QERSITJ,
Oe‘ S e

18

LAy

Q
s
TIRYLAS

What Is Flagon:

0 Flagon Is a library and a middle-ware framework
that allows use of NVIDIA CUDA In FORTRAN

° Flagon Is to ease programming on the GPU from
high level languages, including Fortran 9x, C++, and
Matlab

. Flagon is implemented on Intel Fortran on Linux,

Windows and MAC OS

Flagon Features:

o External CUDA kernel loaders and generic kernel
callers allow custom functions to be added and used
° Pointer like data structures that can be manipulated
on the host, used in function arguments etc
o Minimizes data transfers between host and device
° Multi-GPU communications
. Current integrated libraries
o CUBLAS/CUFFT
o CUDPP
o MPICH?2
o Matrix factorization: LU/QR

Flagon Framework:

. FORTRAN Layer

0 Device Variables (devVar) communicate with
lower levels

o Fortran interfaces and wrappers pass
parameters to C/C++ level

o May directly call CUBLAS/CUFFT library
functions

. MPI Layer
0 Launches multiple processes via MPICH2

o Each MPI process controls one GPU card

0 GPUs talk to their control processes while
messages exchange among the control
processes

University of Maryland Institute for Advanced Computer Studies

Fortran Level

l

MPI Easy Message Interface (Multi-GPUs)

|
DevObject

l |

Fortran — C wrapper

Interface CUBLAS
CUFFT
l Functionality
C/C++
C
CUDA
)

Device Kernels

 C/C++ Layer

0o Communicates with
CUDA kernels

o Setup function calls,
parameter passing to
kernels

o Module management of

external functions
« CUDA Layer

o0 Performs operations on

the device

Flagon Device Variables:

devVar Structure

Device Pointer
Point to device memory address

Device Data Type

Data type stored on the device

Device Status
Allocation status on the device

Device Dimensions

X,Y,Z dimensions of vector or matrix on
the device

Device Leading Dimensions

(R}, PRy leading dimensions of vector or
matrix on the device

User Instantiates device
variables in Fortran

Encapsulates parameters and
attributes of the data structure
transferred between host and
device

Tracks (via pointers) allocated
memory on the device

Stores data attributes (type and
dimensions) on the host and
device

Flagon Work-Cyecle:

Load Flagon
Library °
i B
Allocate device °
variables °
1
Memory transfer o
from host to device
1
Work
1 .
Memory transfers
from device to host
o

Compile and link library to user
Fortran code

Load library into memory

Allocate device variables and
copy host data to device

Work-cycle allows subsequent
computations to be performed
solely on the device (call CUDA
functions, etc)

Data transfer from device to host
when done

Discard/free data on the device

. FLAGON : Fortran-9X Library for GPU Numerics

Nall Gumerov, Yuancheng Luo, Ramani Duraiswami, Kate DeSpain, Bill Dorland, Q1 Hu

Using Flagon

e (Code conversion:

1.E+02

1.E+01

Time (S)

1.E-01

1.E-02
1.

1.E+00 -

Original Fortran Code
subroutine nlterms(isave.a,b,nl)

use com _module

complex dimension(:,:) ,intent(in) ::a.b
complex ,dimension(:,:) ,intent(out):: nl

integer :: isave

if(isave /= 1) then
kxaZ2=1kx+#*a
kyaZ=i1ky#*a
call fftwnd_£f77_one(plan_f kxa2 kxa2)
call fftwnd_f£f77_one(plan_f kya2 kyaZl)
endif

if(isave /= 2) then
Exb2=1kx*b
kyb2=iky+*b
call fftwnd_£f77_one(plan_f kxb2 kxb2)
call fftwnd_f77_one(plan_f , kyb2, fkyb2)
end if

nl=kxal+=kybZ-kxbZ+kyal
call fftwnd_f77_one(plan_b,nl , nl)

nl=nl#*scale

end subroutine nlterms

Modified Fortran Code

subroutine dev nlterms(isave . dv_a. dv _b.dv_nl)

use dv_com module
use mod devlbject

tvpe(devVar) .intent(in) :: dv_a.dv_b
tvpe(devVar) .intent (out):: dv_nl
integer :: 1isave

if{isave /= 1) then
call devf mull{dv_kxaZ dv_kyaZ,dv_ikx ,dv_iky.,a)
call devf_fft(dv_kxa2, fftplan)
call devf fft(dv_kya2 fftplan)

endif

if(isave /= 2) then
call devf mull{dv_kxb2, dv_kyb2,dv_ikx ,dv_iky,b)
call devf_fft(dv_kxb2 fftplan)
call devf fft(dv_kyb2, fftplan)

endif

call devf _mul2{dv_nl dv_kxaZ dv_kyb2,dv_kya2 dv_kxb2)
call devf_ifft(dv_nl fftplan)

—_ > —_ E] —_

end subroutine dv_nlterms

Example of code conversion using Flagon: Left: original Fortran-90 code; Right: Flagon code.

Easy to build custom functions

1. Method One

o Write the CUDA and C/C++ files to define custom functions
o Define the Fortran interfaces for these functions
o Call custom functions in Fortran code via the defined interface

2. Method Two

o Write compatible CUDA functions for Flagon
o Compile the [cuFile].cu into [cuFile].cubin

O Load [cuFile].cubin during runtime (call fc_LoadDevFunc()
fc_GetDevFuncPtr() devf gen pointwise full( )or call
devf explicit_execute( ))

Performance Summary

’, ,/
4 ’
— ’
a @
, ’

/, . ,
A
o000 ® ¢ a/b=25

2D MAD Simulations
(100 Time Steps in Pseudospectral Method)

E+01 1.E+02 1.E+03 1.E+04

N (equivalent grid (NxN))

1.E+04 .
FGP'05 Algorithm y=ax>.
(Iterative Solution of Dense RBF System) -
-
1.E+03 |
l'/ =bx?.
CPU .~ Y
1.E+02 - 1 /y
o & GPU
® 1.E+01 - A
= . @
1.E+00 - pe o
a/b=15
I' . ’l’
1.E-01 -
A P
1.E-02 2 |
1.E+02 1.E+03 1.E+04 1.E+05
Number of Sources, N

http://sourceforge.net/projects/flagon/



