Analysis-Driven Optimization
ISC 2011 Tutorial

Gernot Ziegler, NVIDIA Corporation
Performance Optimization Process

- Determine the limits for kernel performance
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above

- Use appropriate performance metric for each kernel
 - For example, for a memory bandwidth-bound kernel, Gflops/s don’t make sense

- Address the limiters in the order of importance
 - Determine how close resource usage is to the HW limits
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just be obvious from how HW operates
Presentation Outline

- **Identifying performance limiters**
- **Analyzing and optimizing**:
 - Memory-bound kernels
 - Instruction (math) bound kernels
 - Kernels with poor latency hiding
 - Register spilling *(depending on available time, but can be downloaded)*

- **For each**:
 - Brief background
 - How to analyze
 - How to judge whether particular issue is problematic
 - How to optimize
 - Some cases studies based on “real-life” application kernels

- **Most information is for Fermi GPUs**
Notes on profiler

- Most counters are reported per Streaming Multiprocessor (SM)
 - Not entire GPU
 - Exceptions: L2 and DRAM counters
- A single run can only collect a few counters
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
 - Use CUPTI API to have your application collect signals on its own
- Counter values may not be exactly the same for repeated runs
 - Threadblocks and warps are scheduled at run-time
 - So, “two counters being equal” usually means “two counters within a small delta”
- See the profiler documentation for more information
Identifying Performance Limiters
Limited by Bandwidth or Arithmetic?

- **Perfect fp32 instructions:bytes ratio for Fermi C2050:**
 - \(~4.5 : 1\) instructions/byte with ECC on
 - \(~3.6 : 1\) instructions/byte with ECC off
 - These assume fp32 instructions, throughput for other instructions varies

- **Algorithmic analysis:**
 - Rough estimate of arithmetic to bytes ratio

- **Actual Code likely uses more instructions and bytes than algorithmic analysis suggests:**
 - Instructions for loop control, pointer math, etc.
 - Address pattern may result in more memory transactions/bandwidth
 - Two ways to investigate:
 - Use the profiler (quick, but approximate)
 - Use source code modification (more accurate, more work intensive)
Analysis with Profiler

- **Profiler counters:**
 - `instructions_issued, instructions_executed`
 - Both incremented by 1 per warp
 - “issued” includes instruction replays (instruction re-issue), “executed” does not
 - `gld_request, gst_request`
 - Incremented by 1 per warp for each gmem load/store instruction
 - Instruction may be counted if it is “predicated out”
 - `l1_global_load_miss, l1_global_load_hit, global_store_transaction`
 - Incremented by 1 per L1 line (line is 128B)
 - `L2_read_request`
 - Incremented by 1 per 32 bytes of DRAM reads, per GPU
 - Especially useful for memory requests that bypass L1 cache
 - `(uncached_global_load_transaction)`
 - (Incremented by 1 per group of 1, 2, 3, or 4 transactions)

- **For ratio comparisons between instructions and memory bandwidth:**
 - `32 * instructions_issued /* 32 = warp size */`
 - `128 Bytes * (global_store_transaction + l1_global_load_miss)`
New Profiler API

- Whole application might be too large to profile / uninteresting kernels
- CUDA 4.0: Define profiled region of application:
 - cuProfilerInitialize()
 - cuProfilerStart()
 - cuProfilerStop()
- Can change config/log file while profiling this region:
- CUDA reference manual explains API calls
A Note on Counting Global Memory Accesses

- Load/store instruction count can be lower than the number of actual memory transactions
 - Address pattern, different word sizes

- Hence: Counting requests from L1 to the rest of the memory system makes the most sense
 - Caching-loads: count L1 misses
 - Non-caching loads and stores: count L2 read requests
 - Note: L2 counters are for the entire chip, L1 counters are per SM.
 (L2 counters also include local memory transactions, see chapter on Register Spilling)

- Assuming “coalesced” address patterns, some shortcuts:
 - One 32-bit access instruction -> one 128-byte transaction per warp
 - One 64-bit access instruction -> two 128-byte transactions per warp
 - One 128-bit access instruction -> four 128-byte transactions per warp
CUDA 4.0: Visual Profiler Optimization Hints

- Profiler computes for kernels:
 - Instruction throughput
 - Memory throughput
 - GPU Occupancy
- Profiler *hints* at limiting factors
- This talk shows approach behind Profiler hints, but also how to do own experiments that make limiters even more clear, e.g. through source-code modifications
Analysis with Modified Source Code

- **Time memory-only and math-only versions of the kernel**
 - Easier for codes that don’t have data-dependent control-flow or addressing
 - Gives you good estimates for:
 - Time spent accessing memory
 - Time spent in executing instructions

- **Then, compare times for modified kernels**
 - Helps decide whether the kernel is mem or math bound
 - Shows how well memory operations are overlapped with arithmetic
 - Compare the sum of mem-only and math-only times to full-kernel time
Some Example Scenarios

Memory-bound

Good mem-math overlap: latency not a problem
(assuming memory throughput is not low compared to HW theory)
Some Example Scenarios

Memory-bound
Good mem-math overlap: latency not a problem
(assuming memory throughput is not low compared to HW theory)

Math-bound
Good mem-math overlap: latency not a problem
(assuming instruction throughput is not low compared to HW theory)
Some Example Scenarios

- **Memory-bound**

 Good mem-math overlap: latency not a problem
 (assuming memory throughput is not low compared to HW theory)

- **Math-bound**

 Good mem-math overlap: latency not a problem
 (assuming instruction throughput is not low compared to HW theory)

- **Balanced**

 Good mem-math overlap: latency not a problem
 (assuming memory/instr throughput is not low compared to HW theory)
Some Example Scenarios

- **Memory-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming memory throughput is not low compared to HW theory)

- **Math-bound**
 - Good mem-math overlap: latency not a problem
 - (assuming instruction throughput is not low compared to HW theory)

- **Balanced**
 - Good mem-math overlap: latency not a problem
 - (assuming memory/instr throughput is not low compared to HW theory)

- **Memory and latency bound**
 - Poor mem-math overlap: Latency is a problem
Source Modification

- **Memory-only:**
 - Remove as much arithmetic as possible
 - Without changing access pattern
 - Use the profiler to verify that load/store instruction count is the same

- **Store-only:**
 - Also remove the loads

- **Math-only:**
 - Remove global memory accesses
 - Need to trick the compiler:
 - Compiler throws away all code that it detects as not contributing to gmem stores
 - Put gmem stores inside conditionals that always evaluate to false
 - Condition outcome should not be known to the compiler (kernel parameter)
 - Condition should depend on the value about to be stored (prevents other optimizations)
Source Modification for Math-only

• Condition outcome should not be known to the compiler
• Condition should depend on the value about to be stored (prevents other optimizations)

```c
__global__ void fwd_3D( ..., int flag)
{
    ... 
    value = temp + coeff * vsq;
    if( 1 == value * flag )
        g_output[out_idx] = value;
}
```

If you compare only the flag, then the compiler may move the computation into the conditional as well.
Source Modification and Occupancy

- Removing pieces of code is likely to affect register count
 - This could increase GPU occupancy, skewing the results
 - See slide 23 to see how that could affect throughput

- Make sure to keep the same occupancy
 - Check the occupancy with profiler before modifications
 - After modifications, if necessary add dummy shared memory to match the unmodified kernel’s GPU occupancy

```c
kernel<<< grid, block, smem, ...>>>(...)
```
Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):
 - Full-kernel: 35.39
 - Mem-only: 33.27
 - Math-only: 16.25
- Instructions issued:
 - Full-kernel: 18,194,139
 - Mem-only: 7,497,296
 - Math-only: 16,839,792
- Memory access transactions:
 - Full-kernel: 1,708,032
 - Mem-only: 1,708,032
 - Math-only: 0

- Analysis:
 - Instruction:Byte ratio = ~2.66
 - $32 \times 18,194,139 / 128 \times 1,708,032$
 - Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
 - App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off optimum

- Conclusion:
 - Code is memory-bound
 - Latency could be an issue too
 - Optimizations should focus on memory throughput first
 - Math contributes very little to total time (2.12 out of 35.39ms)
Case Study: Limiter Analysis

• 3DFD of the wave equation, fp32
• Time (ms):
 – Full-kernel: 35.39
 – Mem-only: 33.27
 – Math-only: 16.25
• Instructions issued:
 – Full-kernel: 18,194,139
 – Mem-only: 7,497,296
 – Math-only: 16,839,792
• Memory access transactions:
 – Full-kernel: 1,708,032
 – Mem-only: 1,708,032
 – Math-only: 0

Analysis:

- Instruction:Byte ratio = ~2.66
 - 32*18,194,139 / 128*1,708,032
- Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
- App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off optimum

Conclusion:

- Code is memory-bound
- Latency could be an issue too
- Optimizations should focus on memory throughput first
 - math contributes very little to total time (2.12 out of 35.39ms)
Summary: Limiter Analysis

- **Rough algorithmic analysis:**
 - How many bytes needed, how many instructions

- **Profiler analysis:**
 - Instruction count, memory request/transaction count

- **Analysis with source modification:**
 - Memory-only version of the kernel
 - Math-only version of the kernel
 - Examine how these times relate and overlap
Optimizations for Global Memory
Memory Throughput Analysis

- **Throughput: from application point of view**
 - From app point of view: count bytes requested by the threads / application code
 - From HW point of view: count bytes moved by the hardware (L2/DRAM)
 - The two can be different
 - Scattered/misaligned pattern: not all transaction bytes are utilized
 - Broadcast: the same small transaction serves many requests

- **Two aspects to analyze for performance impact:**
 - Addressing pattern
 - Number of concurrent accesses in flight
Memory Throughput Analysis

- **How to determine that access pattern is problematic:**
 - If app throughput is much smaller than HW throughput
 - Relative comparison in profiler counters:
 access instruction count is **significantly** smaller than mem transaction count
 - gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)
 -gst_request < 4 * l2_write_requests/#SMs * (word_size / 4B)
 - Make sure to adjust the transaction counters for word size (see slide 9)

- **How to tell that number of concurrent accesses is insufficient:**
 - Use profiler to get HW throughput
 - Throughput from HW point of view is much lower than theoretical

- **CUDA 4.0 Visual Profiler does some of this analysis automatically**

(*) Does not account for local mem stores to global memory, see Register Spilling)
Concurrent Accesses and Performance

- Increment a 64M element array
 - Two accesses per thread (load then store, but they are dependent)
 - Thus, each warp (32 threads) has one outstanding transaction at a time
- Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller accesses have the same effect as one larger one.
For example:
Four 32-bit \(\sim \) one 128-bit
Optimization: Address Pattern

- Coalesce the address pattern (adjacent threads = adj. memfetch)
 - 128-byte lines for caching loads
 - 32-byte segments for non-caching loads, stores
 - A warp’s address pattern is converted to transactions
 - Coalesce to maximize utilization of bus transactions
 - Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

- Try non-caching loads
 - Compiler option: -Xptxas -dlcm=cg or Inline PTX (CUDA 4.0)
 - Smaller transactions (32B instead of 128B)
 - more efficient for scattered or partially-filled patterns

- Try fetching data via texture unit
 - Smaller transactions and different caching
 - Cache not polluted by other gmem loads
Optimizing Access Concurrency

- **Have enough concurrent accesses to saturate the bus**
 - Need \((\text{mem_latency}) \times (\text{bandwidth})\) bytes in flight (Little’s law)
 - Fermi C2050 global memory:
 - 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs
 - Need 30-50 128-byte transactions in flight per SM

- **Ways to increase concurrent accesses:**
 - Increase occupancy
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - Reduce register count (-maxrregcount option, or _launch_bounds_)
 - Use *CUDA Occupancy Calculator* (part of Toolkit)
 - Modify code to process several elements per thread
Case Study: Access Pattern 1

- Same 3DFD code as in the previous study
- Using caching loads (compiler default):
 - Memory throughput: 62 / 74 GB/s for app / hw
 - Different enough to be interesting

- Loads are coalesced:
 - `gld_request == (l1_global_load_miss + l1_global_load_hit)`

- There are halo loads that use only 4 threads out of 32
 - For these transactions only 16 bytes out of 128 are useful

- Solution: try non-caching loads
 - Performance increase of 7%
 - Not bad for just trying a compiler flag, no code change
 - Memory throughput: 66 / 67 GB/s for app / hw
Case Study: Accesses in Flight

- **Continuing with the FD code**
 - Throughput from both app and hw point of view is 66-67 GB/s
 - Now 30.84ms out of 33.71ms are due to mem
 - 1024 concurrent threads per SM
 - Due to register count (24 per thread)
 - But: At this thread count, simple copy kernel reaches ~80% of achievable mem throughput

- **Solution: increase accesses per thread**
 - Modified code so that each thread is responsible for 2 output points
 - Doubles the load and store count per thread, saves some indexing math
 - Doubles the tile size -> reduces bandwidth spent on halos
 - Further 25% increase in performance
 - App and HW throughputs are now 82 and 84 GB/s, respectively
Case Study: Access Pattern 2

- **Kernel from climate simulation code**
 - Mostly fp64 (so, at least $2 \times 128B$ transactions per warp's 32 thread access)

- **Profiler results:**
 - `gld_request`: 72,704
 - `l1_global_load_hit`: 439,072
 - `l1_global_load_miss`: 724,192

- **Analysis:**
 - L1 hit rate: 37.7%
 - **16** transactions per load instruction
 - Indicates bad access pattern (2 are expected due to 64-bit words)
 - Of the 16, 10 miss in L1 and contribute to mem bus traffic (compare: 2 optimal)
 - So, we fetch **5x more bytes than needed** by the app
Case Study: Access Pattern 2

- **Looking closer at the access pattern:**
 - *Each thread* traverses a contiguous memory region - linearly!
 - Developer expecting CPU-like L1 caching
 - But remember what's been said about coding for L1 and L2
 - (Fundamental Optimizations, slide 11)
 - This is one of the worst access patterns for GPUs

- **Solution:**
 - Transposed the code so that *each warp* accesses a contiguous memory region
 - 2.17 transactions per load instruction
 - This and some other changes improved performance by 3x
Consider compression/data type changes when
- Every other aspect has been optimized
- Kernel is limited by number of bytes needed

Approaches:
- Int: conversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a couple)
- FP: conversion between fp16, fp32, fp64 is one instruction
 - fp16 (1s5e10m) is storage only, no math instructions
- Range-based compression:
 - Lower and upper limits are kernel arguments
 - Data is an index for interpolation between the limits

Application in practice:
- Clark et al. “Solving Lattice QCD systems of equations using mixed precision solvers on GPUs”
Summary: Memory Analysis and Optimization

- **Analyze:**
 - Access pattern:
 - Compare counts of access instructions and transactions
 - Compare throughput from app and hw point of view
 - Number of accesses in flight
 - Look at occupancy and independent accesses per thread
 - Compare achieved throughput to theoretical throughput
 - Also compare with simple memcpy throughput at the same occupancy

- **Optimizations:**
 - Coalesce address patterns per warp (nothing new here), consider texture
 - Process more words per thread (if insufficient accesses in flight to saturate bus)
 - Try all four combinations of L1 size (16kb/48kb) and load type (caching and non-caching)
 - Consider compression / datatype change for global memory storage
Optimizations for Instruction Throughput
Possible Limiting Factors

- **Raw instruction throughput**
 - Know the kernel instruction mix
 - \(\text{fp32, fp64, int, mem, transcendental} \) have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
 - Can examine assembly, if needed:
 - Can look at PTX (virtual assembly), though it’s not the final optimized code
 - Can look at post-optimization machine assembly (--dump-sass, via cuobjdump)

- **Instruction serialization ("instruction replays" for warp's threads)**
 - Occurs when threads in a warp execute/issue the same instruction after each other instead of in parallel
 - Think of it as “replaying” the same instruction for different threads in a warp
 - Some causes:
 - Shared memory bank conflicts
 - Constant memory bank conflicts
Instruction Throughput: Analysis

- Profiler counters (both incremented by 1 per warp):
 - instructions executed: counts instructions encountered during execution
 - instructions issued: also includes additional issues due to serialization
 - Difference between the two: instruction issues that happened due to serialization, instruction cache misses, etc.
 - Will rarely be 0, concern only if it’s a significant percentage of instructions issued

- Compare achieved throughput to HW capabilities
 - Peak instruction throughput is documented in the Programming Guide
 - Profiler also reports throughput:
 - GT200: as a fraction of theoretical peak for fp32 instructions
 - Fermi: as IPC (instructions per clock)
Instruction Throughput: Optimization

- **Use intrinsics where possible** (__sin(), __sincos(), __exp(), etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single instruction, whereas a non-intrinsic is a SW sequence

- **Additional compiler flags that also help** (select GT200-level precision):
 - -ftz=true : flush denormals to 0
 - -prec-div=false : faster fp division instruction sequence (some precision loss)
 - -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

- **Make sure you do fp64 arithmetic only where you mean it:**
 - fp64 throughput is lower than fp32
 - fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard
Serialization: Profiler Analysis

- **Serialization is significant if**
 - `instructions_issued` is significantly higher than `instructions_executed`
 - CUDA 4.0 Profiler: Instructions replayed %

- **Warp divergence (Warp has to execute both branch of if())**
 - Profiler counters: divergent_branch, branch
 Profiler derived: Divergent branches (%))
 - However, only counts the branch instructions, not the rest of divergent instructions.
 - Better: ‘threads instruction executed’ counter: Increments for every instruction by number of threads that executed the instruction.
 - If there is no divergence, then for every instruction it should increment by 32 (and `threads_instruction_executed = 32 * instruction_executed`)
 - Thus: `Control_flow_divergence% = 100 * (32 * instructions executed) – threads instruction executed)/(32 * instructions executed)`
Serialization: Profiler Analysis

- **SMEM bank conflicts**
 - Profiler counters:
 - `l1_shared_bank_conflict`
 - incremented by 1 per warp for each replay
 (or: each n-way shared bank conflict increments by n-1)
 - double increment for 64-bit accesses
 - `shared_load, shared_store`: incremented by 1 per warp per instruction
 - Bank conflicts are significant if both are true:
 - instruction throughput affects performance
 - `l1_shared_bank_conflict` is significant compared to `instructions_issued`:
 - Shared bank conflict replay (%) = $100 \times \frac{l1_shared_bank_conflict}{instructions_issued}$
 - Shared memory bank conflict per shared memory instruction (%) = $100 \times \frac{l1_shared_bank_conflict}{(shared_load + shared_store)}$
Serialization: Analysis with Modified Code

- Modify kernel code to assess performance improvement if serialization were removed
 - Helps decide whether optimizations are worth pursuing

- Shared memory bank conflicts:
 - Change indexing to be either broadcasts or just threadIdx.x
 - Should also declare smem variables as volatile
 - Prevents compiler from “caching” values in registers

- Warp divergence:
 - Change the if-condition to have all threads take the same path
 - Time both paths to see what each costs
Serialization: Optimization

- **Shared memory bank conflicts:**
 - Pad SMEM arrays
 - For example, when a warp accesses a 2D array’s column
 - See CUDA Best Practices Guide, Transpose SDK whitepaper
 - Rearrange data in SMEM

- **Warp serialization:**
 - Try grouping threads that take the same path into same warp
 - Rearrange the data, pre-process the data
 - Rearrange how threads index data (may affect memory perf)
Case Study: SMEM Bank Conflicts

- **A different climate simulation code kernel, fp64**

 Profiler values:
 - Instructions:
 - Executed / issued: 2,406,426 / 2,756,140
 - Difference: 349,714 (12.7% of instructions issued were “replays”)

- **GMEM:**
 - Total load and store transactions: 170,263
 - Instr:byte ratio: 4
 - Suggests that instructions are a significant limiter (especially since there is a lot of fp64 math)

- **SMEM:**
 - Load / store: 421,785 / 95,172
 - Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)
 - This means a total of 854,385 SMEM access instructions (421,785 + 95,172 + 337,428), of which 39% replays

- **Solution: Pad shared memory array**
 - Performance increased by 15%
 - replayed instructions reduced down to 1%
Instruction Throughput: Summary

- **Analyze:**
 - Check achieved instruction throughput
 - Compare to HW peak (note: must take instruction mix into consideration)
 - Check percentage of instructions due to serialization

- **Optimizations:**
 - Intrinsics, compiler options for expensive operations
 - Group threads that are likely to follow same execution path
 - Avoid SMEM bank conflicts (pad, rearrange data)
Optimizations for Latency
Latency: Analysis

- **Suspect latency issues if:**
 - Neither memory nor instruction throughput rates are close to HW theoretical rates
 - Poor overlap between mem and math
 - Full-kernel time is significantly larger than max{mem-only, math-only}
 - Two possible causes:
 - Insufficient concurrent threads per multiprocessor to hide latency
 - Occupancy too low
 - Too few threads in kernel launch to load the GPU
 - Indicator: elapsed time doesn’t change if problem size is increased (and with it the number of blocks/threads)
 - Too few concurrent threadblocks per SM when using __syncthreads()
 - __syncthreads() can prevent overlap between math and mem within the same threadblock
Simplified View of Latency and Syncs

- Memory-only time
- Math-only time

Kernel where most math cannot be executed until all data is loaded by the threadblock

Full-kernel time, one large threadblock per SM
Simplified View of Latency and Syncs

- Memory-only time
- Math-only time

Kernel where most math cannot be executed until all data is loaded by the threadblock

- Full-kernel time, one large threadblock per SM
- Full-kernel time, two threadblocks per SM (each half the size of one large one)
Latency: Optimization

- **Insufficient threads or workload:**
 - Best: Increase the level of parallelism (more threads)
 - Alternative: Process several output elements per thread – gives more independent memory and arithmetic instructions (which get pipelined) - downside: code complexity

- **Synchronization Barriers:**
 - Can assess impact on perf by commenting out `__syncthreads()`
 - Incorrect result, but gives upper bound on improvement
 - Try running several smaller threadblocks
 - Less hogging of SMs; think of it as SM “pipelining” blocks
 - In some cases that costs extra bandwidth due to more halos

- **More information:**
 http://www.gputechconf.com/page/gtc-on-demand.html#session2238
Register Spilling
Register Spilling

- Compiler “spills” registers to local memory when register limit exceeded
 - Fermi HW limit is 63 registers per thread
 - Spills also possible < 63regs if register limit is programmer-specified
 - Common when trying to achieve certain GPU occupancy with -maxrregcount compiler flag or __launch_bounds__ in source
 - lmem is like gmem memory-bus-load-wise, except that writes are cached in L1
 - lmem load hit in L1 -> no bus traffic
 - lmem load miss in L1 -> bus traffic (128 bytes per miss)
 - Compiler flag –Xptxas –v gives the register and lmem usage per thread

- Potential impact on performance
 - Additional bandwidth pressure if evicted from L1
 - Additional instructions
 - Not always a problem, easy to investigate with quick profiler analysis
Register Spilling: Analysis

- **Profiler counters:** `l1_local_load_hit, l1_local_load_miss`
- **Impact on instruction count:**
 - Compare L1 localmem transactions to total instructions issued
- **Impact on memory throughput:**
 - Misses add **128 bytes** per warp
 - Compare `2*l1_local_load_miss` count to gmem access count (stores + loads)
 - Multiply lmem load misses by **2**: missed line must have been evicted -> store across bus
 - If kernel uses caching loads: consider only gmem misses in L1
 - If kernel uses non-caching loads: consider all loads
Optimization for Register Spilling

- **Try increasing the limit of registers per thread**
 - Use a higher limit in `-maxrregcount`, or lower thread count for `__launch_bounds__`
 - Will likely decrease occupancy, potentially making gmem accesses less efficient
 - However, may still be an overall win – lmem transactions potentially reduced, thus fewer total bytes being accessed in gmem

- **Use shared memory for less-used variables**
- **Non-caching loads for gmem**
 - potentially fewer contentions with spilled registers in L1

- **Increase L1 size to 48KB**
 - default is 16KB L1 / 48KB smem
Register Spilling: Case Study

- **FD kernel, (3D-cross stencil)**
 - fp32, so all gmem accesses are 4-byte words
 - Needed higher occupancy to saturate memory bandwidth
 - Coalesced, non-caching loads
 - one gmem request = 128 bytes
 - all gmem loads result in bus traffic
 - Larger threadblocks mean lower gmem pressure
 - Halos (ghost cells) are smaller as a percentage

- **Aiming to have 1024 concurrent threads per SM**
 - Means no more than 32 registers per thread
 - Compiled with --maxrregcount=32
Case Study: Register Spilling 1

- **10th order in space kernel (31-point stencil)**
 - 32 registers per thread: 68 bytes of lmem per thread: upto 1024 threads per SM

- **Profiled counters:**
 - $l_1_\text{local_load_miss} = 36$ inst_issued = 8,308,582
 - $l_1_\text{local_load_hit} = 70,956$ gld_request = 595,200
 - local_store = 64,800 gst_request = 128,000

- **Conclusion: spilling is not a problem in this case**
 - Ratio of gmem to lmem bus traffic approx 10,044 : 1
 (hardly any bus traffic is due to spills)
 - L1 contains most of the spills (99.9% hit rate for lmem loads)
 - Only 1.6% of all instructions are due to spills

- **Comparison:**
 - 42 registers per thread: no spilling: upto 768 threads per SM
 - Single 512-thread block per SM: 24% perf decrease
 - Three 256-thread blocks per SM: 7% perf decrease
Case Study: Register Spilling 2

- 12th order in space kernel (37-point stencil)
 - 32 registers per thread: 80 bytes of lmem per thread: up to 1024 threads per SM

- Profiled counters:
 - l1_local_load_miss = 376,889 inst_issued = 10,154,216
 - l1_local_load_hit = 36,931 gld_request = 550,656
 - local_store = 71,176 gst_request = 115,200

- Conclusion: spilling is a problem for this case
 - The ratio of gmem to lmem bus traffic is approx 6:7 (53% of bus traffic is due to spilling)
 - L1 does not contain the spills (8.9% hit rate for lmem loads)
 - Only 4.1% of all instructions are due to spills

- Solution: increase register limit per thread
 - 42 registers per thread: no spilling: upto 768 threads per SM
 - Single 512-thread block per SM: 13% perf increase
 - Three 256-thread blocks per SM: 37% perf increase
Register Spilling: Summary

- Doesn’t always decrease performance, but when it does it’s due to:
 - Increased pressure on the memory bus (due to lmem transactions not L1 cached)
 - Increased instruction count
- Use the profiler to examine the impact by comparing:
 - \(2 \times \text{l1_local_load_miss}\) to all gmem accesses that don’t hit in L1:
 \[
 \text{Local memory bus traffic (\%)} = \frac{\text{#SMs} \times 2 \times \text{l1_local_load_miss} \times 128 \times 100}{(\text{l2 read requests} + \text{l2 write requests}) \times 32}
 \]
 - Local access count to total instructions issued:
 \[
 \text{Local memory replay (\%)} = \frac{100 \times (\text{l1 local load miss} + \text{l1 local store miss})}{\text{instructions_issued}}
 \]
- Register Spilling is significant if:
 - Memory-bound code: Lmem misses are significant percentage of total bus traffic
 - Instruction-bound code: Lmem accesses are significant percentage of all instructions
Summary

- **Determining what limits your kernel most:**
 - Arithmetic, memory bandwidth, latency

- **Address the bottlenecks in the order of importance**
 - *Analyze* for inefficient use of hardware
 - *Estimate* the impact on overall performance
 - *Optimize* to use hardware most efficiently

- **More resources:**
 - Talk on Fundamental Optimizations
 - Prior CUDA tutorials at Supercomputing
 - CUDA webinars
Questions?