

We Take Supercomputing Personally!

Ian Miller
Cray
imiller@cray.com

Sumit Gupta NVIDIA sumitg@nvidia.com

The Cray CX1

The Ease-of-Everything solution to ease the transition to HPC, increase engineering efficiency, and improve competitiveness

- Ease of configuration and purchase
- Ease of installation and deployment
- Ease of maintenance
- Pre-installed and tested combinations of industry-leading standard hardware, OS, and HPC management tools

- Upgradeable over time
- Complemented by Cray's renowned quality of service and support

Designed for the Open Office Environment

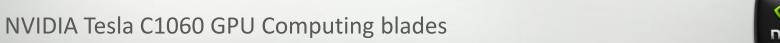
- No need for a dedicated computer room
- Compact deskside design
- Use of standard office power outlet (20A/110V or 16A/240V)
- Active noise reduction
 - NR45 compliant
- Minimal power and cooling requirements

Flexibility in an Open Office Environment

Ability to mix and match compute, visualization, and storage blades according to a customer's HPC needs

- Up to 8 blades per chassis (ability to combine up to 3 chassis)
- 2 sockets per blade (16 sockets per chassis)
- Up to 16 Intel Xeon 5500 quad-core processors per chassis
 - Up to 64 cores per chassis
 - 8 compute blades x 2 sockets x quad core Xeon processors = **64 cores**
- Up to 48 GB of memory per blade, or 384 GB per chassis
 - When 8 GB DIMMS are available, max of 96GB per blade and 768GB per chassis
- 1.7 TB of storage per storage blade, 6.8 TB per chassis
- Built-in Gigabit Ethernet Interconnect, optional InfiniBand
- GPU Computing Technology Tesla with CUDA
 - Up to 4 C1060 internal units per chassis
 - Up to 4 S1070 external units per chassis

CC55 (Dual Xeon)	CV55-01	CT55-01	CS55-04
			3300 - 100H 100H
Compute Node 1 Slot	Visualization Node 2 Slots	GPU Computing Node 2 Slots	Storage Node 2 Slots



Introduction: Processing, Visualization and Acceleration

- CPU Processing
 - Nehalem processors run the OS and native Linux and Windows applications

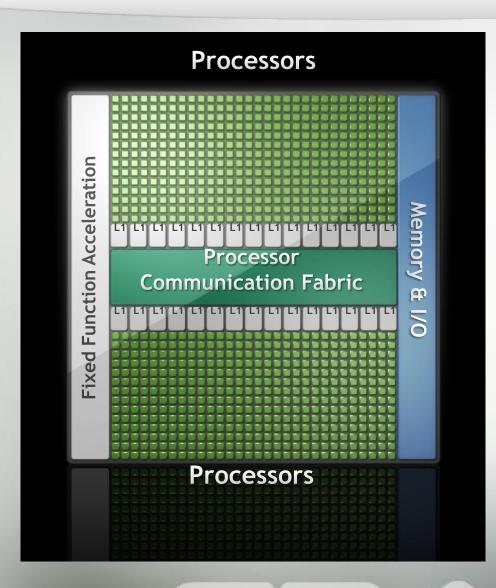
- NVIDIA Quadro FX Visualization Blades
 - Seismic Analysis
 - Medical Imaging
 - High-end MCAD
 - Digital Content Creation
 - Digital Effects, Product Styling

- CPU + GPU Heterogeneous Computing
- Based on massively parallel CUDA programming model

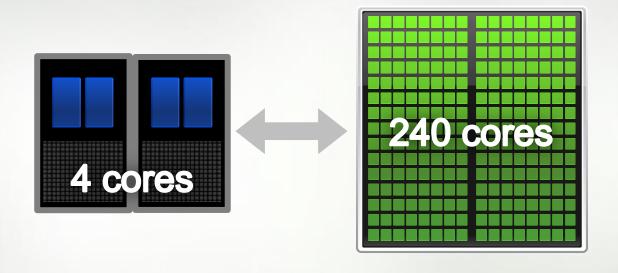
Quadro FX Professional Visualization Solutions

Cray CX1 supports multiple high-end NVIDIA Quadro FX solutions

Quadro Solution	Application Areas	Processor Cores	Memory
Quadro FX5800	4D Seismic Analysis 4D Medical Imaging	240	4 GB
Quadro FX5600	3D Seismic Analysis 3D Medical Imaging	128	1.5 GB
Quadro FX4600	Digital Special Effects Product Styling	112	768 MB
Quadro FX3700	High End MCAD Digital Effects Broadcast	112	512 MB



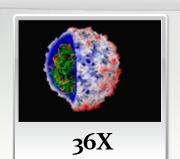
- Quadro FX board uses two slots in the CX1 chassis
- Up to four Quadro FX visualization blades in a single CX1

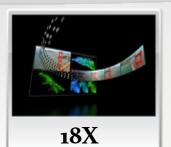

NVIDIA Tesla 10-Series GPU

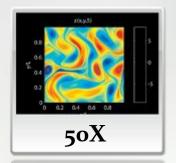
- Massively parallel, many core architecture
- 240 processor cores
- 1 Teraflop
- IEEE Compliant Double Precision Floating Point
- Designed for Scientific Computing

Computing with CPU + GPU

Heterogeneous Computing

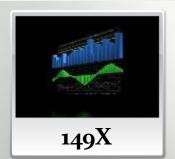





Medical Imaging U of Utah

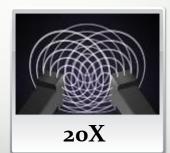
Molecular Dynamics
U of Illinois, Urbana

Video Transcoding
Elemental Tech

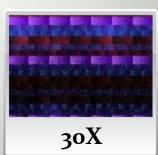


Matlab Computing AccelerEyes

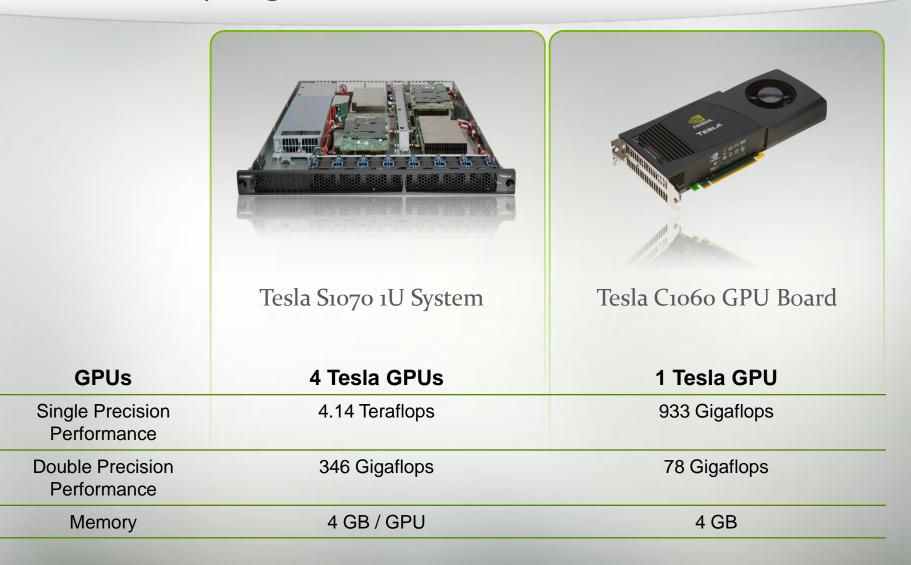
Astrophysics RIKEN


50x - 150x

Financial simulation
Oxford


Linear Algebra
Universidad Jaime

3D Ultrasound Techniscan

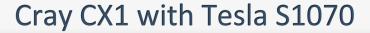

Quantum Chemistry U of Illinois, Urbana

Gene Sequencing
U of Maryland

Tesla GPU Computing Products

Tesla C1060 Blade

- Designed for scientific computing
- 240 Processor cores per C1060
- Consumes two slots in the CX1
- Up to four C1060's in a single CX1 chassis
 - 4 Teraflops single precision
 - 312 Teraflops double precision



NEW: Tesla S1070

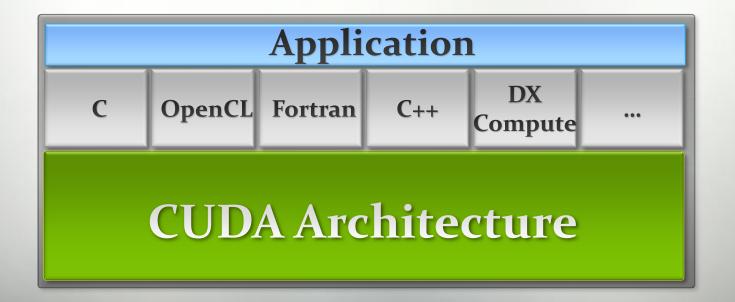
THE SUPERCOMPUTER COMPANY

- 1 U rack mountable system
- Contains four Tesla GPUs
- 4+ Teraflops per 1U
- Up to 4 Tesla S1070s connect to single Cray CX1
- S1070 + Cray CX1
 - Powerful
 - Cost-effective
 - Scalable computing solution

- Fully rack-mountable solution
- Flexibility and Power
 - Up to four S1070's per Cray CX1 chassis
- Scales from
 - 16 TeraFlops with a single
 CX1 chassis to
 - 48 TeraFlops with three Cray CX1 chassis's
- Significant compute power in a compact form factor

16 TFlops

32 TFlops


48 TFlops

Programming GPUs in C, C++, Fortran

- CUDA Massively Parallel Computing architecture and programming model
- Includes a C compiler plus support for OpenCL and DX Compute
- Architected to natively support all computational interfaces

Compiling C Applications using CUDA Toolkit

```
void serial_function(...) {
                                               C CUDA
                                                                        Rest of C
                                             Key Kernels
                                                                      Application
void other_function(int ...) {
                                                NVCC
                                                                     CPU Compiler
                                              (Open64)
void saxpy_serial(float ...) {
  for (int i = 0; i < n; ++i)
     y[i] = a*x[i] + y[i];
                              Write Parallel
                                            CUDA object
                                                                       CPU object
                              CUDA code
                                                files
                                                                          files
void main() {
                                                            Linker
 float x;
 saxpy_serial(..);
                                                                        CPU-GPU
                                                                       Executable
```


CUDA Programming Model: C with Keywords


```
void saxpy_serial( . . . )
                                                    Standard C Code
{
    for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);
                                                     Parallel C Code
 <u>_global__</u> void saxpy_parallel( . . . )
    int i = blockIdx.x*blockDim.x + threadIdx.x;
    if (i < n) y[i] = a*x[i] + y[i];
}
// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);
```

THE SUPERCOMPUTER COMPANY

The Cray CX1 and NVIDIA Summary

- Cray CX1 supports a range of NVIDIA offerings
- High-end graphics visualization solutions with Quadro FX
- Deskside GPU Computing : Cray CX1 + Tesla C1060
- Cluster GPU Computing: Cray CX1 + Tesla S1070
- Industry leading NVIDIA configuration flexibility

Cray CX1 with Tesla S1070 – Solution of the week

20% of your flops for free!

Just add your OS and you are ready to go!

CX1 Solution of the week rules:

- To take advantage of these special prices please email cx1info@cray.com to request a quote by 4/26/09
- 2. The quote is then valid for 45 days and a PO submitted within that timeframe referencing the quote number will be accepted
- 3. These prices are for customers in the USA only
- 4. International customers should contact their local reseller or Cray representative

GOOD

16 Tflops

List Price: \$90,811

Offer Price: \$72,214

"Good" Configuration above includes the following: Eight (8) blades each including:

1 x Intel Xeon 5520 processor, 6GB Memory, 250GB HDD One (1) InfiniBand 12 ports switch

Four (4) S1070-500s

Possible Upgrades: redundant power supplies, processors, memory, HDD, Rack and PDU

Prices do not include tax, shipping or Operating System

BETTER

List Price: \$178,588

Offer Price: \$142,197

"Better" Configuration above includes the following: Sixteen (16) blades each including:

1 x Intel Xeon 5520 processor, 6GB Memory, 250GB HDD One (1) InfiniBand 24 ports switch Eight (8) S1070-500s

Possible Upgrades: redundant power supplies, processors, memory, HDD, Rack and PDU

Prices do not include tax, shipping or Operating System

BEST

List Price: \$265,980

Offer Price: \$211,913

"Best" Configuration above includes the following: Twenty Four (24) blades each including:

1 x Intel Xeon 5520 processor, 6GB Memory, 250GB HDD One (1) InfiniBand 24 ports switch

Twelve (12) S1070-500s

Possible Upgrades: redundant power supplies, processors, memory, HDD, Rack and PDU

Prices do not include tax, shipping or Operating System

More Information

- Cray CX1 main page
 - http://www.cray.com/Products/CX1
- ISV Solution Partners
 - http://www.cray.com/Products/CX1/Product/ISVs
- "Solution of the Week" info, please email: cx1info@cray.com
- For a replay of this Webinar, visit:
 - www.cray.com/cx1/nvidia

- Tesla main page
 - http://www.nvidia.com/tesla
- Vertical Solutions
 - http://www.nvidia.com/object/vertical solutions.html
- CUDA Zone
 - http://www.nvidia.com/cuda
- Hear from Developers
 - http://www.youtube.com/nvidiatesla

Chank Pou & Questions