

Performance Optimization Process

- Determine the limits for kernel performance
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above
- Use appropriate performance metric for each kernel
 - For example, for a memory bandwidth-bound kernel, Gflops/s don't make sense
- Address the limiters in the order of importance
 - Determine how close resource usage is to the HW limits
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just be obvious from how HW operates

Presentation Outline

- Identifying performance limiters
- Analyzing and optimizing :
 - Memory-bound kernels
 - Instruction (math) bound kernels
 - Kernels with poor latency hiding
 - Register spilling (depending on available time, but can be downloaded)

For each:

- Brief background
- How to analyze
- How to judge whether particular issue is problematic
- How to optimize
- Some cases studies based on "real-life" application kernels
- Most information is for Fermi GPUs

Notes on profiler

- Most counters are reported per Streaming Multiprocessor (SM)
 - Not entire GPU
 - Exceptions: L2 and DRAM counters
- A single run can only collect a few counters
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
 - Use CUPTI API to have your application collect signals on its own
- Counter values may not be exactly the same for repeated runs
 - Threadblocks and warps are scheduled at run-time
 - So, "two counters being equal" usually means "two counters within a small delta"
- See the profiler documentation for more information

Identifying Performance Limiters

Limited by Bandwidth or Arithmetic?

- Perfect fp32 instructions:bytes ratio for Fermi C2050:
 - ~4.5 : 1 instructions/byte with ECC on
 - ~3.6: 1 instructions/byte with ECC off
 - These assume fp32 instructions, throughput for other instructions varies
- Algorithmic analysis:
 - Rough estimate of arithmetic to bytes ratio
- Actual Code likely uses more instructions and bytes than algorithmic analysis suggests:
 - Instructions for loop control, pointer math, etc.
 - Address pattern may result in more memory transactions/bandwidth
 - Two ways to investigate:
 - Use the profiler (quick, but approximate)
 - Use source code modification (more accurate, more work intensive)

Analysis with Profiler

Profiler counters:

- instructions_issued, instructions_executed
 - Both incremented by 1 per warp
 - "issued" includes instruction replays (instruction re-issue), "executed" does not
- gld_request, gst_request
 - Incremented by 1 per warp for each gmem load/store instruction
 - Instruction may be counted if it is "predicated out"
- I1 global load miss, I1 global load hit, global store transaction
 - Incremented by 1 per **L1 line** (line is 128B)
- L2 read request
 - incremented by 1 per 32 bytes of DRAM reads, per GPU
 - Especially useful for memory requests that bypass L1 cache
- (uncached_global_load_transaction)
 - (Incremented by 1 per group of 1, 2, 3, or 4 transactions)
- For ratio comparisons between instructions and memory bandwidth:
 - * instructions_issued /* 32 = warp size */
 - 128 Bytes * (global_store_transaction + I1_global_load_miss)

New Profiler API

- Whole application might be too large to profile / uninteresting kernels
- CUDA 4.0: Define profiled region of application:
 - cuProfilerInitialize()
 - cuProfilerStart()
 - cuProfilerStop ()
- Can change config/log file while profiling this region:
- CUDA reference manual explains API calls

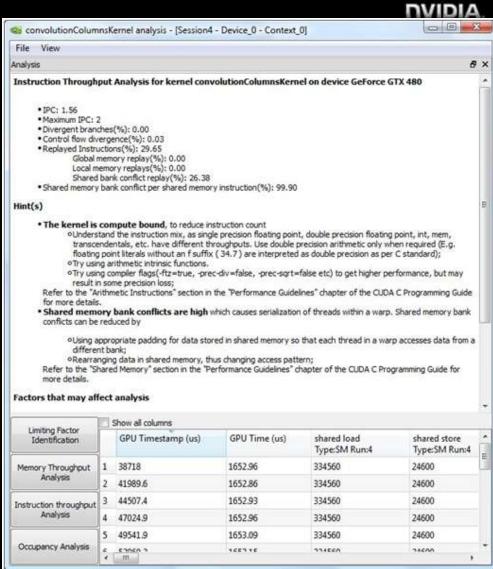
A Note on Counting Global Memory Accesses

- Load/store instruction count can be lower than the number of actual memory transactions
 - Address pattern, different word sizes
- Hence: Counting requests from L1 to the rest of the memory system makes the most sense
 - Caching-loads: count L1 misses
 - Non-caching loads and stores: count L2 read requests
 - Note: L2 counters are for the entire chip, L1 counters are per SM.
 (L2 counters also include local memory transactions, see chapter on Register Spilling)
- Assuming "coalesced" address patterns, some shortcuts:
 - One 32-bit access instruction -> one 128-byte transaction per warp
 - One 64-bit access instruction -> two 128-byte transactions per warp
 - One 128-bit access instruction -> four 128-byte transactions per warp

CUDA 4.0: Visual Profiler Optimization Hints

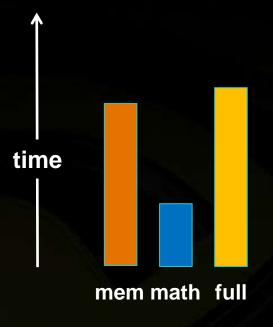
DVIDIA

- Profiler computes for kernels:
 - Instruction throughput
 - Memory throughput
 - GPU Occupancy
- Profiler hints at limiting factors
- This talk shows approach behind Profiler hints, but also how to do own experiments that make limiters even more clear, e.g. through source-code modifications



Analysis with Modified Source Code

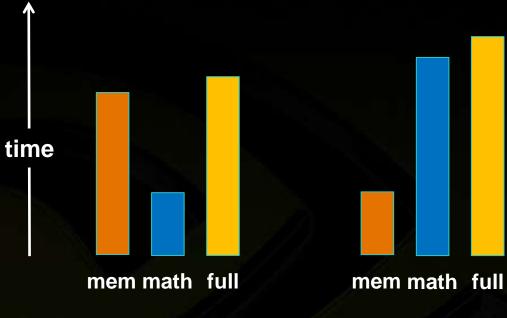
- Time memory-only and math-only versions of the kernel
 - Easier for codes that don't have data-dependent control-flow or addressing
 - Gives you good estimates for:
 - Time spent accessing memory
 - Time spent in executing instructions
- Then, compare times for modified kernels
 - Helps decide whether the kernel is mem or math bound
 - Shows how well memory operations are overlapped with arithmetic
 - Compare the sum of mem-only and math-only times to full-kernel time



Memory-bound

Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)



Memory-bound

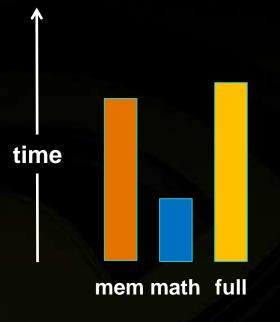
Good mem-math overlap: latency not a problem

(assuming memory throughput is not low compared to HW theory)

Math-bound

Good mem-math overlap: latency not a problem

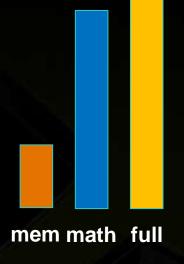
(assuming instruction throughput is not low compared to HW theory)



Memory-bound

Good mem-math overlap: latency not a problem (assuming memory

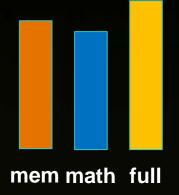
throughput is not low compared to HW theory)



Math-bound

Good mem-math overlap: latency not a problem

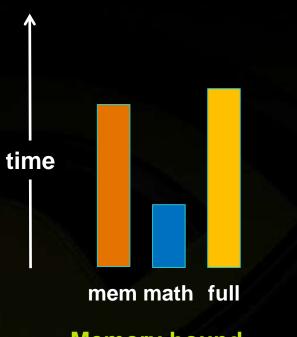
(assuming instruction throughput is not low compared to HW theory)



Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)



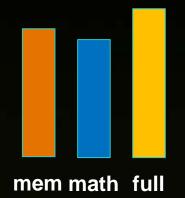
Memory-bound

Good mem-math overlap: latency not a problem (assuming memory throughput is not low

compared to HW theory)

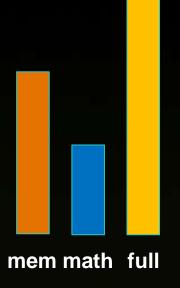
Math-bound

Good mem-math overlap: latency not a problem (assuming instruction throughput is not low compared to HW theory)



Balanced

Good mem-math overlap: latency not a problem (assuming memory/instr throughput is not low compared to HW theory)



Memory <u>and</u> latency bound

Poor mem-math overlap: Latency is a problem

Source Modification

Memory-only:

- Remove as much arithmetic as possible
 - Without changing access pattern
 - Use the profiler to verify that load/store instruction count is the same

Store-only:

Also remove the loads

Math-only:

- Remove global memory accesses
- Need to trick the compiler:
 - Compiler throws away all code that it detects as not contributing to gmem stores
 - Put gmem stores inside conditionals that always evaluate to false
 - Condition outcome should not be known to the compiler (kernel parameter)
 - Condition should depend on the value about to be stored (prevents other optimizations)

Source Modification for Math-only

- Condition outcome should not be known to the compiler
- Condition should depend on the value about to be stored (prevents other optimizations)

If you compare **only** the flag, then the compiler may **move the computation into the conditional** as well

Source Modification and Occupancy

- Removing pieces of code is likely to affect register count
 - This could increase GPU occupancy, skewing the results.
 - See slide 23 to see how that could affect throughput
- Make sure to keep the same occupancy
 - Check the occupancy with profiler before modifications
 - After modifications, if necessary add dummy shared memory to match the unmodified kernel's GPU occupancy

kernel<<< grid, block, smem, ...>>>(...)

Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

Math-only: 16.25

Instructions issued:

- Full-kernel: 18,194,139

– Mem-only: 7,497,296

Math-only: 16,839,792

Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only:

Analysis:

- Instruction:Byte ratio = ~2.66
 - 32*18,194,139 / 128*1,708,032
- Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
- App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off optimum

Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):

– Full-kernel: 35.39

Mem-only: 33.27

Math-only: 16.25

Instructions issued:

- Full-kernel: 18,194,139

– Mem-only: 7,497,296

Math-only: 16,839,792

Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only:

Analysis:

- Instruction:Byte ratio = ~2.66
 - 32*18,194,139 / 128*1,708,032
- Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
- App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off optimum

Conclusion:

- Code is memory-bound
- Latency could be an issue too
- Optimizations should focus on memory throughput first
 - math contributes very little to total time (2.12 out of 35.39ms)

Summary: Limiter Analysis

- Rough algorithmic analysis:
 - How many bytes needed, how many instructions
- Profiler analysis:
 - Instruction count, memory request/transaction count
- Analysis with source modification:
 - Memory-only version of the kernel
 - Math-only version of the kernel
 - Examine how these times relate and overlap

Optimizations for Global Memory

22

Memory Throughput Analysis

- Throughput: from application point of view
 - From app point of view: count bytes requested by the threads / application code
 - From HW point of view: count bytes moved by the hardware (L2/DRAM)
 - The two can be different
 - Scattered/misaligned pattern: not all transaction bytes are utilized
 - Broadcast: the same small transaction serves many requests
- Two aspects to analyze for performance impact:
 - Addressing pattern
 - Number of concurrent accesses in flight

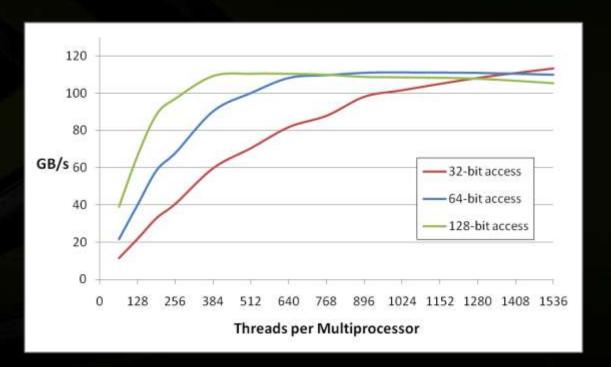
Memory Throughput Analysis

- How to determine that access pattern is problematic:
 - If app throughput is much smaller than HW throughput
 - Relative comparison in profiler counters:
 access instruction count is <u>significantly</u> smaller than mem transaction count
 - gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)
 - gst_request < 4 * I2_write_requests/#SMs * (word_size / 4B) (*)</pre>
 - Make sure to adjust the transaction counters for word size (see slide 9)
- How to tell that number of concurrent accesses is insufficient:
 - Use profiler to get HW throughput
 - Throughput from HW point of view is much lower than theoretical
- CUDA 4.0 Visual Profiler does some of this analysis automatically

^(*) Does not account for local mem stores to global memory, see Register Spilling)

Concurrent Accesses and Performance

- Increment a 64M element array
 - Two accesses per thread (load then store, but they are dependent)
 - Thus, each warp (32 threads) has one outstanding transaction at a time
- Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s



Several independent smaller accesses have the same effect as one larger one.

For example:

Four 32-bit ~= one 128-bit

Optimization: Address Pattern

- Coalesce the address pattern (adjacent threads = adj. memfetch)
 - 128-byte lines for caching loads
 - 32-byte segments for non-caching loads, stores
 - A warp's address pattern is converted to transactions
 - Coalesce to maximize utilization of bus transactions
 - Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk
- Try non-caching loads
 - Compiler option: -Xptxas -dlcm=cg or Inline PTX (CUDA 4.0)
 - Smaller transactions (32B instead of 128B)
 - more efficient for scattered or partially-filled patterns
- Try fetching data via texture unit
 - Smaller transactions and different caching
 - Cache not polluted by other gmem loads

Optimizing Access Concurrency

- Have enough concurrent accesses to saturate the bus
 - Need (mem_latency)x(bandwidth) bytes in flight (Little's law)
 - Fermi C2050 global memory:
 - 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs
 - Need 30-50 128-byte transactions in flight per SM
- Ways to increase concurrent accesses:
 - Increase occupancy
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - Reduce register count (-maxrregcount option, or __launch_bounds__)
 - Use CUDA Occupancy Calculator (part of Toolkit)
 - Modify code to process several elements per thread

Case Study: Access Pattern 1

- Same 3DFD code as in the previous study
- Using caching loads (compiler default):
 - Memory throughput: 62 / 74 GB/s for app / hw
 - Different enough to be interesting
- Loads are coalesced:
 - gld_request == (l1_global_load_miss + l1_global_load_hit)
- There are halo loads that use only 4 threads out of 32
 - For these transactions only 16 bytes out of 128 are useful
- Solution: try non-caching loads
 - Performance increase of 7%
 - Not bad for just trying a compiler flag, no code change
 - Memory throughput: 66 / 67 GB/s for app / hw

Case Study: Accesses in Flight

Continuing with the FD code

- Throughput from both app and hw point of view is 66-67 GB/s
- Now 30.84ms out of 33.71ms are due to mem
- 1024 concurrent threads per SM
 - Due to register count (24 per thread)
 - But: At this thread count, simple copy kernel reaches ~80% of achievable mem throughput

Solution: increase accesses per thread

- Modified code so that each thread is responsible for 2 output points
 - Doubles the load and store count per thread, saves some indexing math
 - Doubles the tile size -> reduces bandwidth spent on halos
- Further 25% increase in performance
 - App and HW throughputs are now 82 and 84 GB/s, respectively

Case Study: Access Pattern 2

- Kernel from climate simulation code
 - Mostly fp64 (so, at least 2 x 128B transactions per warp's 32 thread access)
- Profiler results:

• gld_request: 72,704

• I1_global_load_hit: 439,072

I1_global_load_miss: 724,192

Analysis:

- L1 hit rate: 37.7%
- 16 transactions per load instruction
 - Indicates bad access pattern (2 are expected due to 64-bit words)
 - Of the 16, 10 miss in L1 and contribute to mem bus traffic (compare: 2 optimal)
 - So, we fetch 5x more bytes than needed by the app

Case Study: Access Pattern 2

- Looking closer at the access pattern:
 - <u>Each thread</u> traverses a contiguous memory region linearly!
 - Developer expecting CPU-like L1 caching
 - But remember what's been said about coding for L1 and L2
 - (Fundamental Optimizations, slide 11)
 - This is one of the worst access patterns for GPUs
- Solution:
 - Transposed the code so that <u>each warp</u> accesses a contiguous memory region
 - 2.17 transactions per load instruction
 - This and some other changes improved performance by 3x

Optimizing w. Compression / datatype change

- Consider compression/data type changes when
 - Every other aspect has been optimized
 - Kernel is limited by number of bytes needed

Approaches:

- Int: conversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a couple)
- FP: conversion between fp16, fp32, fp64 is one instruction
 - fp16 (1s5e10m) is storage only, no math instructions
- Range-based compression:
 - Lower and upper limits are kernel arguments
 - Data is an index for interpolation between the limits

Application in practice:

- Clark et al. "Solving Lattice QCD systems of equations using mixed precision solvers on GPUs"
- http://arxiv.org/abs/0911.3191

Summary: Memory Analysis and Optimization

Analyze:

- Access pattern:
 - Compare counts of access instructions and transactions
 - Compare throughput from app and hw point of view
- Number of accesses in flight
 - Look at occupancy and independent accesses per thread
 - Compare achieved throughput to theoretical throughput
 - Also compare with simple memcpy throughput at the same occupancy

Optimizations:

- Coalesce address patterns per warp (nothing new here), consider texture
- Process more words per thread (if insufficient accesses in flight to saturate bus)
- Try all four combinations of L1 size (16kb/48kb) and load type (caching and non-caching)
- Consider compression / datatype change for global memory storage

Optimizations for Instruction Throughput

Possible Limiting Factors

Raw instruction throughput

- Know the kernel instruction mix
- fp32, fp64, int, mem, transcendentals have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
- Can examine assembly, if needed:
 - Can look at PTX (virtual assembly), though it's not the final optimized code
 - Can look at post-optimization machine assembly (--dump-sass, via cuobjdump)

Instruction serialization ("instruction replays" for warp's threads)

- Occurs when threads in a warp execute/issue the same instruction after each other instead of in parallel
 - Think of it as "replaying" the same instruction for different threads in a warp
- Some causes:
 - Shared memory bank conflicts
 - Constant memory bank conflicts

Instruction Throughput: Analysis

Profiler counters (both incremented by 1 per warp):

- instructions executed: counts instructions encountered during execution
- instructions issued: also includes additional issues due to serialization
- Difference between the two: instruction issues that happened due to serialization, instruction cache misses, etc.
 - Will rarely be 0, concern only if it's a significant percentage of instructions issued

Compare achieved throughput to HW capabilities

- Peak instruction throughput is documented in the Programming Guide
- Profiler also reports throughput:
 - GT200: as a fraction of theoretical peak for fp32 instructions
 - Fermi: as IPC (instructions per clock)

Instruction Throughput: Optimization

- Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single instruction, whereas a non-intrinsic is a SW sequence
- Additional compiler flags that also help (select GT200-level precision):
 - -ftz=true : flush denormals to 0
 - -prec-div=false : faster fp division instruction sequence (some precision loss)
 - -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)
- Make sure you do fp64 arithmetic only where you mean it:
 - fp64 throughput is lower than fp32
 - fp literals without an "f" suffix (34.7) are interpreted as fp64 per C standard

Serialization: Profiler Analysis

- Serialization is significant if
 - instructions_issued is significantly higher than instructions_executed
 - CUDA 4.0 Profiler: Instructions replayed %
- Warp divergence (Warp has to execute both branch of if())
 - Profiler counters: divergent_branch, branch
 Profiler derived: Divergent branches (%)).
 - However, only counts the branch instructions, not the rest of divergent instructions.
 - Better: 'threads instruction executed' counter:
 Increments for every instruction by number of threads that executed the instruction.
 - If there is no divergence, then for every instruction it should increment by 32 (and threads_instruction_executed = 32* instruction_executed)
 - Thus: Control_flow_divergence% =
 100 * ((32 * instructions executed) threads instruction executed)/(32* instructions executed)

Serialization: Profiler Analysis

SMEM bank conflicts

- Profiler counters:
 - l1_shared_bank_conflict
 - incremented by 1 per warp for each replay (or: each n-way shared bank conflict increments by n-1)
 - double increment for 64-bit accesses
 - shared_load, shared_store: incremented by 1 per warp per instruction
- Bank conflicts are significant if both are true:
 - instruction throughput affects performance
 - I1_shared_bank_conflict is significant compared to instructions_issued:
 - Shared bank conflict replay (%) =100 * (I1_shared_bank_conflict)/instructions_issued
 - Shared memory bank conflict per shared memory instruction (%) = 100 * (I1 shared bank conflict)/(shared load + shared store)

Serialization: Analysis with Modified Code

- Modify kernel code to assess performance improvement if serialization were removed
 - Helps decide whether optimizations are worth pursuing
- Shared memory bank conflicts:
 - Change indexing to be either broadcasts or just threadIdx.x
 - Should also declare smem variables as volatile
 - Prevents compiler from "caching" values in registers
- Warp divergence:
 - Change the if-condition to have all threads take the same path
 - Time both paths to see what each costs

Serialization: Optimization

- Shared memory bank conflicts:
 - Pad SMEM arrays
 - For example, when a warp accesses a 2D array's column
 - See CUDA Best Practices Guide, Transpose SDK whitepaper
 - Rearrange data in SMEM
- Warp serialization:
 - Try grouping threads that take the same path into same warp
 - Rearrange the data, pre-process the data
 - Rearrange how threads index data (may affect memory perf)

Case Study: SMEM Bank Conflicts

- A different climate simulation code kernel, fp64
- Profiler values:
 - Instructions:
 - Executed / issued: 2,406,426 / 2,756,140
 - Difference: 349,714 (12.7% of instructions issued were "replays")
 - GMEM:
 - Total load and store transactions: 170,263
 - Instr:byte ratio: 4
 - Suggests that instructions are a significant limiter (especially since there is a lot of fp64 math)
 - SMEM:
 - Load / store: 421,785 / 95,172
 - Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)
 - This means a total of 854,385 SMEM access instructions (421,785 +95,172+337,428), of which 39% replays
- Solution: Pad shared memory array

Performance increased by 15%

- replayed instructions reduced down to 1%

Instruction Throughput: Summary

Analyze:

- Check achieved instruction throughput
- Compare to HW peak (note: must take instruction mix into consideration)
- Check percentage of instructions due to serialization

Optimizations:

- Intrinsics, compiler options for expensive operations
- Group threads that are likely to follow same execution path
- Avoid SMEM bank conflicts (pad, rearrange data)

Optimizations for Latency

44

Latency: Analysis

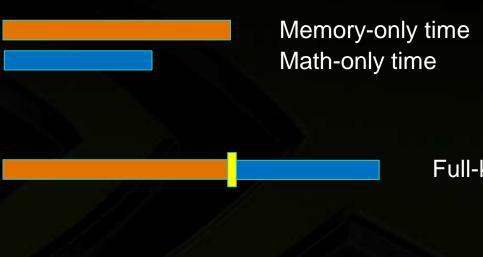
Suspect latency issues if:

- Neither memory nor instruction throughput rates are close to HW theoretical rates
- Poor overlap between mem and math
 - Full-kernel time is significantly larger than max{mem-only, math-only}

Two possible causes:

- Insufficient concurrent threads per multiprocessor to hide latency
 - Occupancy too low
 - Too few threads in kernel launch to load the GPU
 - Indicator: elapsed time doesn't change if problem size is increased (and with it the number of blocks/threads)
- Too few concurrent threadblocks per SM when using __syncthreads()
 - __syncthreads() can prevent overlap between math and mem within the same threadblock

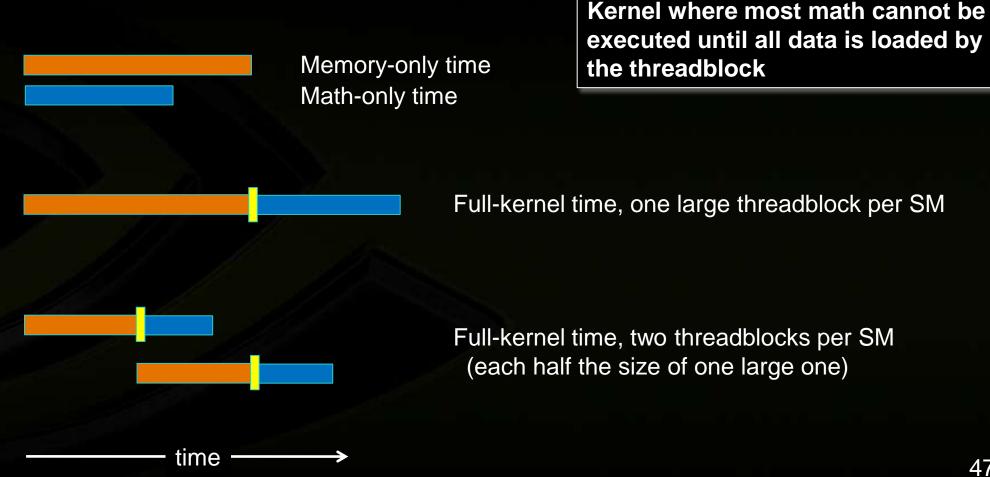
Simplified View of Latency and Syncs



Kernel where most math cannot be executed until all data is loaded by the threadblock

Full-kernel time, one large threadblock per SM

Simplified View of Latency and Syncs



Latency: Optimization

Insufficient threads or workload:

- Best: Increase the level of parallelism (more threads)
- Alternative: Process several output elements per thread gives more independent memory and arithmetic instructions (which get pipelined) - downside: code complexity

Synchronization Barriers:

- Can assess impact on perf by commenting out __syncthreads()
 - Incorrect result, but gives upper bound on improvement
- Try running several smaller threadblocks
 - Less hogging of SMs; think of it as SM "pipelining" blocks
 - In some cases that costs extra bandwidth due to more halos

More information:

 Vasily Volkov, GTC2010: "Better Performance at Lower Occupancy" http://www.gputechconf.com/page/gtc-on-demand.html#session2238

Register Spilling

49

Register Spilling

- Compiler "spills" registers to local memory when register limit exceeded
 - Fermi HW limit is 63 registers per thread
 - Spills also possible < 63regs if register limit is programmer-specified
 - Common when trying to achieve certain GPU occupancy with -maxregcount compiler flag or __launch_bounds__ in source
 - Imem is like gmem memory-bus-load-wise, except that writes are cached in L1
 - Imem load hit in L1 -> no bus traffic
 - Imem load miss in L1 -> bus traffic (128 bytes per miss)
 - Compiler flag —Xptxas —v gives the register and Imem usage per thread
- Potential impact on performance
 - Additional bandwidth pressure if evicted from L1
 - Additional instructions
 - Not always a problem, easy to investigate with quick profiler analysis

Register Spilling: Analysis

- Profiler counters: |1_local_load_hit, |1_local_load_miss
- Impact on instruction count:
 - Compare L1 localmem transactions to total instructions issued
- Impact on memory throughput:
 - Misses add 128 bytes per warp
 - Compare 2*I1_local_load_miss count to gmem access count (stores + loads)
 - Multiply Imem load misses by 2: missed line must have been evicted -> store across bus
 - If kernel uses caching loads: consider only gmem misses in L1
 - If kernel uses non-caching loads: consider all loads

Optimization for Register Spilling

- Try increasing the limit of registers per thread
 - Use a higher limit in -maxrregcount, or lower thread count for __launch_bounds__
 - Will likely decrease occupancy, potentially making gmem accesses less efficient
 - However, may still be an overall win Imem transactions potentially reduced, thus fewer total bytes being accessed in gmem
- Use shared memory for less-used variables
- Non-caching loads for gmem
 - potentially fewer contentions with spilled registers in L1
- Increase L1 size to 48KB
 - default is 16KB L1 / 48KB smem

Register Spilling: Case Study

- FD kernel, (3D-cross stencil)
 - fp32, so all gmem accesses are 4-byte words
 - Needed higher occupancy to saturate memory bandwidth
 - Coalesced, non-caching loads
 - one gmem request = 128 bytes
 - all gmem loads result in bus traffic
 - Larger threadblocks mean lower gmem pressure
 - Halos (ghost cells) are smaller as a percentage
- Aiming to have 1024 concurrent threads per SM
 - Means no more than 32 registers per thread
 - Compiled with –maxrregcount=32

Case Study: Register Spilling 1

- 10th order in space kernel (31-point stencil)
 - 32 registers per thread: 68 bytes of Imem per thread: upto 1024 threads per SM
- Profiled counters:

```
 I1_local_load_miss = 36 inst_issued = 8,308,582
 I1_local_load_hit = 70,956 gld_request = 595,200
 local_store = 64,800 gst_request = 128,000
```

- Conclusion: spilling is not a problem in this case
 - Ratio of gmem to Imem bus traffic approx 10,044 : 1 (hardly any bus traffic is due to spills)
 - L1 contains most of the spills (99.9% hit rate for Imem loads)
 - Only 1.6% of all instructions are due to spills
- Comparison:
 - 42 registers per thread : no spilling : upto 768 threads per SM
 - Single 512-thread block per SM: 24% perf decrease
 - Three 256-thread blocks per SM: 7% perf decrease

Case Study: Register Spilling 2

- 12th order in space kernel (37-point stencil)
 - 32 registers per thread: 80 bytes of Imem per thread: up to 1024 threads per SM
- Profiled counters:

```
 I1_local_load_miss = 376,889 inst_issued = 10,154,216
 I1_local_load_hit = 36,931 gld_request = 550,656
 local_store = 71,176 gst_request = 115,200
```

- Conclusion: spilling is a problem for this case
 - The ratio of gmem to Imem bus traffic is approx 6:7
 (53% of bus traffic is due to spilling)
 - L1 does not contain the spills (8.9% hit rate for Imem loads)
 - Only 4.1% of all instructions are due to spills
- Solution: increase register limit per thread
 - 42 registers per thread : no spilling : upto 768 threads per SM
 - Single 512-thread block per SM: 13% perf increase
 - Three 256-thread blocks per SM: 37% perf increase

Register Spilling: Summary

- Doesn't always decrease performance, but when it does it's due to:
 - Increased pressure on the memory bus (due to Imem transactions not L1 cached)
 - Increased instruction count
- Use the profiler to examine the impact by comparing:
 - 2*I1_local_load_miss to all gmem accesses that don't hit in L1: Local memory bus traffic (%) = (#SMs * 2 * I1 local load miss * 128 * 100)/((I2 read requests + I2 write requests)* 32)
 - Local access count to total instructions issued:
 Local memory replay (%) =
 100 * (I1 local load miss + I1 local store miss)/ instructions_issued
- Register Spilling is significant if:
 - Memory-bound code:
 Imem misses are significant percentage of total bus traffic
 - Instruction-bound code:
 Imem accesses are significant percentage of all instructions

Summary

- Determining what limits your kernel most:
 - Arithmetic, memory bandwidth, latency
- Address the bottlenecks in the order of importance
 - Analyze for inefficient use of hardware
 - Estimate the impact on overall performance
 - Optimize to use hardware most efficiently

More resources:

- Talk on Fundamental Optimizations
- Prior CUDA tutorials at Supercomputing
 - <u>http://gpgpu.org</u>/{sc2007,sc2008,sc2009,sc2010}
- GTC2010 talks: http://www.nvidia.com/gtc2010-content
- CUDA Programming Guide, CUDA Best Practices Guide
- CUDA webinars

Questions?

