

(Or: “DX11 – unpacking the box”)

Jon Jansen - Developer Technology Engineer, NVIDIA

DX11 Performance Gems

Topics Covered

Case study: Opacity Mapping
– Using tessellation to accelerate

lighting effects

– Accelerating up-sampling with
GatherRed()

– Playing nice with AA using
SV_SampleIndex

– Read-only depth for soft particles

DX11 Performance Gems

Topics Covered (cont)

Deferred Contexts

– How DX11 can help you pump the API harder than
you thought possible

– Much viscera - very gory!

DX11 Performance Gems

Not Covered

‘Aesthetic’ tessellation

DirectCompute

!!! Great talks on these topics coming up !!!

DX11 Performance Gems

DEFERRED CONTEXTS

DX11 Performance Gems

Deferred Contexts

• What are your options when your API
submission thread is a bottleneck?

• What if submission could be done on multiple
threads, to take advantage of multi-core?

– This is what Deferred Contexts solve in DX11

DX11 Performance Gems

• So why not just submit directly to an API from
multiple threads and be done?

Thread 2:

Deferred Contexts

DX11 Performance Gems

D3D:

Thread 1:

• So why not just submit directly to an API from
multiple threads and be done?

Thread 2:

Deferred Contexts

DX11 Performance Gems

D3D:

Thread 1:

• So why not just submit directly to an API from
multiple threads and be done?

Thread 2:

Deferred Contexts

DX11 Performance Gems

D3D:

Thread 1:

• So why not just submit directly to an API from
multiple threads and be done?

Thread 2:

Deferred Contexts

DX11 Performance Gems

D3D:

Thread 1:

• So why not just submit directly to an API from
multiple threads and be done?

Thread 2:

Deferred Contexts

DX11 Performance Gems

D3D:

Thread 1:

WHOOPS!!

Deferred Contexts

• A Deferred Context is a device-like interface
for building command-lists

DX11 Performance Gems

// Creation is very straightforward

ID3D11DeviceContext* pDC = NULL;

hr = pD3DDevice->CreateDeferredContext(0,&pDC);

Deferred Contexts

• DX11 uses the same ID3D11DeviceContext
interface for ‘immediate’ API calls

• Immediate context is the only way to finally
submit work to the GPU

• Access it via ID3D11Device::GetImmediateContext()

• ID3D11Device has no submission API

DX11 Performance Gems

DX11 Performance Gems

Thread 2:

DC1:

DC2:

Thread 1:

D3D
IM

M
 D

C
:

Render submission calls

Render submission calls

DX11 Performance Gems

Thread 2:

DC1:

DC2:

FinishCommandList()

FinishCommandList()

Thread 1:

D3D
IM

M
 D

C
:

DX11 Performance Gems

Thread 2:

DC1:

DC2:

FinishCommandList()

FinishCommandList()

Inter-thread sync, collate/order/buffer CL’s

Thread 1:

D3D
IM

M
 D

C
:

DX11 Performance Gems

Thread 2:

DC1:

DC2:

FinishCommandList()

FinishCommandList()

Thread 1:

D3D
IM

M
 D

C
:

Inter-thread sync, collate/order/buffer CL’s

DX11 Performance Gems

Thread 2:

DC1:

DC2:

FinishCommandList()

FinishCommandList()

Thread 1:

D3D
IM

M
 D

C
:

Inter-thread sync, collate/order/buffer CL’s

Start of new CL

...etc

DX11 Performance Gems

Thread 2:

DC1:

DC2:

FinishCommandList()

...etc

...etc

...etc

FinishCommandList()

FinishCommandList() FinishCommandList()

Inter-thread sync, collate/order/buffer CL’s

Thread 1:

D3D
IM

M
 D

C
:

...etc

DX11 Performance Gems

Thread 2:

DC1:

DC2:

‘RenderMain’

Thread
D3DFinishCommandList()

...etc

...etc

...etc

FinishCommandList()

FinishCommandList() FinishCommandList()

ExecuteCommandList()

Inter-thread sync, collate/order/buffer CL’s

Thread 1:

IM
M

 D
C

:

...etc

DX11 Performance Gems

Thread 2:

DC1:

DC2:

‘RenderMain’

Thread
D3DFinishCommandList()

ExecuteCommandList()

...etc

...etc

...etc

FinishCommandList()

FinishCommandList() FinishCommandList()

ExecuteCommandList()

Inter-thread sync, collate/order/buffer CL’s

Thread 1:

IM
M

 D
C

:

DX11 Performance Gems

...etcThread 2:

DC1:

DC2:

‘RenderMain’

Thread
D3DFinishCommandList()

ExecuteCommandList()

ExecuteCommandList()

ExecuteCommandList()

...etc

...etc

...etc

FinishCommandList()

FinishCommandList() FinishCommandList()

ExecuteCommandList()

Inter-thread sync, collate/order/buffer CL’s

Thread 1:

IM
M

 D
C

:

Deferred Contexts

• Flexible DX11 internals

– DX11 runtime has built-in implementation

– BUT: the driver can take charge, and use its own
implementation

• e.g. command lists could be built at a lower level,
moving more of the CPU work onto submission threads

DX11 Performance Gems

Deferred Contexts: Perf

• Try to balance workload over contexts/threads

– but submission workloads are seldom predictable

– granularity helps (if your submission threads are
able to pick up work dynamically)

– if possible, do heavier submission workloads first

– ~12 CL’s per core, ~1ms per CL is a good target

DX11 Performance Gems

Deferred Contexts: Perf

• Target reasonable command list sizes

– think of # of draw calls in a command list much
like # triangles in a draw call

– i.e. each list has overhead

~equivalent to a few dozen API calls

DX11 Performance Gems

Deferred Contexts: Perf

• Leave some free CPU time!

– having all threads busy can cause CPU saturation
and prevent “server” thread from rendering*

– ‘busy’ includes busy-waits (i.e. polling)

*this is good general advice: never use more than N-1 CPU cores

for your game engine. Always leave one for the graphics driver

DX11 Performance Gems

Deferred Contexts: Perf

• Mind your memory!

– each Map() call associates memory with the CL

– releasing the CL is the only way to release the
memory

– could get tight in a 2GB virtual address space!

DX11 Performance Gems

Deferred Contexts: wrapping up

• DC’s + multi-core = pump the API HARD

• Real-world specifics coming up in Dan’s talk

CALL TO ACTION:If you wish you could submit
more batches and you’re not already using
DC’s, then experiment!

DX11 Performance Gems

CASE STUDY: OPACITY MAPPING

DX11 Performance Gems

Case study: Opacity Mapping

DX11 Performance Gems

Case study: Opacity Mapping

GOALS:

– Plausible lighting for a game-typical particle
system (16K largish translucent billboards)

– Self-shadowing (using opacity mapping)

• Also receive shadows from opaque objects

– 3 light sources (all with shadows)

DX11 Performance Gems

Case study: Opacity Mapping

DX11 Performance Gems

+ opacity mapping*

=

*e.g. [Jansen & Bavoil, 2010]

Case study: Opacity Mapping

• Brute force (per-pixel lighting/shadowing) is
not performant

– 5 to 10 FPS on GTX 560 Ti* or HD 6950*

• Not surprising considering amount of
overdraw...

DX11 Performance Gems

*1680x1050, 4xAA

Case study: Opacity Mapping

DX11 Performance Gems

Case study: Opacity Mapping

– Vertex lighting? Faster, but shows significant delta
from ‘ground truth’ of per-pixel lighting...

DX11 Performance Gems

PS lighting VS lighting

5 to 10 FPS 60 to 65 FPS

Case study: Opacity Mapping

• Use DX11 tessellation to calculate lighting at
an intermediate ‘sweet-spot’ rate in the DS

• High-frequency components can remain at
per-pixel or per-sample rates, as required

– opacity

– visibility

DX11 Performance Gems

Case study: Opacity Mapping

DX11 Performance Gems

Surface placement

Light attenuation

Opaque shadows

Opacity shadows

Visibility

VS

rate

PS

rate

sample

rate

Texturing

PS lighting

Case study: Opacity Mapping
PS lighting DS lighting

DX11 Performance Gems

Surface placement

Light attenuation

Opaque shadows

Opacity shadows

Visibility

DS

rate

VS

rate

PS

rate

sample

rate

VS

rate

PS

rate

sample

rate

Texturing

Case study: Opacity Mapping

DX11 Performance Gems

DS lightingPS lighting (VS lighting)

5 to 10 FPS 60 to 65 FPS 40 to 45 FPS

Case study: Opacity Mapping

• Adaptive tessellation gives best of both worlds

– VS-like calculation frequency

– PS-like relationship with screen pixel frequency

• 1:15 works well in this case

• Applicable to any slowly-varying shading result

– GI, other volumetric algos

DX11 Performance Gems

Case study: Opacity Mapping

• Main bottleneck is fill-rate following tess-opt

• So... render particles to low-res offscreen buffer*

– significant benefit, even with tess opt (1.2x to 1.5x
for GTX 560 Ti / HD 6950)

– BUT: simple bilinear up-sampling from low-res can
lead to artifacts at edges...

DX11 Performance Gems
*[Cantlay, 2007]

Case study: Opacity Mapping
Ground truth (full res) Bilinear up-sample (half-res)

DX11 Performance Gems

Case study: Opacity Mapping

• Instead, we use nearest-depth up-sampling*

– conceptually similar to cross-bilateral filtering**

– compares high-res depth with neighbouring low-
res depths

– samples from closest matching neighbour at
depth discontinuities (bilinear otherwise)

DX11 Performance Gems

*[Bavoil, 2010] **[Eisemann & Durand, 2004] [Petschnigg et al, 2004]

Case study: Opacity Mapping

DX11 Performance Gems
Near-Z

Far-Z

full-res

pixel

lo-res

neighbours

Z10

(@UV10)

ZFull

(@UV)

if(abs(Z00-ZFull) < kDepthThreshold &&

abs(Z10-ZFull) < kDepthThreshold &&

abs(Z01-ZFull) < kDepthThreshold &&

abs(Z11-ZFull) < kDepthThreshold)

{

return loResColTex.Sample (sBilin,UV);

}

else

{

return loResColTex.Sample(sPoint,NearestUV);

}

Z00

(@UV00)

Case study: Opacity Mapping

DX11 Performance Gems
Near-Z

Far-Z if(abs(Z00-ZFull) < kDepthThreshold &&

abs(Z10-ZFull) < kDepthThreshold &&

abs(Z01-ZFull) < kDepthThreshold &&

abs(Z11-ZFull) < kDepthThreshold)

{

return loResColTex.Sample(sBilin,UV);

}

else

{

return loResColTex.Sample (sPoint,NearestUV);

}

NearestUV = UV10

Z10

(@UV10)

ZFull

(@UV)

Z00

(@UV00)

Case study: Opacity Mapping
Ground truth (full res) Nearest-depth up-sample

DX11 Performance Gems

Case study: Opacity Mapping

• Use SM5 GatherRed() to efficiently fetch 2x2 low-res
depth neighbourhood in one go

DX11 Performance Gems

float4 zg = g_DepthTex.GatherRed(g_Sampler,UV);

float z00 = zg.w; // w: floor(uv)

float z10 = zg.z; // z: ceil(u),floor(v)

float z01 = zg.x; // x: floor(u),ceil(v)

float z11 = zg.y; // y: ceil(uv)

Case study: Opacity Mapping

• Nearest-depth up-sampling plays nice with AA
when run per-sample

– and surprisingly performant! (FPS hit < 5%)

DX11 Performance Gems

float4 UpsamplePS(VS_OUTPUT In,

uint uSID : SV_SampleIndex

) : SV_Target

Case study: Opacity Mapping

• Soft particles (depth-based alpha fade)

– requires read from scene depth

– for < DX11, this used to mean...

• EITHER: sacrificing depth-test (along with any
associated acceleration)

• OR: maintaining two depth surfaces (along with any
copying required)

DX11 Performance Gems

DX11 solution:

Case study: Opacity Mapping

DX11 Performance Gems

depth

texture

‘traditional’

DSV

depth texture

SRV
CreateShaderResourceView()

CreateDepthStencilView()

DX11 read-

only DSV
CreateDepthStencilView()

+ D3D11_DSV_READ_ONLY_DEPTH

NEW!!!

in DX11

STEP 1: render opaque objects to depth texture

Case study: Opacity Mapping

DX11 Performance Gems

pDC->OMSetRenderTargets(...)

// Render opaque objects

depth texture

SRV

DX11 read-

only DSV

‘traditional’

DSV

STEP 2: render soft particles with depth-test

Case study: Opacity Mapping

DX11 Performance Gems

depth texture

SRV

DX11 read-

only DSV

pDC->OMSetRenderTargets(...)

pDC->PSSetShaderResources(...)

// (Valid D3D state!)

// Render soft particles

‘traditional’

DSV

Case study: Opacity Mapping
ΨIŀǊŘΩ ǇŀǊǘƛŎƭŜǎSoft particles

DX11 Performance Gems

Case study: wrapping up

• 5x to 10x overall speedup

• DX11 tessellation gave us most of it

• But rendering at reduced-res alleviates fill-rate
and lets tessellation shine thru

• GatherRed() and RO DSV also saved cycles

DX11 Performance Gems

Case study: wrapping up

CALL TO ACTION:Go light some particles!
DX11 Performance Gems

End of tour!

• Questions?

jjansen at nvidia dot com

DX11 Performance Gems

References
BAVOIL, L. 2010. Modern Real-Time Rendering Techniques. From Future Game On

Conference, September 2010.

CANTLAY, I. 2007. High-speed, off-screen particles. In GPU Gems 3. 513-528

EISEMANN, E., & DURAND, F. 2004. Flash Photography Enhancement via Intrinsic
Relighting. In ACM Trans. Graph. (SIGGRAPH) 23, 3, 673–678.

JANSEN, J., AND BAVOIL, L. 2010. Fourier opacity mapping. In Proceedings of the
Symposium on Interactive 3D Graphics and Games, 165–172.

PETSCHNIGG, G., AGRAWALA, M., HOPPE, H., SZELISKI, R., COHEN, M., & TOYAMA, K.
2004. Digital photography with flash and no-flash image pairs. In ACM Trans.
Graph. (SIGGRAPH) 23, 3, 664–672.

DX11 Performance Gems

