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Topics Covered

Case study: Opacity Mapping
– Using tessellation to accelerate 

lighting effects

– Accelerating up-sampling with 
GatherRed()

– Playing nice with AA using 
SV_SampleIndex

– Read-only depth for soft particles
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Topics Covered (cont)

Deferred Contexts

– How DX11 can help you pump the API harder than 
you thought possible

– Much viscera - very gory!
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Not Covered

‘Aesthetic’ tessellation

DirectCompute

!!! Great talks on these topics coming up !!!
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DEFERRED CONTEXTS
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Deferred Contexts

• What are your options when your API 
submission thread is a bottleneck?

• What if submission could be done on multiple 
threads, to take advantage of multi-core?

– This is what Deferred Contexts solve in DX11 
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• So why not just submit directly to an API from 
multiple threads and be done?

Thread 2:

Deferred Contexts
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• So why not just submit directly to an API from 
multiple threads and be done?

Thread 2:

Deferred Contexts
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D3D:

Thread 1:

WHOOPS!!



Deferred Contexts

• A Deferred Context is a device-like interface 
for building command-lists
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// Creation is very straightforward

ID3D11DeviceContext* pDC = NULL;

hr = pD3DDevice->CreateDeferredContext(0,&pDC);



Deferred Contexts

• DX11 uses the same ID3D11DeviceContext 
interface for ‘immediate’ API calls

• Immediate context is the only way to finally 
submit work to the GPU

• Access it via ID3D11Device::GetImmediateContext()

• ID3D11Device has no submission API
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Thread 1:
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Thread 2:

DC1:

DC2:

FinishCommandList()

FinishCommandList()
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Inter-thread sync, collate/order/buffer CL’s

Start of new CL



...etc
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Deferred Contexts

• Flexible DX11 internals

– DX11 runtime has built-in implementation

– BUT: the driver can take charge, and use its own 
implementation

• e.g. command lists could be built at a lower level, 
moving more of the CPU work onto submission threads
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Deferred Contexts: Perf

• Try to balance workload over contexts/threads

– but submission workloads are seldom predictable

– granularity helps (if your submission threads are 
able to pick up work dynamically)

– if possible, do heavier submission workloads first

– ~12 CL’s per core, ~1ms per CL is a good target
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Deferred Contexts: Perf

• Target reasonable command list sizes

– think of # of draw calls in a command list much 
like # triangles in a draw call

– i.e. each list has overhead

~equivalent to a few dozen API calls
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Deferred Contexts: Perf

• Leave some free CPU time!

– having all threads busy can cause CPU saturation 
and prevent “server” thread from rendering*

– ‘busy’ includes busy-waits (i.e. polling)

*this is good general advice: never use more than N-1 CPU cores

for your game engine. Always leave one for the graphics driver
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Deferred Contexts: Perf

• Mind your memory!

– each Map() call associates memory with the CL

– releasing the CL is the only way to release the 
memory

– could get tight in a 2GB virtual address space!
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Deferred Contexts: wrapping up

• DC’s + multi-core = pump the API HARD

• Real-world specifics coming up in Dan’s talk

CALL TO ACTION:If you wish you could submit 
more batches and you’re not already using 
DC’s, then experiment!
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CASE STUDY: OPACITY MAPPING
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Case study: Opacity Mapping
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Case study: Opacity Mapping

GOALS:

– Plausible lighting for a game-typical particle 
system (16K largish translucent billboards)

– Self-shadowing (using opacity mapping)

• Also receive shadows from opaque objects

– 3 light sources (all with shadows)
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Case study: Opacity Mapping
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+  opacity mapping*

=

*e.g. [Jansen & Bavoil, 2010]



Case study: Opacity Mapping

• Brute force (per-pixel lighting/shadowing) is 
not performant

– 5 to 10 FPS on GTX 560 Ti* or HD 6950*

• Not surprising considering amount of 
overdraw...
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*1680x1050, 4xAA



Case study: Opacity Mapping
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Case study: Opacity Mapping

– Vertex lighting? Faster, but shows significant delta 
from ‘ground truth’ of per-pixel lighting...
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PS lighting VS lighting

5 to 10 FPS 60 to 65 FPS



Case study: Opacity Mapping

• Use DX11 tessellation to calculate lighting at 
an intermediate ‘sweet-spot’ rate in the DS

• High-frequency components can remain at 
per-pixel or per-sample rates, as required

– opacity

– visibility
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Case study: Opacity Mapping
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Case study: Opacity Mapping
PS lighting DS lighting
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Case study: Opacity Mapping
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DS lightingPS lighting (VS lighting)

5 to 10 FPS 60 to 65 FPS 40 to 45 FPS



Case study: Opacity Mapping

• Adaptive tessellation gives best of both worlds

– VS-like calculation frequency

– PS-like relationship with screen pixel frequency

• 1:15 works well in this case

• Applicable to any slowly-varying shading result

– GI, other volumetric algos
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Case study: Opacity Mapping

• Main bottleneck is fill-rate following tess-opt

• So... render particles to low-res offscreen buffer*

– significant benefit, even with tess opt (1.2x to 1.5x 
for GTX 560 Ti / HD 6950)

– BUT: simple bilinear up-sampling from low-res can 
lead to artifacts at edges...

DX11 Performance Gems 
*[Cantlay, 2007]



Case study: Opacity Mapping
Ground truth (full res) Bilinear up-sample (half-res)
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Case study: Opacity Mapping

• Instead, we use nearest-depth up-sampling*

– conceptually similar to cross-bilateral filtering**

– compares high-res depth with neighbouring low-
res depths

– samples from closest matching neighbour at 
depth discontinuities (bilinear otherwise)
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*[Bavoil, 2010] **[Eisemann & Durand, 2004] [Petschnigg et al, 2004]



Case study: Opacity Mapping
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Near-Z

Far-Z

full-res

pixel

lo-res

neighbours

Z10

(@UV10)

ZFull

(@UV)

if( abs(Z00-ZFull) < kDepthThreshold &&

abs(Z10-ZFull) < kDepthThreshold &&

abs(Z01-ZFull) < kDepthThreshold &&

abs(Z11-ZFull) < kDepthThreshold )

{

return loResColTex.Sample ( sBilin,UV );

}

else

{

return loResColTex.Sample(sPoint,NearestUV);

}

Z00

(@UV00)



Case study: Opacity Mapping
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Near-Z

Far-Z if( abs(Z00-ZFull) < kDepthThreshold &&

abs(Z10-ZFull) < kDepthThreshold &&

abs(Z01-ZFull) < kDepthThreshold &&

abs(Z11-ZFull) < kDepthThreshold )

{

return loResColTex.Sample(sBilin,UV);

}

else

{

return loResColTex.Sample ( sPoint,NearestUV );

}

NearestUV = UV10

Z10

(@UV10)

ZFull

(@UV)

Z00

(@UV00)



Case study: Opacity Mapping
Ground truth (full res) Nearest-depth up-sample
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Case study: Opacity Mapping

• Use SM5 GatherRed() to efficiently fetch 2x2 low-res 
depth neighbourhood in one go
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float4 zg = g_DepthTex.GatherRed(g_Sampler,UV);

float z00 = zg.w; // w: floor(uv)

float z10 = zg.z; // z: ceil(u),floor(v)

float z01 = zg.x; // x: floor(u),ceil(v)

float z11 = zg.y; // y: ceil(uv)



Case study: Opacity Mapping

• Nearest-depth up-sampling plays nice with AA 
when run per-sample

– and surprisingly performant! (FPS hit < 5%)
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float4 UpsamplePS( VS_OUTPUT In,

uint uSID : SV_SampleIndex

) : SV_Target



Case study: Opacity Mapping

• Soft particles (depth-based alpha fade)

– requires read from scene depth

– for < DX11, this used to mean...

• EITHER: sacrificing depth-test (along with any 
associated acceleration)

• OR: maintaining two depth surfaces (along with any 
copying required)
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DX11 solution:

Case study: Opacity Mapping
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depth

texture

‘traditional’

DSV

depth texture

SRV
CreateShaderResourceView()

CreateDepthStencilView()

DX11 read-

only DSV
CreateDepthStencilView()

+ D3D11_DSV_READ_ONLY_DEPTH

NEW!!!

in DX11



STEP 1: render opaque objects to depth texture

Case study: Opacity Mapping
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pDC->OMSetRenderTargets(...)

// Render opaque objects

depth texture

SRV

DX11 read-

only DSV

‘traditional’

DSV



STEP 2: render soft particles with depth-test

Case study: Opacity Mapping
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depth texture

SRV

DX11 read-

only DSV

pDC->OMSetRenderTargets(...)

pDC->PSSetShaderResources(...)

// (Valid D3D state!)

// Render soft particles

‘traditional’

DSV



Case study: Opacity Mapping
ΨIŀǊŘΩ ǇŀǊǘƛŎƭŜǎSoft particles
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Case study: wrapping up

• 5x to 10x overall speedup

• DX11 tessellation gave us most of it

• But rendering at reduced-res alleviates fill-rate 
and lets tessellation shine thru

• GatherRed() and RO DSV also saved cycles
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Case study: wrapping up

CALL TO ACTION:Go light some particles!
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End of tour!

• Questions?

jjansen at nvidia dot com
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