
© NVIDIA Corporation 2011

Analysis-Driven

Optimization
ISC 2011 Tutorial

Gernot Ziegler, NVIDIA Corporation

© NVIDIA Corporation 2011

Performance Optimization Process

 Determine the limits for kernel performance

 Memory throughput

 Instruction throughput

 Latency

 Combination of the above

 Use appropriate performance metric for each kernel
 For example, for a memory bandwidth-bound kernel, Gflops/s don‟t make sense

 Address the limiters in the order of importance
 Determine how close resource usage is to the HW limits

 Analyze for possible inefficiencies

 Apply optimizations

- Often these will just be obvious from how HW operates

2

© NVIDIA Corporation 2011

Presentation Outline

 Identifying performance limiters

 Analyzing and optimizing :
 Memory-bound kernels

 Instruction (math) bound kernels

 Kernels with poor latency hiding

 Register spilling (depending on available time, but can be downloaded)

 For each:
 Brief background

 How to analyze

 How to judge whether particular issue is problematic

 How to optimize

 Some cases studies based on “real-life” application kernels

 Most information is for Fermi GPUs

3

© NVIDIA Corporation 2011

Notes on profiler

 Most counters are reported per Streaming Multiprocessor (SM)
 Not entire GPU

 Exceptions: L2 and DRAM counters

 A single run can only collect a few counters
 Multiple runs are needed when profiling more counters

- Done automatically by the Visual Profiler

- Have to be done manually using command-line profiler

- Use CUPTI API to have your application collect signals on its own

 Counter values may not be exactly the same for repeated runs
 Threadblocks and warps are scheduled at run-time

 So, “two counters being equal” usually means “two counters within a small delta”

 See the profiler documentation for more information

4

© NVIDIA Corporation 2011

Identifying Performance Limiters

5

© NVIDIA Corporation 2011

Limited by Bandwidth or Arithmetic?

 Perfect fp32 instructions:bytes ratio for Fermi C2050:
 ~4.5 : 1 instructions/byte with ECC on

 ~3.6 : 1 instructions/byte with ECC off

 These assume fp32 instructions, throughput for other instructions varies

 Algorithmic analysis:
 Rough estimate of arithmetic to bytes ratio

 Actual Code likely uses more instructions and bytes
than algorithmic analysis suggests:
 Instructions for loop control, pointer math, etc.

 Address pattern may result in more memory transactions/bandwidth

 Two ways to investigate:

- Use the profiler (quick, but approximate)

- Use source code modification (more accurate, more work intensive)

6

© NVIDIA Corporation 2011

Analysis with Profiler

 Profiler counters:
 instructions_issued, instructions_executed

- Both incremented by 1 per warp

- “issued” includes instruction replays (instruction re-issue), “executed” does not

 gld_request, gst_request
- Incremented by 1 per warp for each gmem load/store instruction

- Instruction may be counted if it is “predicated out”

 l1_global_load_miss, l1_global_load_hit, global_store_transaction
- Incremented by 1 per L1 line (line is 128B)

 L2_read_request
- incremented by 1 per 32 bytes of DRAM reads, per GPU

- Especially useful for memory requests that bypass L1 cache

 (uncached_global_load_transaction)
- (Incremented by 1 per group of 1, 2, 3, or 4 transactions)

 For ratio comparisons between instructions and memory bandwidth:
 32 * instructions_issued /* 32 = warp size */

 128 Bytes * (global_store_transaction + l1_global_load_miss)

7

© NVIDIA Corporation 2011

New Profiler API

 Whole application might be too large to profile /

uninteresting kernels

 CUDA 4.0: Define profiled region of application:

 cuProfilerInitialize()

 cuProfilerStart()

 cuProfilerStop ()

 Can change config/log file while profiling this region:

 CUDA reference manual explains API calls

8

© NVIDIA Corporation 2011

A Note on Counting Global Memory Accesses

 Load/store instruction count can be lower than the number of actual
memory transactions
 Address pattern, different word sizes

 Hence: Counting requests from L1 to the rest of the memory system
makes the most sense
 Caching-loads: count L1 misses

 Non-caching loads and stores: count L2 read requests

- Note: L2 counters are for the entire chip, L1 counters are per SM.
(L2 counters also include local memory transactions, see chapter on Register Spilling)

 Assuming “coalesced” address patterns, some shortcuts:
 One 32-bit access instruction -> one 128-byte transaction per warp

 One 64-bit access instruction -> two 128-byte transactions per warp

 One 128-bit access instruction -> four 128-byte transactions per warp

9

© NVIDIA Corporation 2011

CUDA 4.0: Visual Profiler Optimization Hints

 Profiler computes for kernels:

 Instruction throughput

 Memory throughput

 GPU Occupancy

 Profiler hints at limiting factors

 This talk shows approach

behind Profiler hints, but

also how to do own experiments

that make limiters even more

clear, e.g. through source-code

modifications

© NVIDIA Corporation 2011

Analysis with Modified Source Code

 Time memory-only and math-only versions of the kernel

 Easier for codes that don‟t have data-dependent control-flow or addressing

 Gives you good estimates for:

- Time spent accessing memory

- Time spent in executing instructions

 Then, compare times for modified kernels

 Helps decide whether the kernel is mem or math bound

 Shows how well memory operations are overlapped with arithmetic

- Compare the sum of mem-only and math-only times to full-kernel time

11

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

time

12

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

time

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full mem math full

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math overlap:

latency not a problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

14

© NVIDIA Corporation 2011

Some Example Scenarios

mem math full mem math full mem math full mem math full

Memory and

latency bound

Poor mem-math overlap:

Latency is a problem

Math-bound

Good mem-math overlap:

latency not a problem

(assuming instruction

throughput is not low

compared to HW theory)

Memory-bound

Good mem-math overlap:

latency not a problem

(assuming memory

throughput is not low

compared to HW theory)

Balanced

Good mem-math overlap:

latency not a problem

(assuming memory/instr

throughput is not low

compared to HW theory)

time

15

© NVIDIA Corporation 2011

Source Modification

 Memory-only:
 Remove as much arithmetic as possible

- Without changing access pattern

- Use the profiler to verify that load/store instruction count is the same

 Store-only:
 Also remove the loads

 Math-only:

 Remove global memory accesses

 Need to trick the compiler:

- Compiler throws away all code that it detects as not contributing to gmem stores

- Put gmem stores inside conditionals that always evaluate to false

- Condition outcome should not be known to the compiler (kernel parameter)

- Condition should depend on the value about to be stored
(prevents other optimizations)

16

© NVIDIA Corporation 2011

Source Modification for Math-only

__global__ void fwd_3D(..., int flag)
{

...
value = temp + coeff * vsq;
if(1 == value * flag)

g_output[out_idx] = value;
}

If you compare only the flag,

then the compiler may move

the computation into the

conditional as well

17

• Condition outcome should not be known to the compiler

• Condition should depend on the value about to be stored

(prevents other optimizations)

© NVIDIA Corporation 2011

Source Modification and Occupancy

 Removing pieces of code is likely to affect register count

 This could increase GPU occupancy, skewing the results

 See slide 23 to see how that could affect throughput

 Make sure to keep the same occupancy

 Check the occupancy with profiler before modifications

 After modifications, if necessary add dummy shared memory to match the

unmodified kernel‟s GPU occupancy

kernel<<< grid, block, smem, ...>>>(...)

18

© NVIDIA Corporation 2011

Case Study: Limiter Analysis

 Analysis:
 Instruction:Byte ratio = ~2.66

- 32*18,194,139 / 128*1,708,032

 Good overlap between math and mem:

- 2.12 ms of math-only time (13%)
are not overlapped with mem

 App memory throughput: 62 GB/s

- HW theory is 114 GB/s, so we‟re off
optimum

 Conclusion:
 Code is memory-bound

 Latency could be an issue too

 Optimizations should focus on memory
throughput first

- math contributes very little to total time
(2.12 out of 35.39ms)

19

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

© NVIDIA Corporation 2011

Case Study: Limiter Analysis

 Analysis:
 Instruction:Byte ratio = ~2.66

- 32*18,194,139 / 128*1,708,032

 Good overlap between math and mem:

- 2.12 ms of math-only time (13%)
are not overlapped with mem

 App memory throughput: 62 GB/s

- HW theory is 114 GB/s, so we‟re off
optimum

 Conclusion:
 Code is memory-bound

 Latency could be an issue too

 Optimizations should focus
on memory throughput first

- math contributes very little to total time
(2.12 out of 35.39ms)

• 3DFD of the wave equation, fp32

• Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

• Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

• Memory access transactions:

– Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only: 0

20

© NVIDIA Corporation 2011

Summary: Limiter Analysis

 Rough algorithmic analysis:

 How many bytes needed, how many instructions

 Profiler analysis:

 Instruction count, memory request/transaction count

 Analysis with source modification:

 Memory-only version of the kernel

 Math-only version of the kernel

 Examine how these times relate and overlap

21

© NVIDIA Corporation 2011

Optimizations for Global Memory

22

© NVIDIA Corporation 2011

Memory Throughput Analysis

 Throughput: from application point of view

 From app point of view: count bytes requested by the threads / application code

 From HW point of view: count bytes moved by the hardware (L2/DRAM)

 The two can be different

- Scattered/misaligned pattern: not all transaction bytes are utilized

- Broadcast: the same small transaction serves many requests

 Two aspects to analyze for performance impact:

 Addressing pattern

 Number of concurrent accesses in flight

23

© NVIDIA Corporation 2011

Memory Throughput Analysis

 How to determine that access pattern is problematic:

 If app throughput is much smaller than HW throughput

 Relative comparison in profiler counters:

access instruction count is significantly smaller than mem transaction count

- gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)

- gst_request < 4 * l2_write_requests/#SMs * (word_size / 4B) (*)

- Make sure to adjust the transaction counters for word size (see slide 9)

 How to tell that number of concurrent accesses is insufficient:

 Use profiler to get HW throughput

 Throughput from HW point of view is much lower than theoretical

 CUDA 4.0 Visual Profiler does some of this analysis automatically

24
(*) Does not account for local mem stores to global memory, see Register Spilling)

© NVIDIA Corporation 2011

Concurrent Accesses and Performance

 Increment a 64M element array
 Two accesses per thread (load then store, but they are dependent)

- Thus, each warp (32 threads) has one outstanding transaction at a time

 Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller
accesses have the same effect
as one larger one.

For example:

Four 32-bit ~= one 128-bit

25

© NVIDIA Corporation 2011

Optimization: Address Pattern

 Coalesce the address pattern (adjacent threads = adj. memfetch)
 128-byte lines for caching loads

 32-byte segments for non-caching loads, stores

 A warp‟s address pattern is converted to transactions

- Coalesce to maximize utilization of bus transactions

- Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

 Try non-caching loads
 Compiler option: -Xptxas –dlcm=cg or Inline PTX (CUDA 4.0)

 Smaller transactions (32B instead of 128B)

- more efficient for scattered or partially-filled patterns

 Try fetching data via texture unit
 Smaller transactions and different caching

 Cache not polluted by other gmem loads

26

© NVIDIA Corporation 2011

Optimizing Access Concurrency

 Have enough concurrent accesses to saturate the bus
 Need (mem_latency)x(bandwidth) bytes in flight (Little‟s law)

 Fermi C2050 global memory:

- 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs

- Need 30-50 128-byte transactions in flight per SM

 Ways to increase concurrent accesses:
 Increase occupancy

- Adjust threadblock dimensions

- To maximize occupancy at given register and smem requirements

- Reduce register count (-maxrregcount option, or __launch_bounds__)

- Use CUDA Occupancy Calculator (part of Toolkit)

 Modify code to process several elements per thread

27

© NVIDIA Corporation 2011

Case Study: Access Pattern 1

 Same 3DFD code as in the previous study

 Using caching loads (compiler default):
 Memory throughput: 62 / 74 GB/s for app / hw

 Different enough to be interesting

 Loads are coalesced:
 gld_request == (l1_global_load_miss + l1_global_load_hit)

 There are halo loads that use only 4 threads out of 32
 For these transactions only 16 bytes out of 128 are useful

 Solution: try non-caching loads
 Performance increase of 7%

- Not bad for just trying a compiler flag, no code change

 Memory throughput: 66 / 67 GB/s for app / hw

28

© NVIDIA Corporation 2011

Case Study: Accesses in Flight

 Continuing with the FD code

 Throughput from both app and hw point of view is 66-67 GB/s

 Now 30.84ms out of 33.71ms are due to mem

 1024 concurrent threads per SM

- Due to register count (24 per thread)

- But: At this thread count , simple copy kernel reaches ~80% of achievable mem
throughput

 Solution: increase accesses per thread

 Modified code so that each thread is responsible for 2 output points

- Doubles the load and store count per thread, saves some indexing math

- Doubles the tile size -> reduces bandwidth spent on halos

 Further 25% increase in performance

- App and HW throughputs are now 82 and 84 GB/s, respectively

29

© NVIDIA Corporation 2011

Case Study: Access Pattern 2

 Kernel from climate simulation code
 Mostly fp64 (so, at least 2 x 128B transactions per warp's 32 thread access)

 Profiler results:
 gld_request: 72,704

 l1_global_load_hit: 439,072

 l1_global_load_miss: 724,192

 Analysis:
 L1 hit rate: 37.7%

 16 transactions per load instruction

- Indicates bad access pattern (2 are expected due to 64-bit words)

- Of the 16, 10 miss in L1 and contribute to mem bus traffic (compare: 2 optimal)

- So, we fetch 5x more bytes than needed by the app

30

© NVIDIA Corporation 2011

Case Study: Access Pattern 2

 Looking closer at the access pattern:

 Each thread traverses a contiguous memory region - linearly!

 Developer expecting CPU-like L1 caching

- But remember what's been said about coding for L1 and L2

- (Fundamental Optimizations, slide 11)

 This is one of the worst access patterns for GPUs

 Solution:

 Transposed the code so that each warp accesses a contiguous memory region

 2.17 transactions per load instruction

 This and some other changes improved performance by 3x

31

© NVIDIA Corporation 2011

Optimizing w. Compression / datatype change

 Consider compression/data type changes when
 Every other aspect has been optimized

 Kernel is limited by number of bytes needed

 Approaches:
 Int: conversion between 8-, 16-, 32-bit integers is 1 instruction

(64-bit requires a couple)

 FP: conversion between fp16, fp32, fp64 is one instruction
- fp16 (1s5e10m) is storage only, no math instructions

 Range-based compression:
- Lower and upper limits are kernel arguments

- Data is an index for interpolation between the limits

 Application in practice:
 Clark et al. “Solving Lattice QCD systems of equations using mixed precision

solvers on GPUs”

 http://arxiv.org/abs/0911.3191

32

http://arxiv.org/abs/0911.3191

© NVIDIA Corporation 2011

Summary: Memory Analysis and Optimization

 Analyze:

 Access pattern:

- Compare counts of access instructions and transactions

- Compare throughput from app and hw point of view

 Number of accesses in flight

- Look at occupancy and independent accesses per thread

- Compare achieved throughput to theoretical throughput

- Also compare with simple memcpy throughput at the same occupancy

 Optimizations:
 Coalesce address patterns per warp (nothing new here), consider texture

 Process more words per thread (if insufficient accesses in flight to saturate bus)

 Try all four combinations of
L1 size (16kb/48kb) and load type (caching and non-caching)

 Consider compression / datatype change for global memory storage

33

© NVIDIA Corporation 2011

Optimizations for Instruction Throughput

34

© NVIDIA Corporation 2011

Possible Limiting Factors

 Raw instruction throughput
 Know the kernel instruction mix

 fp32, fp64, int, mem, transcendentals have different throughputs

- Refer to the CUDA Programming Guide / Best Practices Guide

 Can examine assembly, if needed:

- Can look at PTX (virtual assembly), though it‟s not the final optimized code

- Can look at post-optimization machine assembly (--dump-sass, via cuobjdump)

 Instruction serialization ("instruction replays" for warp's threads)

 Occurs when threads in a warp execute/issue the same instruction
after each other instead of in parallel

- Think of it as “replaying” the same instruction for different threads in a warp

 Some causes:

- Shared memory bank conflicts

- Constant memory bank conflicts

35

© NVIDIA Corporation 2011

Instruction Throughput: Analysis

 Profiler counters (both incremented by 1 per warp):

 instructions executed: counts instructions encountered during execution

 instructions issued: also includes additional issues due to serialization

 Difference between the two: instruction issues that happened due to

serialization, instruction cache misses, etc.

- Will rarely be 0, concern only if it‟s a significant percentage of instructions issued

 Compare achieved throughput to HW capabilities

 Peak instruction throughput is documented in the Programming Guide

 Profiler also reports throughput:

- GT200: as a fraction of theoretical peak for fp32 instructions

- Fermi: as IPC (instructions per clock)

36

© NVIDIA Corporation 2011

Instruction Throughput: Optimization

 Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)

 Available for a number of math.h functions

 2-3 bits lower precision, much higher throughput

- Refer to the CUDA Programming Guide for details

 Often a single instruction, whereas a non-intrinsic is a SW sequence

 Additional compiler flags that also help (select GT200-level precision):
 -ftz=true : flush denormals to 0

 -prec-div=false : faster fp division instruction sequence (some precision loss)

 -prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)

 Make sure you do fp64 arithmetic only where you mean it:

 fp64 throughput is lower than fp32

 fp literals without an “f” suffix (34.7) are interpreted as fp64 per C standard

37

© NVIDIA Corporation 2011

Serialization: Profiler Analysis

 Serialization is significant if

 instructions_issued is significantly higher than instructions_executed

 CUDA 4.0 Profiler: Instructions replayed %

 Warp divergence (Warp has to execute both branch of if())

 Profiler counters: divergent_branch, branch

Profiler derived: Divergent branches (%)).

 However, only counts the branch instructions, not the rest of divergent instructions.

 Better: „threads instruction executed‟ counter:

Increments for every instruction by number of threads that executed the instruction.

 If there is no divergence, then for every instruction it should increment by 32

(and threads_instruction_executed = 32* instruction_executed)

 Thus: Control_flow_divergence% =
100 * ((32 * instructions executed) – threads instruction executed)/(32* instructions executed)

38

© NVIDIA Corporation 2011

Serialization: Profiler Analysis

 SMEM bank conflicts
 Profiler counters:

- l1_shared_bank_conflict

- incremented by 1 per warp for each replay
(or: each n-way shared bank conflict increments by n-1)

- double increment for 64-bit accesses

- shared_load, shared_store: incremented by 1 per warp per instruction

 Bank conflicts are significant if both are true:

- instruction throughput affects performance

- l1_shared_bank_conflict is significant compared to instructions_issued:

- Shared bank conflict replay (%) =
100 * (l1_shared_bank_conflict)/instructions_issued

- Shared memory bank conflict per shared memory instruction (%) =
100 * (l1 shared bank conflict)/(shared load + shared store)

39

© NVIDIA Corporation 2011

Serialization: Analysis with Modified Code

 Modify kernel code to assess performance improvement if

serialization were removed

 Helps decide whether optimizations are worth pursuing

 Shared memory bank conflicts:

 Change indexing to be either broadcasts or just threadIdx.x

 Should also declare smem variables as volatile

- Prevents compiler from “caching” values in registers

 Warp divergence:

 Change the if-condition to have all threads take the same path

 Time both paths to see what each costs

40

© NVIDIA Corporation 2011

Serialization: Optimization

 Shared memory bank conflicts:

 Pad SMEM arrays

- For example, when a warp accesses a 2D array‟s column

- See CUDA Best Practices Guide, Transpose SDK whitepaper

 Rearrange data in SMEM

 Warp serialization:

 Try grouping threads that take the same path into same warp

- Rearrange the data, pre-process the data

- Rearrange how threads index data (may affect memory perf)

41

© NVIDIA Corporation 2011

Case Study: SMEM Bank Conflicts

 A different climate simulation code kernel, fp64

 Profiler values:
 Instructions:

- Executed / issued: 2,406,426 / 2,756,140

- Difference: 349,714 (12.7% of instructions issued were “replays”)

 GMEM:
- Total load and store transactions: 170,263

- Instr:byte ratio: 4

- Suggests that instructions are a significant limiter
(especially since there is a lot of fp64 math)

 SMEM:
- Load / store: 421,785 / 95,172

- Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)

- This means a total of 854,385 SMEM access instructions
(421,785 +95,172+337,428) , of which 39% replays

 Solution: Pad shared memory array
Performance increased by 15%

- replayed instructions reduced down to 1%

42

© NVIDIA Corporation 2011

Instruction Throughput: Summary

 Analyze:

 Check achieved instruction throughput

 Compare to HW peak (note: must take instruction mix into consideration)

 Check percentage of instructions due to serialization

 Optimizations:

 Intrinsics, compiler options for expensive operations

 Group threads that are likely to follow same execution path

 Avoid SMEM bank conflicts (pad, rearrange data)

43

© NVIDIA Corporation 2011

Optimizations for Latency

44

© NVIDIA Corporation 2011

Latency: Analysis

 Suspect latency issues if:

 Neither memory nor instruction throughput rates are close to HW theoretical rates

 Poor overlap between mem and math

- Full-kernel time is significantly larger than max{mem-only, math-only}

 Two possible causes:
 Insufficient concurrent threads per multiprocessor to hide latency

- Occupancy too low

- Too few threads in kernel launch to load the GPU

- Indicator: elapsed time doesn‟t change if problem size is increased (and with
it the number of blocks/threads)

 Too few concurrent threadblocks per SM when using __syncthreads()
- __syncthreads() can prevent overlap between math and mem within the same threadblock

45

© NVIDIA Corporation 2011

Simplified View of Latency and Syncs

46

Math-only time

Memory-only time

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA Corporation 2011

Simplified View of Latency and Syncs

47

Math-only time

Memory-only time

Full-kernel time, two threadblocks per SM

(each half the size of one large one)

Full-kernel time, one large threadblock per SM

time

Kernel where most math cannot be

executed until all data is loaded by

the threadblock

© NVIDIA Corporation 2011

Latency: Optimization

 Insufficient threads or workload:

 Best: Increase the level of parallelism (more threads)

 Alternative: Process several output elements per thread – gives more independent
memory and arithmetic instructions (which get pipelined) - downside: code complexity

 Synchronization Barriers:

 Can assess impact on perf by commenting out __syncthreads()

- Incorrect result, but gives upper bound on improvement

 Try running several smaller threadblocks

- Less hogging of SMs; think of it as SM “pipelining” blocks

- In some cases that costs extra bandwidth due to more halos

 More information:

 Vasily Volkov, GTC2010: “Better Performance at Lower Occupancy”
http://www.gputechconf.com/page/gtc-on-demand.html#session2238

48

http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html
http://www.gputechconf.com/page/gtc-on-demand.html

© NVIDIA Corporation 2011

Register Spilling

49

© NVIDIA Corporation 2011

Register Spilling

 Compiler “spills” registers to local memory when register limit exceeded

 Fermi HW limit is 63 registers per thread

 Spills also possible < 63regs if register limit is programmer-specified

- Common when trying to achieve certain GPU occupancy
with -maxrregcount compiler flag or __launch_bounds__ in source

 lmem is like gmem memory-bus-load-wise, except that writes are cached in L1

- lmem load hit in L1 -> no bus traffic

- lmem load miss in L1 -> bus traffic (128 bytes per miss)

 Compiler flag –Xptxas –v gives the register and lmem usage per thread

 Potential impact on performance

 Additional bandwidth pressure if evicted from L1

 Additional instructions

 Not always a problem, easy to investigate with quick profiler analysis
50

© NVIDIA Corporation 2011

Register Spilling: Analysis

 Profiler counters: l1_local_load_hit, l1_local_load_miss

 Impact on instruction count:

 Compare L1 localmem transactions to total instructions issued

 Impact on memory throughput:

 Misses add 128 bytes per warp

 Compare 2*l1_local_load_miss count to gmem access count (stores + loads)

- Multiply lmem load misses by 2: missed line must have been evicted -> store

across bus

- If kernel uses caching loads: consider only gmem misses in L1

- If kernel uses non-caching loads: consider all loads

51

© NVIDIA Corporation 2011

Optimization for Register Spilling

 Try increasing the limit of registers per thread

 Use a higher limit in –maxrregcount, or lower thread count for __launch_bounds__

 Will likely decrease occupancy, potentially making gmem accesses less efficient

 However, may still be an overall win – lmem transactions potentially reduced,

thus fewer total bytes being accessed in gmem

 Use shared memory for less-used variables

 Non-caching loads for gmem

 potentially fewer contentions with spilled registers in L1

 Increase L1 size to 48KB

 default is 16KB L1 / 48KB smem

52

© NVIDIA Corporation 2011

Register Spilling: Case Study

 FD kernel, (3D-cross stencil)

 fp32, so all gmem accesses are 4-byte words

- Needed higher occupancy to saturate memory bandwidth

 Coalesced, non-caching loads

- one gmem request = 128 bytes

- all gmem loads result in bus traffic

 Larger threadblocks mean lower gmem pressure

- Halos (ghost cells) are smaller as a percentage

 Aiming to have 1024 concurrent threads per SM

 Means no more than 32 registers per thread

 Compiled with –maxrregcount=32

53

© NVIDIA Corporation 2011

Case Study: Register Spilling 1

 10th order in space kernel (31-point stencil)
 32 registers per thread : 68 bytes of lmem per thread : upto 1024 threads per SM

 Profiled counters:
 l1_local_load_miss = 36 inst_issued = 8,308,582

 l1_local_load_hit = 70,956 gld_request = 595,200

 local_store = 64,800 gst_request = 128,000

 Conclusion: spilling is not a problem in this case
 Ratio of gmem to lmem bus traffic approx 10,044 : 1

(hardly any bus traffic is due to spills)
- L1 contains most of the spills (99.9% hit rate for lmem loads)

 Only 1.6% of all instructions are due to spills

 Comparison:
 42 registers per thread : no spilling : upto 768 threads per SM

- Single 512-thread block per SM : 24% perf decrease

- Three 256-thread blocks per SM : 7% perf decrease

54

© NVIDIA Corporation 2011

Case Study: Register Spilling 2

 12th order in space kernel (37-point stencil)
 32 registers per thread : 80 bytes of lmem per thread : up to 1024 threads per SM

 Profiled counters:
 l1_local_load_miss = 376,889 inst_issued = 10,154,216

 l1_local_load_hit = 36,931 gld_request = 550,656

 local_store = 71,176 gst_request = 115,200

 Conclusion: spilling is a problem for this case
 The ratio of gmem to lmem bus traffic is approx 6 : 7

(53% of bus traffic is due to spilling)
- L1 does not contain the spills (8.9% hit rate for lmem loads)

 Only 4.1% of all instructions are due to spills

 Solution: increase register limit per thread
 42 registers per thread : no spilling : upto 768 threads per SM

 Single 512-thread block per SM : 13% perf increase

 Three 256-thread blocks per SM : 37% perf increase

55

© NVIDIA Corporation 2011

Register Spilling: Summary

 Doesn’t always decrease performance, but when it does it’s due to:
 Increased pressure on the memory bus (due to lmem transactions not L1 cached)

 Increased instruction count

 Use the profiler to examine the impact by comparing:
 2*l1_local_load_miss to all gmem accesses that don‟t hit in L1:

Local memory bus traffic (%) =
(#SMs * 2 * l1 local load miss * 128 * 100)/((l2 read requests + l2 write requests)* 32)

 Local access count to total instructions issued:
Local memory replay (%) =
100 * (l1 local load miss + l1 local store miss)/ instructions_issued

 Register Spilling is significant if:
 Memory-bound code:

lmem misses are significant percentage of total bus traffic

 Instruction-bound code:
lmem accesses are significant percentage of all instructions

56

© NVIDIA Corporation 2011

Summary

 Determining what limits your kernel most:

 Arithmetic, memory bandwidth, latency

 Address the bottlenecks in the order of importance

 Analyze for inefficient use of hardware

 Estimate the impact on overall performance

 Optimize to use hardware most efficiently

 More resources:

 Talk on Fundamental Optimizations

 Prior CUDA tutorials at Supercomputing

- http://gpgpu.org/{sc2007,sc2008,sc2009,sc2010}

 GTC2010 talks: http://www.nvidia.com/gtc2010-content

 CUDA Programming Guide, CUDA Best Practices Guide

 CUDA webinars

57

http://gpgpu.org/
http://www.nvidia.com/gtc2010-content
http://www.nvidia.com/gtc2010-content
http://www.nvidia.com/gtc2010-content

© NVIDIA Corporation 2011

Questions?

58

