event in the universe. We perform a sta-
tistical (Monte-Carlo) analysis of an approximate
solution to the binary black hole inspiral problem
to find preferred system states before merger.
Using GPUs we achieve a speed-up of a factor 50
over a CPU solution making a large scale study
feasible on the NCSA Lincoln cluster with 96 Tesla
S1070 compute units.
Details: http://arxiv.org/abs/0908.3889

Black Hole (BH) Mergers

Orbiting black holes lose energy and angular mo-
mentum to gravitational radiation. This shrinks the
orbit and eventually merger occurs. During merger
up to 10% of the rest mass are radiated making this
the brightest event in the universe.

Post-Newtonian Approximation

The Post-Newtonian approximation is a series ex-
pansion of Einstein’s General Relativity valid for
slowly-moving, far-separated objects. For circular
inspirals one obtains a system of coupled ordinary
differential equations (ODEs) for the variables: or-
bital frequency ω, the individual spin vectors Si for
the 2 BHs, and the unit orbital angular momentum
vector L̂n.

Post-Newtonian Equations
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Parallel ODE Integration

To integrate the Post-Newtonian equations we use
a standard adaptive time-stepping ODE algorithm:
Dormand-Price. We choose the initial conditions
for the ODE integrations randomly. We then spawn
CUDA kernels to perform as many of the integra-
tions in parallel as possible.
Each integration uses its own adaptive time step.
For this problem the vast majority of inspirals can be
performed with a time-step of similar size until very
close to the end of integration. This makes potential
load-balancing issues over cores much simpler.
// compute r i g h t hand s i d e ( rhs ) o f ODE
__global__ void ode_rhs ( s t a t e )

// i n t e g r a t e the ODEs
void i n t e g r a t e ( init ia l_state_and_params ) {

a l locate_gpu_storage ( . . . ) ;
while ( all_omega>al l_omega_final ) {

ode_rhs<<<nBlocks_rhs , nThreads>>>(...);
checkCUDAError ("first ode_rhs call" ) ;
interm_1<<<nBlocks_interm , nThreads>>>(...);
. . . // more in t e rmed ia t e va lue s & rhs c a l l s
ad just_t imesteps ( . . . ) ;

}
transfer_from_gpu_to_host ( . . . ) ;

}

Pseudocode describing the parallel ODE integration.

Performance
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The plot shows the number of test runs per milli-
second that can be performed on the card as
the number of runs N is increased. The perfor-
mance levels off at around 2.6 inspirals/ms for N ≥
100, 000. The Tesla card we used in this study has
240 cores and the CUDA runtime can schedule the
extra threads efficiently which results in performance
improvement of a factor 50 over a single core Xeon
E5410 CPU in double precision.

Equal-mass, maximally spinning BHs

If the 2 BHs have equal mass m1 = 0.5 and are
maximally spinning χ1 = χ2 = 1 the system be-
haves predictively and a high level of correlation in
the scalar product of initial and final spin vectors
remains.
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Unequal-mass, low-spin BHs

If one moves away from the equal-mass case and
chooses fairly low spin magnitude then a richer struc-
ture appears. The parameters chosen for this figure
are m1 = 0.4, χ = 0.05. This case has sensitivity
on the initial and final orbital frequencies ωi, ωf .
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Conclusions

•We have implemented a parallel ODE integrator
in the NVIDIA CUDA environment and
integrated the post-Newtonian equations of
motion describing the inspiral of two black holes.

•GPUs provide an excellent environment for the
parallel integration of ODEs giving substantial
speed-ups over CPUs.

•We next plan to extend the initial studies
performed here to large-scale studies of the
7-dimensional inspiral phase-space with
production runs currently undertaken on the
NCSA Lincoln GPU cluster.

Further Information

Two talks will be presented at this conference:
1. John Silberholz. Session List 1441.
Friday, California Room, 1:30pm-2:00pm

2.Frank Herrmann. Session List 1402.
Friday, California Room, 2:00pm-2:30pm

Please see our paper [1]. A preprint is available at:
http://arxiv.org/abs/0908.3889

For follow-up questions feel free to contact us at
Frank Herrmann fherrman@umd.edu
John Silberholz josilber@umd.edu
Gustavo Guerberoff gguerber@gmail.com
Manuel Tiglio tiglio@umd.edu
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