Accelerating GPU computation through mixed-precision methods
Outline

• Motivation

• Truncated Precision using CUDA

• Solving Linear Equations

• Conclusion
Motivation

• Scientific computation demands accuracy
 • Double precision is the norm

• GPUs historically have been poor at double precision
 • No support until GT200 (x8 slower than single precision)
 • Commonplace in GPGPU to use mixed precision methods

• Fermi brings the disparity down to x2 slower
 • Do we still need mixed-precision methods?
Motivation

• Both raw flops and memory bandwidth outpaced CPUs

(CUDA Programming Guide)
Super Computer Comparison

Tesla C2050
(the future)

BlueGene/P
(traditional)
<table>
<thead>
<tr>
<th></th>
<th>Tesla C2050*</th>
<th>BlueGene/P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit Gflops</td>
<td>1030</td>
<td>13.6</td>
</tr>
<tr>
<td>64-bit Gflops</td>
<td>515</td>
<td>13.6</td>
</tr>
<tr>
<td>Watts</td>
<td>225</td>
<td>24</td>
</tr>
<tr>
<td>64-bit Gflop/Watt</td>
<td>2.3</td>
<td>0.57</td>
</tr>
<tr>
<td>memory b/w GBs</td>
<td>144 / 115</td>
<td>13.6</td>
</tr>
<tr>
<td>64-bit flop/byte</td>
<td>3.6 / 4.5</td>
<td>1</td>
</tr>
</tbody>
</table>

(*per chip)
Motivation

• GPUs are more memory bound than traditional supercomputers
 • As we go to the Exascale, it’s only going to get worse (for all architectures)
• Even with single and double flops parity, x2 in memory traffic
 • For memory bound algorithms, single precision always x2 faster
• Many problems can be reformulated using mixed-precision methods
 • No loss in precision for final result
 • Large speedup because of reduced memory traffic
• Memory storage can be a limiting factor with GPU computing
 • Truncated precision is a lossy compression allowing larger problems
Precision Truncation using CUDA
Native floating point and integer types in CUDA

- CUDA natively supports
 - single and double precision floating point types
 - e.g., float, double, double3, float4, etc.
 - a variety of integer types
 - char, short, int, long long int (8-bit thru 64-bit)
- CUDA does not support
 - half type (fp16)
 - 8-bit and 16-bit integer operations (char and shorts cost same as int)
Precision Truncation in CUDA

• Don’t require native operation support for truncated precision types
 • Just need to be able load and save these types to reduce memory traffic

• Once in registers, we can convert to native types

• CUDA supports a variety of fast type conversions
 • Single instruction intrinsics
 • Texture units
Precision Truncation in CUDA - Half Precision

- Intrinsics for conversion fp16 <-> fp32

  ```
  float __half2float(ushort x);
  half -> float
  
  ushort __float2half_rn(float x);
  float -> half
  ```

- half types are encoded as ushorts

- hardware accelerated conversion (single instruction)

- Need to get data into fp16 format

 - Copy to 32-bit data to device, do setup kernel before actual computation

 - Create fp16 on host (e.g., OpenEXR includes half precision class)

 http://www.openexr.com
Precision Truncation in CUDA - Texture Unit

- Load 8-bit / 16-bit integers through the texture unit

```cpp
texture<short2, 1, cudaReadElementType> texRef;  // device declaration

short2 x = tex1Dfetch(texRef, index);  // kernel code
```

- “Free” conversion to fp32 (uints -> [0,1], ints -> [-1,1])

```cpp
texture<short2, 1, cudaReadModeNormalizedFloat> texRef;  // device declaration

float2 x = tex1Dfetch(texRef, index);  // kernel code
```

- Useful for fixed-point storage, but floating point compute
One gotcha though...

• Need to be careful to maintain full memory coalescing

• Need a minimum of 32-bit word load per thread to saturate memory bandwidth

 • e.g. Tesla C1060

<table>
<thead>
<tr>
<th>Type</th>
<th>Bandwidth (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>77 GB/s</td>
</tr>
<tr>
<td>ushort (fp16)</td>
<td>68 GB/s</td>
</tr>
<tr>
<td>ushort2 (fp16x2)</td>
<td>77 GB/s</td>
</tr>
</tbody>
</table>

(Micikevicius)

• Need to use vectorized types (32-bit, 64-bit or 128-bit words)
Solving Systems of Linear Equations
Sparse-Matrix Vector Product (SpMV)

- Known to be a memory bound operation
- Single precision x2 faster than double precision
- e.g., Bell and Garland (SC09) - CUSP library

![Graphs showing performance comparison between single and double precision for different matrix types and point counts.](image-url)
Mixed-Precision Solvers

- Main application for SpMV is solving linear systems $Ax = b$
- Require solver tolerance beyond limit of single precision
- e.g., Use defect-correction (aka Richardson iteration, iterative refinement)

```
while ($|r_k| > \varepsilon$) {
  $r_k = b - Ax_k$
  $p_k = A^{-1}r_k$
  $x_{k+1} = x_k + p_k$
}
```

- Double precision can be done on CPU or GPU
- Can always check GPU gets correct answer
- Can achieve double precision accuracy twice as fast
- We know SpMV is bandwidth limited so how about half precision?
Case Study: Quantum ChromoDynamics

- QCD is the theory of the strong force that binds nucleons

- Grand challenge problem -> requires Exaflops for full solution

-Bulk of computation lies in solution to system of linear equations \(Ax = b \)

- \(A \) is the Dirac Operator - describes propagation of quarks
 - \(A \) is a very large sparse matrix (\(10^8-10^9 \) degrees of freedom)
 - Essentially a 1st order PDE acting on a 4 dimensional grid (spacetime)

- Need to be able to perform SpMV (apply \(A \) to a vector) as fast as possible
Case Study: Quantum ChromoDynamics

- Sparse matrix -> can use CUSP / CUSPARSE
 - 2544 flops : 4680 bytes (single precision)
 - Recall C2050 7.2 : 1 ratio - extremely bandwidth bound
- Matrix is highly structured
 - Use knowledge of problem to write fast custom kernel
 - From symmetry -> 1368 flops : 1440 bytes
 - Flops are free - do extra computation to reduce memory traffic
 - 1368 : 960 bytes still bandwidth bound
Case Study: Quantum ChromoDynamics

- SpMV performance results (GTX 480)
 - Single Precision 208 Gflops
 - Double Precision 65 Gflops
- Mixed-precision solver 3x faster
 - Full double precision accuracy
 - Single precision only 15% peak
Case Study: Quantum ChromoDynamics

• Use 16-bit precision

• Need 32-bit words for full bandwidth utilization

• Pack 1 complex number into a single 32-bit word

• Performance
 • Single Precision 208 Gflops
 • Double Precision 65 Gflops
 • Half Precision 435 Gflops

• Mixed-precision solver 4.5x faster (speedup not 6x because solver iterations increase)

http://arxiv.org/abs/0911.3191
Case Study: Quantum ChromoDynamics

- 2004: First 1 Tflops sustained for QCD (P. Vranas)
 - 1 rack Blue Gene/L
 - ~ $1M in 2005/2006

- 2010: 1 Tflops sustained, under your desk
 - Dual-socket node with 4 GPUs
 - ~ $13K (80x improvement in price/performance)

… for problems that fit

(1 rack BG/L has 512 GB RAM vs. 12 GB for 4 C2050s)
Case Study: Multigrid

- Multigrid is known as an *optimal* method for solving elliptic PDEs ($Ax = b$)
 - Constant time to solution regardless of condition number
 - Iteration count scales linearly with volume
- How to use in mixed-precision?
 - Wrap multigrid in a Krylov solver and use as a *preconditioner*
 - Only require high precision for outer solver
 - Preconditioner has low accuracy requirements
 - Double-single, Double-half, etc. much faster than plain double
Case study: Multigrid

Domenic Göddeke’s thesis
http://hdl.handle.net/2003/27243

Tesla C1060
10^7 dof
Mixed-precision isn’t just for sparse systems

- Also useful when solving dense linear systems too (not bandwidth bound)

- E.g., Solving $Ax=b$ through LU factorization

- Analogous to multigrid - LU is a preconditioner

MAGMA (http://icl.cs.utk.edu/magma/)
Advanced precision optimization

• Recall QCD performance
 • Half 435 Gflops
 • Single 202 Gflops
 • Double 65 Gflops

Why is half > 2x faster than single?

Why is single > 2x faster than double?

L1 and L2 cache means super-linear speedup possible (can fit more in cache with smaller datatypes)

Kernels often limited by available registers / shared memory

• Registers are always 32-bit
• Shared memory only requires sizeof(type)

Increase amount of useful information held in fast memory

```c
__shared__ ushort A[BLOCK_SIZE];
float B = __half2float(A[threadIdx.x]);
```
Other mixed-precision applications / algorithms

- MGEMM - mixed precision matrix-matrix multiplication (Olivares-Amaya et al)
 - Partition matrix into large and small components
 - Large multiplications use double, small use single
 \[
 C = \left(A^{\text{large}} + A^{\text{small}} \right) \cdot \left(B^{\text{large}} + B^{\text{small}} \right) = \left(AB^{\text{large}} + A^{\text{large}} B^{\text{small}} \right) + \left(A^{\text{small}} B^{\text{small}} \right)
 \]
 - Low precision data summed into high precision accumulator
 - E.g., reductions, force summations, signal processing
- Extended precision possible in CUDA (Lu, He and Luo)
 - GPUs > order of magnitude faster at double-double, quad-double than CPUs
 - Mixed-precision methods can make extended precision reasonable
Summary

• GPUs (and future HPC in general) are increasingly bandwidth bound
 • Precision truncation can help alleviate memory traffic
• CUDA supports a variety of limited precision IO types
 • half float (fp16), char, short
• Large speedups possible using mixed-precision
 • Solving linear systems
• Not just for accelerating double-precision computation with single-precision
 • 16-bit precision can speed up bandwidth bound problems
 • Beyond double precision also sees large speedups