
© NVIDIA Corporation 2011

Analysis-Driven

Optimization
ISC 2011 Tutorial

Gernot Ziegler, NVIDIA Corporation

© NVIDIA Corporation 2011

Performance Optimization Process

 Determine the limits for kernel performance

 Memory throughput

 Instruction throughput

 Latency

 Combination of the above

 Use appropriate performance metric for each kernel
 For example, for a memory bandwidth-bound kernel, Gflops/s don‟t make sense

 Address the limiters in the order of importance
 Determine how close resource usage is to the HW limits

 Analyze for possible inefficiencies

 Apply optimizations

- Often these will just be obvious from how HW operates

2

© NVIDIA Corporation 2011

Presentation Outline

 Identifying performance limiters

 Analyzing and optimizing :
 Memory-bound kernels

 Instruction (math) bound kernels

 Kernels with poor latency hiding

 Register spilling (depending on available time, but can be downloaded)

 For each:
 Brief background

 How to analyze

 How to judge whether particular issue is problematic

 How to optimize

 Some cases studies based on “real-life” application kernels

 Most information is for Fermi GPUs

3

© NVIDIA Corporation 2011

Notes on profiler

 Most counters are reported per Streaming Multiprocessor (SM)
 Not entire GPU

 Exceptions: L2 and DRAM counters

 A single run can only collect a few counters
 Multiple runs are needed when profiling more counters

- Done automatically by the Visual Profiler

- Have to be done manually using command-line profiler

- Use CUPTI API to have your application collect signals on its own

 Counter values may not be exactly the same for repeated runs
 Threadblocks and warps are scheduled at run-time

 So, “two counters being equal” usually means “two counters within a small delta”

 See the profiler documentation for more information

4

© NVIDIA Corporation 2011

Identifying Performance Limiters

5

© NVIDIA Corporation 2011

Limited by Bandwidth or Arithmetic?

 Perfect fp32 instructions:bytes ratio for Fermi C2050:
 ~4.5 : 1 instructions/byte with ECC on

 ~3.6 : 1 instructions/byte with ECC off

 These assume fp32 instructions, throughput for other instructions varies

 Algorithmic analysis:
 Rough estimate of arithmetic to bytes ratio

 Actual Code likely uses more instructions and bytes
than algorithmic analysis suggests:
 Instructions for loop control, pointer math, etc.

 Address pattern may result in more memory transactions/bandwidth

 Two ways to investigate:

- Use the profiler (quick, but approximate)

- Use source code modification (more accurate, more work intensive)

6

© NVIDIA Corporation 2011

Analysis with Profiler

 Profiler counters:
 instructions_issued, instructions_executed

- Both incremented by 1 per warp

- “issued” includes instruction replays (instruction re-issue), “executed” does not

 gld_request, gst_request
- Incremented by 1 per warp for each gmem load/store instruction

- Instruction may be counted if it is “predicated out”

 l1_global_load_miss, l1_global_load_hit, global_store_transaction
- Incremented by 1 per L1 line (line is 128B)

 L2_read_request
- incremented by 1 per 32 bytes of DRAM reads, per GPU

- Especially useful for memory requests that bypass L1 cache

 (uncached_global_load_transaction)
- (Incremented by 1 per group of 1, 2, 3, or 4 transactions)

 For ratio comparisons between instructions and memory bandwidth:
 32 * instructions_issued /* 32 = warp size */

 128 Bytes * (global_store_transaction + l1_global_load_miss)

7

© NVIDIA Corporation 2011

New Profiler API

 Whole application might be too large to profile /

uninteresting kernels

 CUDA 4.0: Define profiled region of application:

 cuProfilerInitialize()

 cuProfilerStart()

 cuProfilerStop ()

 Can change config/log file while profiling this region:

 CUDA reference manual explains API calls

8

© NVIDIA Corporation 2011

A Note on Counting Global Memory Accesses

 Load/store instruction count can be lower than the number of actual
memory transactions
 Address pattern, different word sizes

 Hence: Counting requests from L1 to the rest of the memory system
makes the most sense
 Caching-loads: count L1 misses

 Non-caching loads and stores: count L2 read requests

- Note: L2 counters are for the entire chip, L1 counters are per SM.
(L2 counters also include local memory transactions, see chapter on Register Spilling)

 Assuming “coalesced” address patterns, some shortcuts:
 One 32-bit access instruction -> one 128-byte transaction per warp

 One 64-bit access instruction -> two 128-byte transactions per warp

 One 128-bit access instruction -> four 128-byte transactions per warp

9

© NVIDIA Corporation 2011

CUDA 4.0: Visual Profiler Optimization Hints

 Profiler computes for kernels:

 Instruction throughput

 Memory throughput

 GPU Occupancy

 Profiler hints at limiting factors

 This talk shows approach

behind Profiler hints, but

also how to do own experiments

that make limiters even more

clear, e.g. through source-code

modifications

© NVIDIA Corporation 2011

Analysis with Modified Source Code

 Time memory-only and math-only versions of the kernel

 Easier for codes that don‟t have data-dependent control-flow or addressing

 Gives you good estimates for:

- Time spent accessing memory

- Time spent in executing instructions

 Then, compare times for modified kernels

 Helps decide whether the kernel is mem or math bound

 Shows how well memory operations are overlapped with arithmetic

- Compare the sum of mem-only and math-only times to full-kernel time

11

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

time

12

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

time

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full mem math full

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math overlap:

latency not a problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

14

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full mem math full mem math full

Memory and

latency bound

Poor mem-math overlap:

Latency is a problem

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math overlap:

latency not a problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

15

© NVIDIA Corporation 2011

Source Modification

 Memory-only:
 Remove as much arithmetic as possible

- Without changing access pattern

- Use the profiler to verify that load/store instruction count is the same

 Store-only:
 Also remove the loads

 Math-only:

 Remove global memory accesses

 Need to trick the compiler:

- Compiler throws away all code that it detects as not contributing to gmem stores

- Put gmem stores inside conditionals that always evaluate to false

- Condition outcome should not be known to the compiler (kernel parameter)

- Condition should depend on the value about to be stored
(prevents other optimizations)

16

© NVIDIA Corporation 2011

Source Modification for Math-only

__global__ void fwd_3D(..., int flag)
{

...
value = temp + coeff * vsq;
if(1 == value * flag)

g_output[out_idx] = value;
}

If you compare only the flag,

then the compiler may move

the computation into the

conditional as well

17

• Condition outcome should not be known to the compiler

• Condition should depend on the value about to be stored

(prevents other optimizations)

© NVIDIA Corporation 2011

Source Modification and Occupancy

 Removing pieces of code is likely to affect register count

 This could increase GPU occupancy, skewing the results

 See slide 23 to see how that could affect throughput

 Make sure to keep the same occupancy

 Check the occupancy with profiler before modifications

 After modifications, if necessary add dummy shared memory to match the

unmodified kernel‟s GPU occupancy

kernel<<< grid, block, smem, ...>>>(...)

18

© NVIDIA Corporation 2011

Case Study: Limiter Analysis

 Analysis:
 Instruction:Byte ratio = ~2.66

- 32*18,194,139 / 128*1,708,032

 Good overlap between math and mem:

- 2.12 ms of math-only time (13%)
are not overlapped with mem

 App memory throughput: 62 GB/s

- HW theory is 114 GB/s, so we‟re off
optimum

 Conclusion:
 Code is memory-bound

 Latency could be an issue too

 Optimizations should focus on memory
throughput first

- math contributes very little to total time
(2.12 out of 35.39ms)

19

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

© NVIDIA Corporation 2011

Case Study: Limiter Analysis

 Analysis:
 Instruction:Byte ratio = ~2.66

- 32*18,194,139 / 128*1,708,032

 Good overlap between math and mem:

- 2.12 ms of math-only time (13%)
are not overlapped with mem

 App memory throughput: 62 GB/s

- HW theory is 114 GB/s, so we‟re off
optimum

 Conclusion:
 Code is memory-bound

 Latency could be an issue too

 Optimizations should focus
on memory throughput first

- math contributes very little to total time
(2.12 out of 35.39ms)

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

20

© NVIDIA Corporation 2011

Summary: Limiter Analysis

 Rough algorithmic analysis:

 How many bytes needed, how many instructions

 Profiler analysis:

 Instruction count, memory request/transaction count

 Analysis with source modification:

 Memory-only version of the kernel

 Math-only version of the kernel

 Examine how these times relate and overlap

21

© NVIDIA Corporation 2011

Optimizations for Global Memory

22

© NVIDIA Corporation 2011

Memory Throughput Analysis

 Throughput: from application point of view

 From app point of view: count bytes requested by the threads / application code

 From HW point of view: count bytes moved by the hardware (L2/DRAM)

 The two can be different

- Scattered/misaligned pattern: not all transaction bytes are utilized

- Broadcast: the same small transaction serves many requests

 Two aspects to analyze for performance impact:

 Addressing pattern

 Number of concurrent accesses in flight

23

© NVIDIA Corporation 2011

Memory Throughput Analysis

 How to determine that access pattern is problematic:

 If app throughput is much smaller than HW throughput

 Relative comparison in profiler counters:

access instruction count is significantly smaller than mem transaction count

- gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)

- gst_request < 4 * l2_write_requests/#SMs * (word_size / 4B) (*)

- Make sure to adjust the transaction counters for word size (see slide 9)

 How to tell that number of concurrent accesses is insufficient:

 Use profiler to get HW throughput

 Throughput from HW point of view is much lower than theoretical

 CUDA 4.0 Visual Profiler does some of this analysis automatically

24
(*) Does not account for local mem stores to global memory, see Register Spilling)

© NVIDIA Corporation 2011

Concurrent Accesses and Performance

 Increment a 64M element array
 Two accesses per thread (load then store, but they are dependent)

- Thus, each warp (32 threads) has one outstanding transaction at a time

 Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

25

© NVIDIA Corporation 2011

Optimization: Address Pattern

 Coalesce the address pattern (adjacent threads = adj. memfetch)
 128-byte lines for caching loads

 32-byte segments for non-caching loads, stores

 A warp‟s address pattern is converted to transactions

- Coalesce to maximize utilization of bus transactions

- Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

 Try non-caching loads
 Compiler option: -Xptxas –dlcm=cg or Inline PTX (CUDA 4.0)

 Smaller transactions (32B instead of 128B)

- more efficient for scattered or partially-filled patterns

 Try fetching data via texture unit
 Smaller transactions and different caching

 Cache not polluted by other gmem loads

26

© NVIDIA Corporation 2011

Optimizing Access Concurrency

 Have enough concurrent accesses to saturate the bus
 Need (mem_latency)x(bandwidth) bytes in flight (Little‟s law)

 Fermi C2050 global memory:

- 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs

- Need 30-50 128-byte transactions in flight per SM

 Ways to increase concurrent accesses:
 Increase occupancy

- Adjust threadblock dimensions

- To maximize occupancy at given register and smem requirements

- Reduce register count (-maxrregcount option, or __launch_bounds__)

- Use CUDA Occupancy Calculator (part of Toolkit)

 Modify code to process several elements per thread

27

© NVIDIA Corporation 2011

Case Study: Access Pattern 1

 Same 3DFD code as in the previous study

 Using caching loads (compiler default):
 Memory throughput: 62 / 74 GB/s for app / hw

 Different enough to be interesting

 Loads are coalesced:
 gld_request == (l1_global_load_miss + l1_global_load_hit)

 There are halo loads that use only 4 threads out of 32
 For these transactions only 16 bytes out of 128 are useful

 Solution: try non-caching loads
 Performance increase of 7%

- Not bad for just trying a compiler flag, no code change

 Memory throughput: 66 / 67 GB/s for app / hw

28

© NVIDIA Corporation 2011

Case Study: Accesses in Flight

 Continuing with the FD code

 Throughput from both app and hw point of view is 66-67 GB/s

 Now 30.84ms out of 33.71ms are due to mem

 1024 concurrent threads per SM

- Due to register count (24 per thread)

- But: At this thread count , simple copy kernel reaches ~80% of achievable mem
throughput

 Solution: increase accesses per thread

 Modified code so that each thread is responsible for 2 output points

- Doubles the load and store count per thread, saves some indexing math

- Doubles the tile size -> reduces bandwidth spent on halos

 Further 25% increase in performance

- App and HW throughputs are now 82 and 84 GB/s, respectively

29

© NVIDIA Corporation 2011

Case Study: Access Pattern 2

 Kernel from climate simulation code
 Mostly fp64 (so, at least 2 x 128B transactions per warp's 32 thread access)

 Profiler results:
 gld_request: 72,704

 l1_global_load_hit: 439,072

 l1_global_load_miss: 724,192

 Analysis:
 L1 hit rate: 37.7%

 16 transactions per load instruction

- Indicates bad access pattern (2 are expected due to 64-bit words)

- Of the 16, 10 miss in L1 and contribute to mem bus traffic (compare: 2 optimal)

- So, we fetch 5x more bytes than needed by the app

30

© NVIDIA Corporation 2011

Case Study: Access Pattern 2

 Looking closer at the access pattern:

 Each thread traverses a contiguous memory region - linearly!

 Developer expecting CPU-like L1 caching

- But remember what's been said about coding for L1 and L2

- (Fundamental Optimizations, slide 11)

 This is one of the worst access patterns for GPUs

 Solution:

 Transposed the code so that each warp accesses a contiguous memory region

 2.17 transactions per load instruction

 This and some other changes improved performance by 3x

31

© NVIDIA Corporation 2011

Optimizing w. Compression / datatype change

 Consider compression/data type changes when
 Every other aspect has been optimized

 Kernel is limited by number of bytes needed

 Approaches:
 Int: conversion between 8-, 16-, 32-bit integers is 1 instruction

(64-bit requires a couple)

 FP: conversion between fp16, fp32, fp64 is one instruction
- fp16 (1s5e10m) is storage only, no math instructions

 Range-based compression:
- Lower and upper limits are kernel arguments

- Data is an index for interpolation between the limits

 Application in practice:
 Clark et al. “Solving Lattice QCD systems of equations using mixed precision

solvers on GPUs”

 http://arxiv.org/abs/0911.3191

32

http://arxiv.org/abs/0911.3191

© NVIDIA Corporation 2011

Summary: Memory Analysis and Optimization

 Analyze:

 Access pattern:

- Compare counts of access instructions and transactions

- Compare throughput from app and hw point of view

 Number of accesses in flight

- Look at occupancy and independent accesses per thread

- Compare achieved throughput to theoretical throughput

- Also compare with simple memcpy throughput at the same occupancy

 Optimizations:
 Coalesce address patterns per warp (nothing new here), consider texture

 Process more words per thread (if insufficient accesses in flight to saturate bus)

 Try all four combinations of
L1 size (16kb/48kb) and load type (caching and non-caching)

 Consider compression / datatype change for global memory storage

33

© NVIDIA Corporation 2011

Optimizations for Instruction Throughput

34

© NVIDIA Corporation 2011

Possible Limiting Factors

 Raw instruction throughput
 Know the kernel instruction mix

 fp32, fp64, int, mem, transcendentals have different throughputs

- Refer to the CUDA Programming Guide / Best Practices Guide

 Can examine assembly, if needed:

- Can look at PTX (virtual assembly), though it‟s not the final optimized code

- Can look at post-optimization machine assembly (--dump-sass, via cuobjdump)

 Instruction serialization ("instruction replays" for warp's threads)

 Occurs when threads in a warp execute/issue the same instruction
after each other instead of in parallel

- Think of it as “replaying” the same instruction for different threads in a warp

 Some causes:

- Shared memory bank conflicts

- Constant memory bank conflicts

35

© NVIDIA Corporation 2011

Instruction Throughput: Analysis

 Profiler counters (both incremented by 1 per warp):

 instructions executed: counts instructions encountered during execution

 instructions issued: also includes additional issues due to serialization

 Difference between the two: instruction issues that happened due to

serialization, instruction cache misses, etc.

- Will rarely be 0, concern only if it‟s a significant percentage of instructions issued

 Compare achieved throughput to HW capabilities

 Peak instruction throughput is documented in the Programming Guide

 Profiler also reports throughput:

- GT200: as a fraction of theoretical peak for fp32 instructions

- Fermi: as IPC (instructions per clock)

36

© NVIDIA Corporation 2011

Instruction Throughput: Optimization

 Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)

 Available for a number of math.h functions

 2-3 bits lower precision, much higher throughput

- Refer to the CUDA Programming Guide for details

 Often a single instruction, whereas a non-intrinsic is a SW sequence

 Additional compiler flags that also help (select GT200-level precision):
 -ftz=true : flush denormals to 0

 -prec-div=false : faster fp division instruction sequence (some precision loss)

 -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

 Make sure you do fp64 arithmetic only where you mean it:

 fp64 throughput is lower than fp32

 fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

37

© NVIDIA Corporation 2011

Serialization: Profiler Analysis

 Serialization is significant if

 instructions_issued is significantly higher than instructions_executed

 CUDA 4.0 Profiler: Instructions replayed %

 Warp divergence (Warp has to execute both branch of if())

 Profiler counters: divergent_branch, branch

Profiler derived: Divergent branches (%)).

 However, only counts the branch instructions, not the rest of divergent instructions.

 Better: „threads instruction executed‟ counter:

Increments for every instruction by number of threads that executed the instruction.

 If there is no divergence, then for every instruction it should increment by 32

(and threads_instruction_executed = 32* instruction_executed)

 Thus: Control_flow_divergence% =
100 * ((32 * instructions executed) – threads instruction executed)/(32* instructions executed)

38

© NVIDIA Corporation 2011

Serialization: Profiler Analysis

 SMEM bank conflicts
 Profiler counters:

- l1_shared_bank_conflict

- incremented by 1 per warp for each replay
(or: each n-way shared bank conflict increments by n-1)

- double increment for 64-bit accesses

- shared_load, shared_store: incremented by 1 per warp per instruction

 Bank conflicts are significant if both are true:

- instruction throughput affects performance

- l1_shared_bank_conflict is significant compared to instructions_issued:

- Shared bank conflict replay (%) =
100 * (l1_shared_bank_conflict)/instructions_issued

- Shared memory bank conflict per shared memory instruction (%) =
100 * (l1 shared bank conflict)/(shared load + shared store)

39

© NVIDIA Corporation 2011

Serialization: Analysis with Modified Code

 Modify kernel code to assess performance improvement if

serialization were removed

 Helps decide whether optimizations are worth pursuing

 Shared memory bank conflicts:

 Change indexing to be either broadcasts or just threadIdx.x

 Should also declare smem variables as volatile

- Prevents compiler from “caching” values in registers

 Warp divergence:

 Change the if-condition to have all threads take the same path

 Time both paths to see what each costs

40

© NVIDIA Corporation 2011

Serialization: Optimization

 Shared memory bank conflicts:

 Pad SMEM arrays

- For example, when a warp accesses a 2D array‟s column

- See CUDA Best Practices Guide, Transpose SDK whitepaper

 Rearrange data in SMEM

 Warp serialization:

 Try grouping threads that take the same path into same warp

- Rearrange the data, pre-process the data

- Rearrange how threads index data (may affect memory perf)

41

© NVIDIA Corporation 2011

Case Study: SMEM Bank Conflicts

 A different climate simulation code kernel, fp64

 Profiler values:
 Instructions:

- Executed / issued: 2,406,426 / 2,756,140

- Difference: 349,714 (12.7% of instructions issued were “replays”)

 GMEM:
- Total load and store transactions: 170,263

- Instr:byte ratio: 4

- Suggests that instructions are a significant limiter
(especially since there is a lot of fp64 math)

 SMEM:
- Load / store: 421,785 / 95,172

- Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)

- This means a total of 854,385 SMEM access instructions
(421,785 +95,172+337,428) , of which 39% replays

 Solution: Pad shared memory array
Performance increased by 15%

- replayed instructions reduced down to 1%

42

© NVIDIA Corporation 2011

Instruction Throughput: Summary

 Analyze:

 Check achieved instruction throughput

 Compare to HW peak (note: must take instruction mix into consideration)

 Check percentage of instructions due to serialization

 Optimizations:

 Intrinsics, compiler options for expensive operations

 Group threads that are likely to follow same execution path

 Avoid SMEM bank conflicts (pad, rearrange data)

43

© NVIDIA Corporation 2011

Optimizations for Latency

44

© NVIDIA Corporation 2011

Latency: Analysis

 Suspect latency issues if:

 Neither memory nor instruction throughput rates are close to HW theoretical rates

 Poor overlap between mem and math

- Full-kernel time is significantly larger than max{mem-only, math-only}

 Two possible causes:
 Insufficient concurrent threads per multiprocessor to hide latency

- Occupancy too low

- Too few threads in kernel launch to load the GPU

- Indicator: elapsed time doesn‟t change if problem size is increased (and with
it the number of blocks/threads)

 Too few concurrent threadblocks per SM when using __syncthreads()
- __syncthreads() can prevent overlap between math and mem within the same threadblock

45

© NVIDIA Corporation 2011

Simplified View of Latency and Syncs

46

Math-only time

Memory-only time

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA Corporation 2011

Simplified View of Latency and Syncs

47

Math-only time

Memory-only time

Full-kernel time, two threadblocks per SM

(each half the size of one large one)

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA Corporation 2011

Latency: Optimization

 Insufficient threads or workload:

 Best: Increase the level of parallelism (more threads)

 Alternative: Process several output elements per thread – gives more independent
memory and arithmetic instructions (which get pipelined) - downside: code complexity

 Synchronization Barriers:

 Can assess impact on perf by commenting out __syncthreads()

- Incorrect result, but gives upper bound on improvement

 Try running several smaller threadblocks

- Less hogging of SMs; think of it as SM “pipelining” blocks

- In some cases that costs extra bandwidth due to more halos

 More information:

 Vasily Volkov, GTC2010: “Better Performance at Lower Occupancy”
http://www.gputechconf.com/page/gtc-on-demand.html#session2238

48

http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html

© NVIDIA Corporation 2011

Register Spilling

49

© NVIDIA Corporation 2011

Register Spilling

 Compiler “spills” registers to local memory when register limit exceeded

 Fermi HW limit is 63 registers per thread

 Spills also possible < 63regs if register limit is programmer-specified

- Common when trying to achieve certain GPU occupancy
with -maxrregcount compiler flag or __launch_bounds__ in source

 lmem is like gmem memory-bus-load-wise, except that writes are cached in L1

- lmem load hit in L1 -> no bus traffic

- lmem load miss in L1 -> bus traffic (128 bytes per miss)

 Compiler flag –Xptxas –v gives the register and lmem usage per thread

 Potential impact on performance

 Additional bandwidth pressure if evicted from L1

 Additional instructions

 Not always a problem, easy to investigate with quick profiler analysis
50

© NVIDIA Corporation 2011

Register Spilling: Analysis

 Profiler counters: l1_local_load_hit, l1_local_load_miss

 Impact on instruction count:

 Compare L1 localmem transactions to total instructions issued

 Impact on memory throughput:

 Misses add 128 bytes per warp

 Compare 2*l1_local_load_miss count to gmem access count (stores + loads)

- Multiply lmem load misses by 2: missed line must have been evicted -> store

across bus

- If kernel uses caching loads: consider only gmem misses in L1

- If kernel uses non-caching loads: consider all loads

51

© NVIDIA Corporation 2011

Optimization for Register Spilling

 Try increasing the limit of registers per thread

 Use a higher limit in –maxrregcount, or lower thread count for __launch_bounds__

 Will likely decrease occupancy, potentially making gmem accesses less efficient

 However, may still be an overall win – lmem transactions potentially reduced,

thus fewer total bytes being accessed in gmem

 Use shared memory for less-used variables

 Non-caching loads for gmem

 potentially fewer contentions with spilled registers in L1

 Increase L1 size to 48KB

 default is 16KB L1 / 48KB smem

52

© NVIDIA Corporation 2011

Register Spilling: Case Study

 FD kernel, (3D-cross stencil)

 fp32, so all gmem accesses are 4-byte words

- Needed higher occupancy to saturate memory bandwidth

 Coalesced, non-caching loads

- one gmem request = 128 bytes

- all gmem loads result in bus traffic

 Larger threadblocks mean lower gmem pressure

- Halos (ghost cells) are smaller as a percentage

 Aiming to have 1024 concurrent threads per SM

 Means no more than 32 registers per thread

 Compiled with –maxrregcount=32

53

© NVIDIA Corporation 2011

Case Study: Register Spilling 1

 10th order in space kernel (31-point stencil)
 32 registers per thread : 68 bytes of lmem per thread : upto 1024 threads per SM

 Profiled counters:
 l1_local_load_miss = 36 inst_issued = 8,308,582

 l1_local_load_hit = 70,956 gld_request = 595,200

 local_store = 64,800 gst_request = 128,000

 Conclusion: spilling is not a problem in this case
 Ratio of gmem to lmem bus traffic approx 10,044 : 1

(hardly any bus traffic is due to spills)
- L1 contains most of the spills (99.9% hit rate for lmem loads)

 Only 1.6% of all instructions are due to spills

 Comparison:
 42 registers per thread : no spilling : upto 768 threads per SM

- Single 512-thread block per SM : 24% perf decrease

- Three 256-thread blocks per SM : 7% perf decrease

54

© NVIDIA Corporation 2011

Case Study: Register Spilling 2

 12th order in space kernel (37-point stencil)
 32 registers per thread : 80 bytes of lmem per thread : up to 1024 threads per SM

 Profiled counters:
 l1_local_load_miss = 376,889 inst_issued = 10,154,216

 l1_local_load_hit = 36,931 gld_request = 550,656

 local_store = 71,176 gst_request = 115,200

 Conclusion: spilling is a problem for this case
 The ratio of gmem to lmem bus traffic is approx 6 : 7

(53% of bus traffic is due to spilling)
- L1 does not contain the spills (8.9% hit rate for lmem loads)

 Only 4.1% of all instructions are due to spills

 Solution: increase register limit per thread
 42 registers per thread : no spilling : upto 768 threads per SM

 Single 512-thread block per SM : 13% perf increase

 Three 256-thread blocks per SM : 37% perf increase

55

© NVIDIA Corporation 2011

Register Spilling: Summary

 Doesn’t always decrease performance, but when it does it’s due to:
 Increased pressure on the memory bus (due to lmem transactions not L1 cached)

 Increased instruction count

 Use the profiler to examine the impact by comparing:
 2*l1_local_load_miss to all gmem accesses that don‟t hit in L1:

Local memory bus traffic (%) =
(#SMs * 2 * l1 local load miss * 128 * 100)/((l2 read requests + l2 write requests)* 32)

 Local access count to total instructions issued:
Local memory replay (%) =
100 * (l1 local load miss + l1 local store miss)/ instructions_issued

 Register Spilling is significant if:
 Memory-bound code:

lmem misses are significant percentage of total bus traffic

 Instruction-bound code:
lmem accesses are significant percentage of all instructions

56

© NVIDIA Corporation 2011

Summary

 Determining what limits your kernel most:

 Arithmetic, memory bandwidth, latency

 Address the bottlenecks in the order of importance

 Analyze for inefficient use of hardware

 Estimate the impact on overall performance

 Optimize to use hardware most efficiently

 More resources:

 Talk on Fundamental Optimizations

 Prior CUDA tutorials at Supercomputing

- http://gpgpu.org/{sc2007,sc2008,sc2009,sc2010}

 GTC2010 talks: http://www.nvidia.com/gtc2010-content

 CUDA Programming Guide, CUDA Best Practices Guide

 CUDA webinars

57

http://gpgpu.org/
http://www.nvidia.com/gtc2010-content
http://www.nvidia.com/gtc2010-content
http://www.nvidia.com/gtc2010-content

© NVIDIA Corporation 2011

Questions?

58

