Energy efficient computing on Embedded and Mobile devices

Nikola Rajovic, Nikola Puzovic, Lluis Vilanova, Carlos Villavieja, **Alex Ramirez**

A brief look at the (outdated) Top500 list

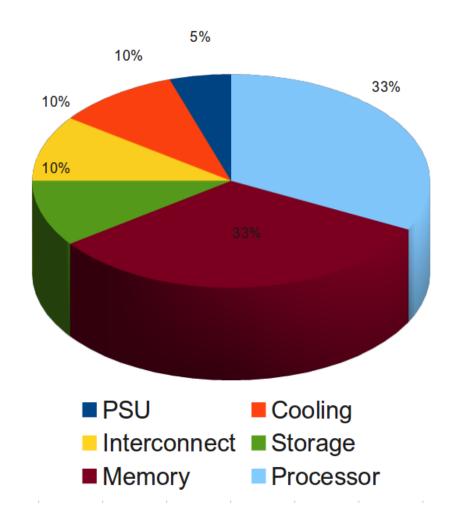
Rank	Site	Computer
1	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu
2	National Supercomputing Center in Tianjin China	Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C NUDT
3	DOE/SC/Oak Ridge National Laboratory United States	Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray Inc.
4	National Supercomputing Centre in Shenzhen (NSCS) China	Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla C2050 GPU Dawning
5	GSIC Center, Tokyo Institute of Technology Japan	TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows NEC/HP
6	DOE/NNSA/LANL/SNL United States	Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.
7	NASA/Ames Research Center/NAS United States	Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 3.0/Xeon 5570/5670 2.93 Ghz, Infiniband SGI
8	DOE/SC/LBNL/NERSC United States	Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.
9	Commissariat a l'Energie Atomique (CEA) France	Tera-100 - Bull bullx super-node S6010/S6030 Bull SA
10	DOE/NNSA/LANL United States	Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM

- Most systems are built on general purpose multicore chips
 - Backwards compatibility
 - Programmer productivity

A brief look at the (soon to be outdated) Green500 list

Green500 Rank MFLOPS/W		Site*	Computer*	
1	2097.19	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 2	
2	1684.20	IBM Thomas J. Watson Research Center	NNSA/SC Blue Gene/Q Prototype 1	
3	1375.88	Nagasaki University	DEGIMA Cluster, Intel i5, ATI Radeon GPU, Infiniband QDR	
4	958.35	GSIC Center, Tokyo Institute of Technology	HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU, Linux/Windows	
5	891.88	CINECA / SCS - SuperComputing Solution	iDataPlex DX360M3, Xeon 2.4, nVidia GPU, Infiniband	
<u>6</u>	824.56	RIKEN Advanced Institute for Computational Science (AICS)	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect	
7	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	
8	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	
9	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	
10	718.13	Universitaet Frankfurt	Supermicro Cluster, QC Opteron 2.1 GHz, ATI Radeon GPU, Infiniband	

- Most of the Top10 systems rely on accelerators for energy efficiency
 - ATI GPU
 - Nvidia GPU
 - IBM PowerXCell 8i



Some initial assertions

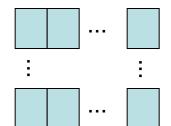
You may disagree, but bear with me

. . .

- Power distribution
 - 5% Power Supply
 - 10% Cooling
 - Direct water
 - 10% Interconnect
 - Not always active
 - 10% Storage
 - Not always active
 - 32.5% Memory
 - 32.5% Processor

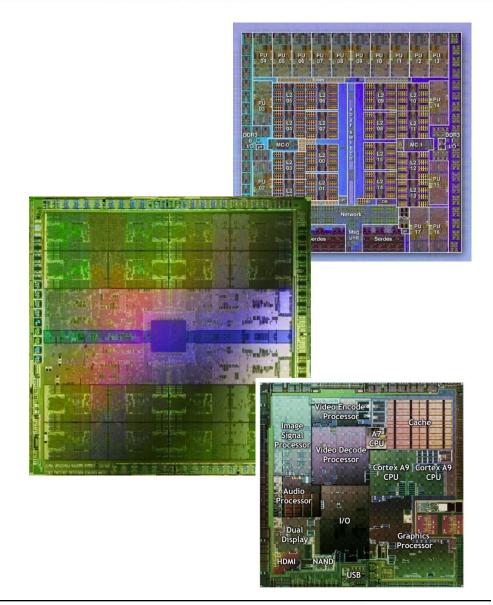
Now, some arithmetic (and some assumptions)

- Objective: 1 EFLOPS on 20 MWatt
- Blade-based multicore system design
 - 100 blades / rack
 - 2 sockets / blade
 - 150 Watts / socket
- CPU
 - 8 ops/cycle @ 2GHz = 16 GFLOPS
- 1 EFLOPS / 16 GFLOPS
 - 62.5 M cores
- 32% of 20 MWatt = 6.4 MWatt
 - 6.4 MWatt / 62.5 M cores
 - 0.10 Watts / core
- 150 Watt / socket
 - 1500 cores / socket
 - 24 TFLOPS / socket

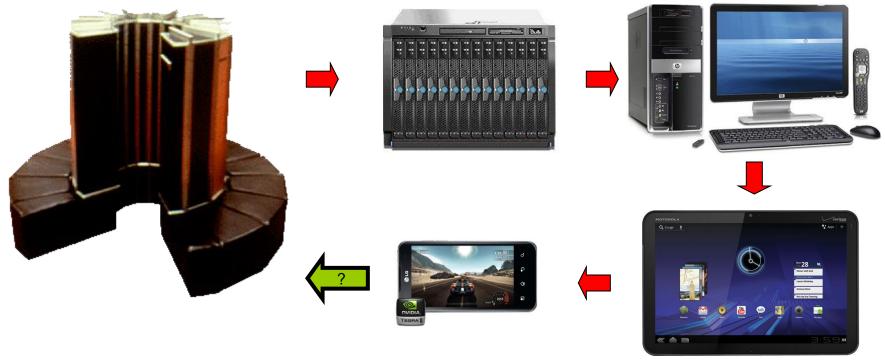

Multi-core chip: 150 Watts 24 TFLOPS 16 GFLOPS / core 1500 cores / chip 0.10 Watts / core

100 compute nodes 200 chips 300.000 cores **4.8 PFLOPS**

72 Kwatts / rack

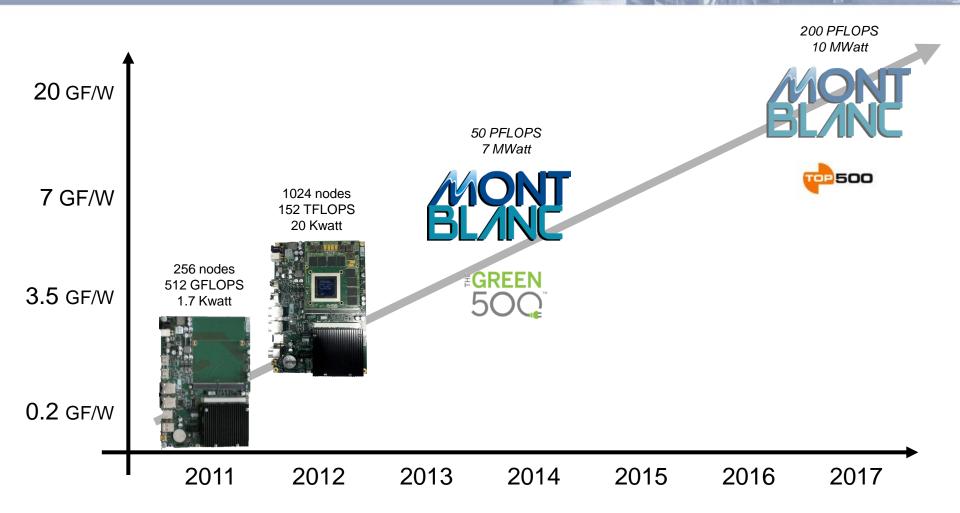

Exaflop system:

210 racks 21.00 nodes 62.5 M cores 1.000 PFLOPS 20 MWatts


Where are we today?

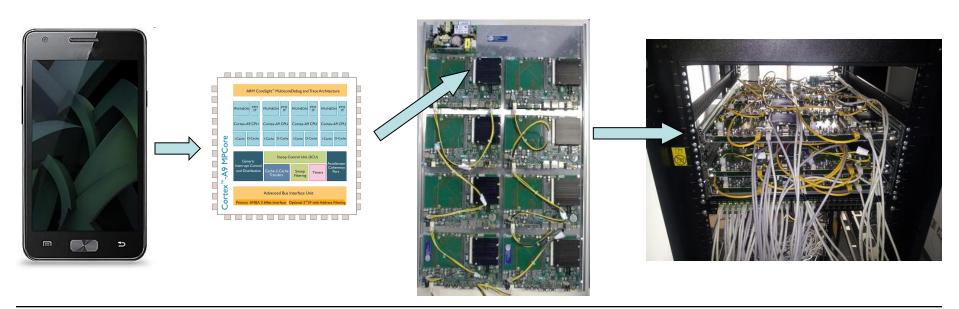
- IBM BG/Q
 - 8 ops/cycle @ 1.6 GHz
 - 16 cores / chip
 - 16K cores / rack
 - ~2.5 Watt / core
- Fujitsu Ultrasparc VIIIfx
 - 8 ops / cycle @ 2GHz
 - 8 cores / chip
 - 12 Watts / core
- Nvidia Tesla C2050-2070
 - 448 CUDA cores
- ARM Cortex-A9
 - 1 ops / cycle @ 800 MHz 2 GHz
 - 0.25 1 Watt
- ARM Cortex-A15
 - 4 ops / cycle @ 1 2.5 GHz*
 - 0.35 Watt*
- All is there ... but not together?

^{*} Estimated from web sources, not an ARM Commitment

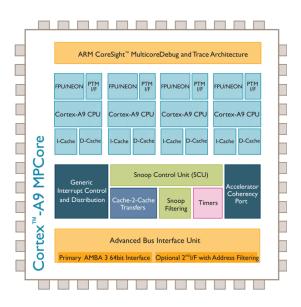

Can we build supercomputers from embedded technology?

- HPC used to be the edge of technology
 - First developed and deployed for HPC
 - Then used in servers and workstations
 - Then on PCs
 - Then on mobile and embedded devices
- Can we close the loop?

Energy-efficient prototype series @ BSC



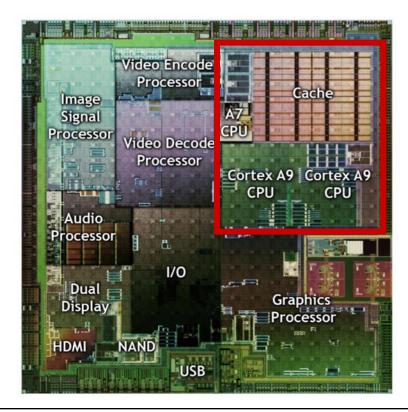
- Start from COTS components
- Move on to integrated systems and custom HPC technology


Tegra2 prototype @ BSC

- Deploy the first large-scale ARM cluster prototype
 - Built entirely from COTS components
- Exploratory system to demonstrate
 - Capability to deploy HPC platform based on low-power components
 - Open-source system software stack
- Enable early software development and tuning on ARM platform

ARM Cortex-A9 multiprocessor

- Energy-efficient application processor
- Up to 4-core SMT
 - Full cache coherency
- VFP Double-Precision FP
 - 1 ops / cycle


ARM Cortex-A9 Performance Power & Area						
	Cortex-A9 Single Core Soft Macro Trial Implementation	Cortex-AS Dual Core Hard Maero Implementations				
Process	TSMC 65G	TSMC 40G				
Optimization method	Performance Optimized	Performance Optimized	Power Optimized			
Standard Cell Library	ARM SC12	ARM SC12 + High Performance Kit	ARM SC12 + High Performance Kit			
Performance (Total DMIPS)	2,075 DMIPS	10,000 DMIPS	4,000 DMIPS			
Frequency	830 MHz	2000 MHz (typical)	800 MHz (wc/ss)			
Energy Efficiency (DMIPS/mW)	5.2	5.26	8.0			
Total power at target frequency	0.4 W	1.9 W	0.5 W			
Silicon Area	1.5 mm ² (excludes caches)	6.7 mm ² (including L1 parity and all DFT/DFM)	4.6 mm ² (including all DFT/DFM)			

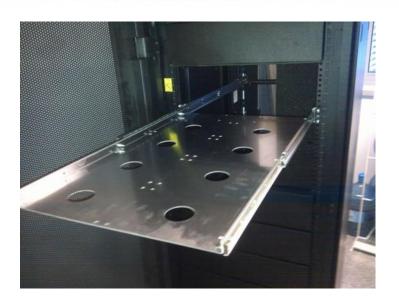
Nvidia Tegra2 SoC

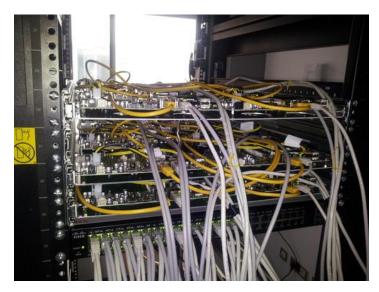
- Dual-core Cortex-A9 @ 1GHz
 - VFP for DP (no NEON)
 - 2 GFLOPS (1 FMA / 2 cycles)
- Low-power Nvidia GPU
 - OpenGL only, CUDA not supported
- Several accelerators
 - Video encoder-decored
 - Audio processor
 - Image processor
- ARM7 core for power management
- 2 GFLOPS ~ 0.5 Watt

SECO Q7 Tegra2 + Carrier board

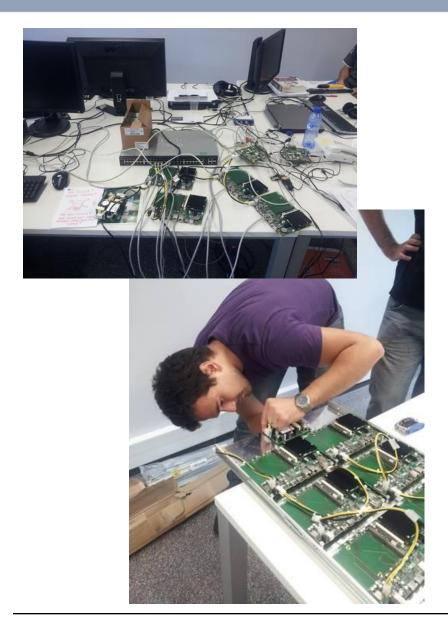
- Q7 Module
 - 1x Tegra2 SoC
 - 2x ARM Cortex-A9, 1 GHz
 - 1 GB DDR2 DRAM
 - 100 Mbit Ethernet
 - PCIe
 - 1 GbE
 - MXM connector for mobile GPU
 - 4" x 4"
- Q7 carrier board
 - 2 USB ports
 - 2 HDMI
 - 1 from Tegra
 - 1 from GPU
 - uSD slot
 - 8" x 5.6"
- 2 GFLOPS ~ 4 Watt

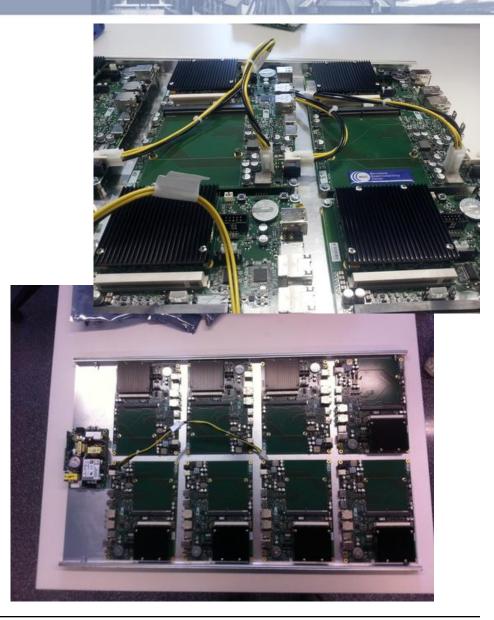
1U multi-board container

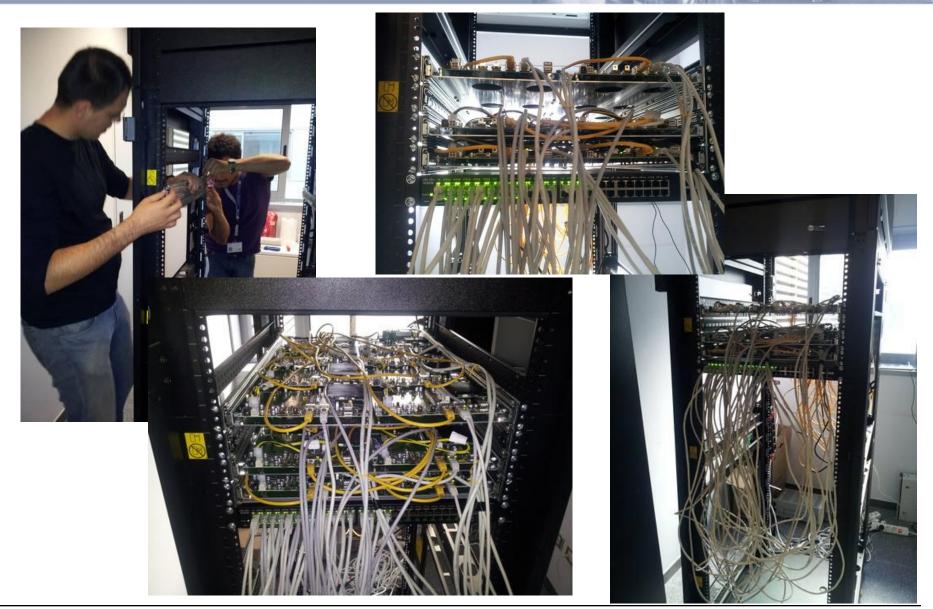

- Standard 19" rack dimensions
 - 1.75" (1U) x 19" x 32" deep
- 8x Q7-MXM Carrier boards
 - 8x Tegra2 SoC
 - 16x ARM Cortex-A9
 - 8 GB DRAM
- 1 Power Supply Unit (PSU)
 - Daisy-chaining of boards
 - ~ 7 Watts PSU waste
- 16 GFLOPS ~ 40 Watts



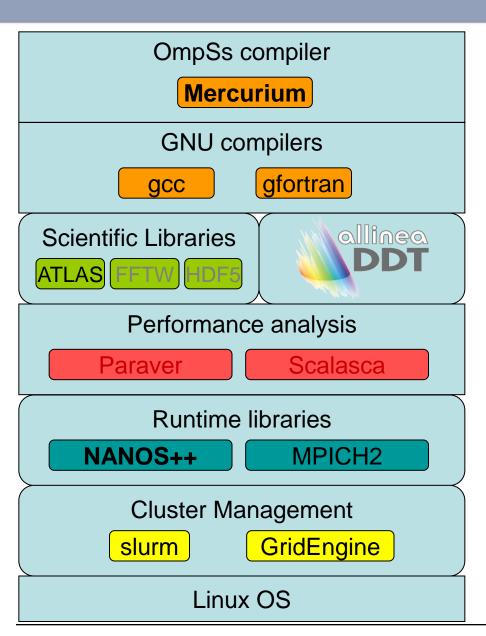
Prototype rack


- Stack of 8 x 5U modules
 - 4 Compute nodes
 - 1 Ethernet switch
- Passive cooling
 - Passive heatsink on Q7
- Provide power consumption measurements
 - Per unit
 - Compute nodes
 - Ethernet switches
 - Per container
 - Per 5U
- 512 GFLOPS ~ 1.700 Watt
 - 300 MFLOPS / W
 - 60% efficiency ~ 180 MFLOPS / W



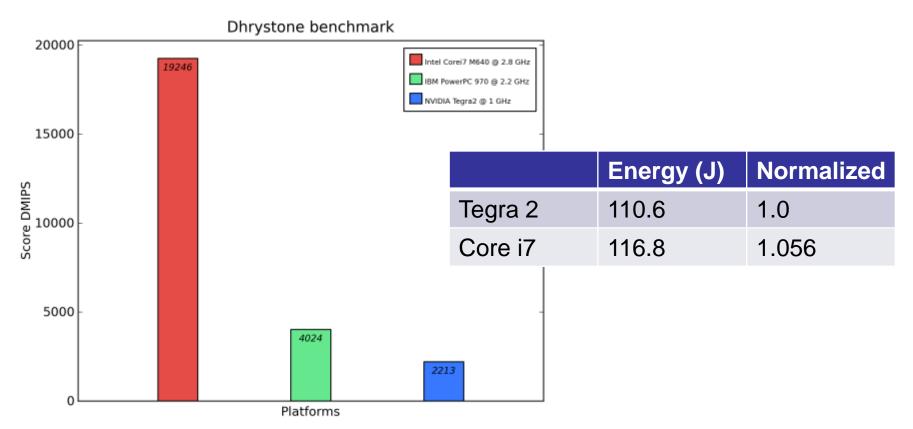


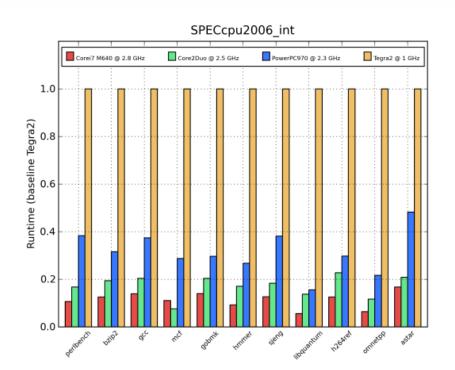
Manual assembly of board container

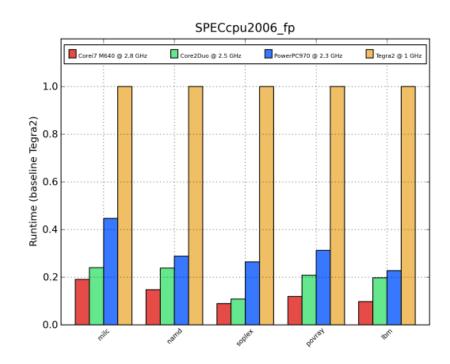


Manual assembly of containers in the rack + interconnect wiring

System software stack

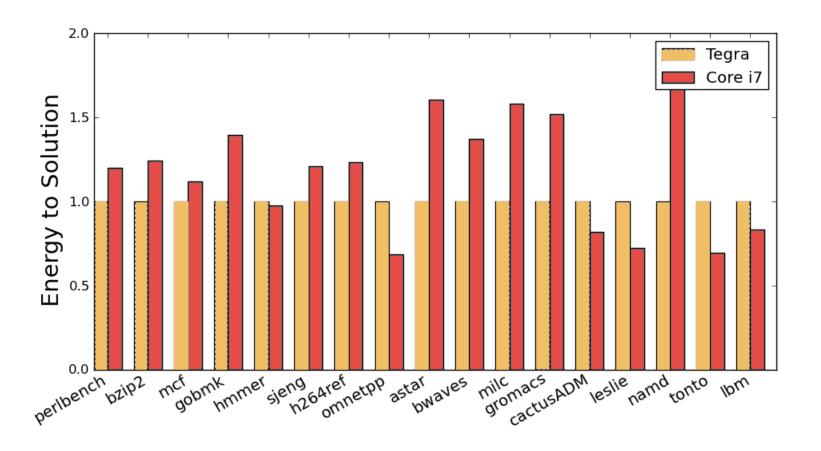

- Open source system software stack
 - Linux OS
 - GNU compiler
 - gcc 2.4.6
 - gfortran
 - Scientific libraries
 - ATLAS, FFTW, HDF5
 - Cluster management
- Runtime libraries
 - MPICH2, OpenMPI
 - OmpSs toolchain
- Performance analysis tools
 - Paraver, Scalasca
- Allinea DDT 3.1 debugger


Processor performance: Dhrystone



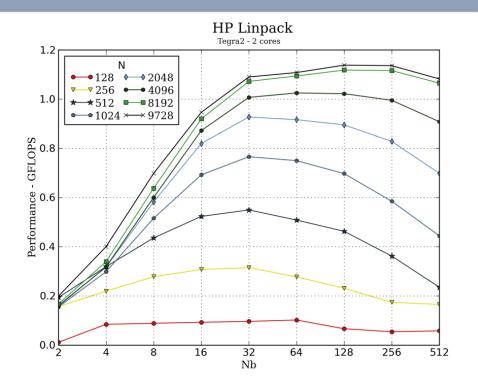
- Validate if Cortex-A9 achieves the ARM advertised Dhrystone performance
 - 2.500 DMIPS / GHz
- Compare to PowerPC 970MP (JS21, MareNostrum) and Core i7 (laptop)
 - ~ 2x slower than ppc970
 - ~ 9x slower than i7

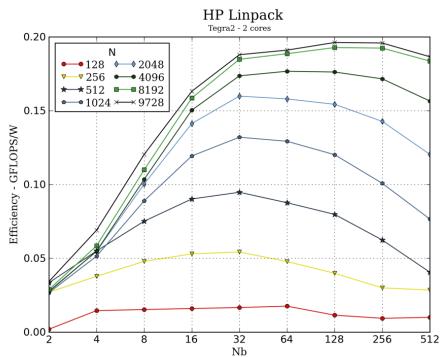
Processor performance: SPEC CPU 2006



- Compare Cortex-A9 @ 1 GHz CPU performance with 3 platforms
 - ppc970 @ 2.3 GHz ~ 2-3x slower
- (= if we factor in freq.)
- Core2 @ 2.5 GHz ~ 5-6x slower
- Core i7 @ 2.8 GHz
 - ~ 6-10x slower
- (2-4x slower if we factor freq.)

Is it more power efficient?


Energy to solution: SPEC CPU 2006



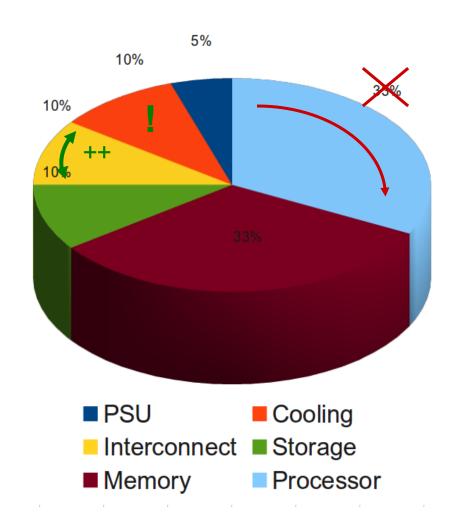
- Tegra2 not always more power-efficient than Core i7
 - i7 efficiency is better for benchmarks where it outperforms A9 by 10x

Node performance: Linpack

- Standard HPL, using ATLAS library
 - ATLAS microkernels also achieve 1 GFLOPS peak performance
- 1.15 GFLOPS ~ 57% efficiency vs. peak performance
- ~200 MFLOPS / Watt
 - In line with original predictions

Cluster performance: Linpack

- 24 nodes
 - 3 x 8 boards (48 GFLOPS peak)
 - 1 GbE switch
- 27.25 GFLOPS on 272 Watts
 - 57% efficiency vs. peak
 - 100 GFLOPS / Watt
- Small problem size (N)
 - 280 MB / node
- Power dominated by GbE switch
 - 40 W when idle, 100-150 W active


- 32 nodes
 - 4 x 8 boards (64 GFLOPS peak)
 - 1 GbE switch
- ... runs don't complete due to boards overheating
 - Boards too close together
 - No space for airflow

Lessons learned so far

- Memory + interconnect dominates power consumption
 - Need a balanced system design
- Tuning scientific libraries takes time
 + effort
 - Compiling ATLAS on ARM Cortex-A9 took 1 month
- Linux on ARM needs tuning for HPC
 - CFS scheduler
 - softfp vs. hardfp
- DIY assembly of prototypes is harder than expected
 - 2 Person-Month just to press screws
- Even low-power devices need cooling
 - It's the density that matters

ARM + mobile GPU prototype @ BSC

Tegra3 + GeForce 520MX:

4x Corext-A9 @ 1.5 GHz 48 CUDA cores @ 900 MHz

148 GFLOPS ~ 18 Watts

~8 GFLOPS / W

Rack:

32x Board container 256x Q7 carrier boards 1024x ARM Corext-A9 Cores 256x GT520MX GPU 8x 48-port 1GbE LBA switches

38 TFLOPS ~ 5 Kwatt **7.5 GFLOPS / W**

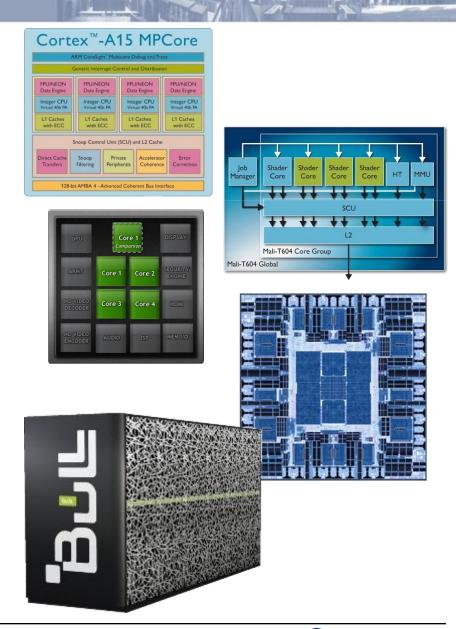
50% efficiency 3.7 GFLOPS / W

- Validate the use of energy efficient CPU + compute accelerators
 - ARM multicore processors
 - Mobile Nvidia GPU accelerators
- Perform scalability tests to high number of compute nodes
 - Higher core count required when using low-power components
 - Evaluate impact of limited memory and bandwidth on low-end solutions
- Enable early application and runtime system development on ARM + GPU

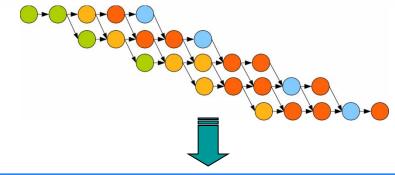
http://www.montblanc-project.eu

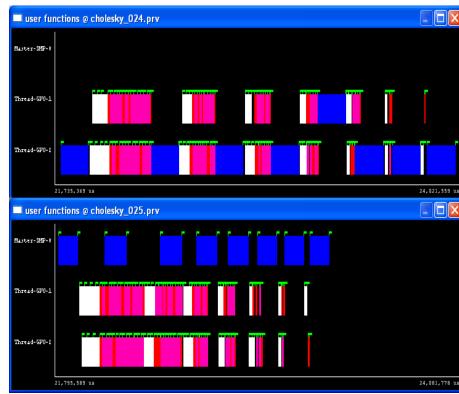
European Exascale approach using embedded power-efficient technology

- To deploy a prototype HPC system based on currently available energyefficient embedded technology
- To design a next-generation HPC system and **new embedded technologies** targeting HPC systems that would overcome most of the limitations encountered in the prototype system
- To port and optimise a small number of representative exascale applications capable of exploiting this new generation of HPC systems

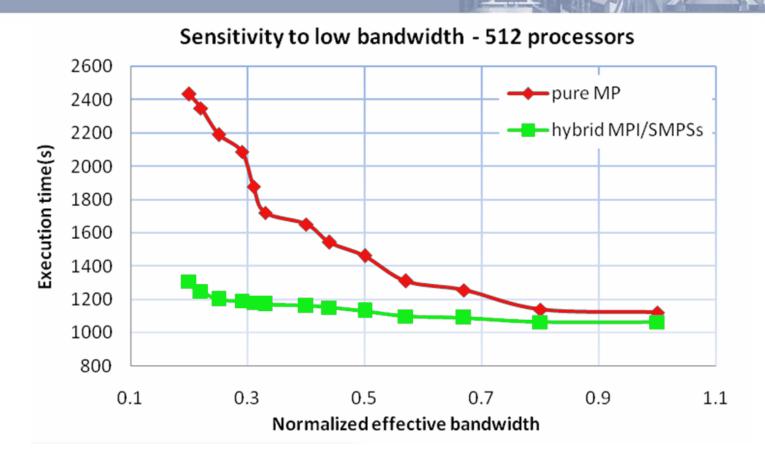


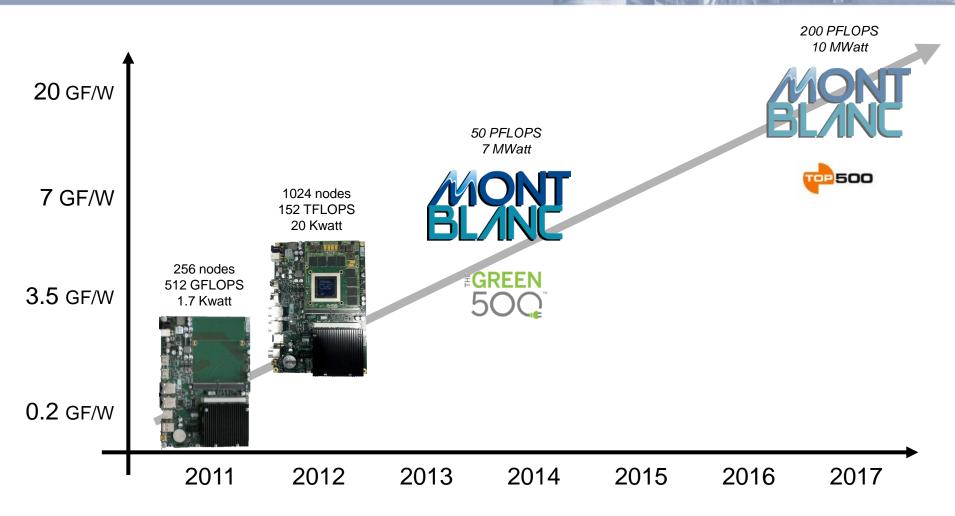
Integrate energy-efficient building blocks


- Integrated system design built from mobile / embedded components
- ARM multicore processors
 - Nvidia Tegra / Denver, Calxeda, Marvell Armada, ST-Ericsson Nova A9600, TI OMAP 5, ...
- Low-power memories
- Mobile accelerators
 - Mobile GPU
 - Nvidia GT 500M, ...
 - Embedded GPU
 - Nvidia Tegra, ARM Mali T604
- Low power 10 GbE switches
 - Gnodal GS 256
- Tier-0 system integration experience
 - BullX systems in the Top10



Hybrid MPI + OmpSs programming model


- Hide complexity from programmer
- Runtime system maps task graph to architecture
- Automatically performs optimizations
 - Many-core + accelerator exploitation
 - Asynchronous communication
 - Overlap communication + computation
 - Asynchronous data transfers
 - Overlap data transfer + computation
 - Strong scaling
 - Sustain performance with lower memory size per core
 - Locality management
 - Optimize data movement


Trade off bandwidth for power in the interconnect

- Hybrid MPI + SMPSs Linpack on 512 processors
- 1/5th the interconnect bandwidth, only 10% performance impact
- Rely on slower, but more efficient network?

Energy-efficient prototype series @ BSC

- A very exciting roadmap ahead
- Lots of challenges, both hardware and software!

