Analysis-Driven Optimization

Paulius Micikevicius | NVIDIA

Performance Optimization Process

- Use appropriate performance metric for each kernel
 - For example, Gflops/s don't make sense for a bandwidth-bound kernel
- Determine what limits kernel performance
 - Memory throughput
 - Instruction throughput
 - Latency
 - Combination of the above
- Address the limiters in the order of importance
 - Determine how close to the HW limits the resource is being used
 - Analyze for possible inefficiencies
 - Apply optimizations
 - Often these will just fall out from how HW operates

Presentation Outline

- Identifying performance limiters
- Analyzing and optimizing :
 - Memory-bound kernels
 - Instruction (math) bound kernels
 - Kernels with poor latency hiding
 - Register spilling
- For each:
 - Brief background
 - How to analyze
 - How to judge whether particular issue is problematic
 - How to optimize
 - Some cases studies based on "real-life" application kernels
- Most information is for Fermi GPUs

Notes on profiler

- Most counters are reported per Streaming Multiprocessor (SM)
 - Not entire GPU
 - Exceptions: L2 and DRAM counters
- A single run can collect a few counters
 - Multiple runs are needed when profiling more counters
 - Done automatically by the Visual Profiler
 - Have to be done manually using command-line profiler
- Counter values may not be exactly the same for repeated runs
 - Threadblocks and warps are scheduled at run-time
 - So, "two counters being equal" usually means "two counters within a small delta"
- See the profiler documentation for more information

Identifying Performance Limiters

Limited by Bandwidth or Arithmetic?

- Perfect instructions:bytes ratio for Fermi C2050:
 - ~4.5 : 1 with ECC on
 - ~3.6 : 1 with ECC off
 - These assume fp32 instructions, throughput for other instructions varies
- Algorithmic analysis:
 - Rough estimate of arithmetic to bytes ratio
- Code likely uses more instructions and bytes than algorithm analysis suggests:
 - Instructions for loop control, pointer math, etc.
 - Address pattern may result in more memory fetches
 - Two ways to investigate:
 - Use the profiler (quick, but approximate)
 - Use source code modification (more accurate, more work intensive)

Analysis with Profiler

Profiler counters:

- instructions_issued, instructions_executed
 - Both incremented by 1 per warp
 - "issued" includes replays, "executed" does not
- gld_request, gst_request
 - Incremented by 1 per warp for each load/store instruction
 - Instruction may be counted if it is "predicated out"
- l1_global_load_miss, l1_global_load_hit, global_store_transaction
 - Incremented by 1 per <u>L1 line</u> (line is 128B)
- uncached global load transaction
 - Incremented by 1 per group of 1, 2, 3, or 4 transactions
 - Better to look at L2_read_request counter (incremented by 1 per 32 bytes, per GPU)

Compare:

```
- 32 * instructions_issued /* 32 = warp size */
```

128B * (global store transaction + I1 global load miss)

A Note on Counting Global Memory Accesses

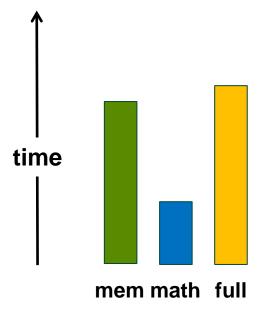
- Load/store instruction count can be lower than the number of actual memory transactions
 - Address pattern, different word sizes
- Counting requests from L1 to the rest of the memory system makes the most sense
 - Caching-loads: count L1 misses
 - Non-caching loads and stores: count L2 read requests
 - Note that L2 counters are for the entire chip, L1 counters are per SM
- Some shortcuts, assuming "coalesced" address patterns:
 - One 32-bit access instruction
 - One 64-bit access instruction

 - One 128-bit access instruction

- -> one 128-byte transaction per warp
- -> two 128-byte transactions per warp
- -> four 128-byte transactions per warp

Analysis with Modified Source Code

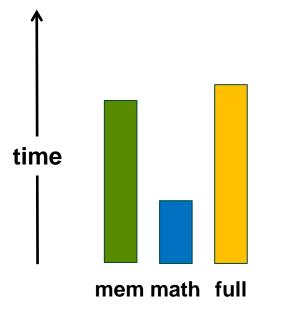
- Time memory-only and math-only versions of the kernel
 - Easier for codes that don't have data-dependent control-flow or addressing
 - Gives you good estimates for:
 - Time spent accessing memory
 - Time spent in executing instructions
- Comparing the times for modified kernels
 - Helps decide whether the kernel is mem or math bound
 - Shows how well memory operations are overlapped with arithmetic
 - Compare the sum of mem-only and math-only times to full-kernel time



Memory-bound

Good mem-math overlap: latency not a problem

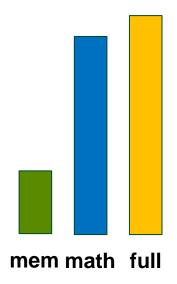
(assuming memory throughput is not low compared to HW theory)



Memory-bound

Good mem-math overlap: latency not a problem

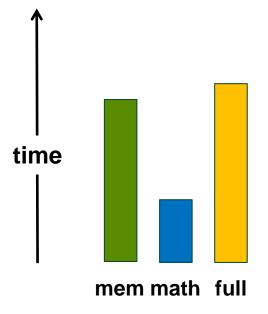
(assuming memory throughput is not low compared to HW theory)



Math-bound

Good mem-math overlap: latency not a problem

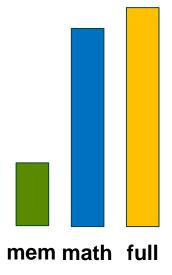
(assuming instruction throughput is not low compared to HW theory)



Memory-bound

Good mem-math overlap: latency not a problem

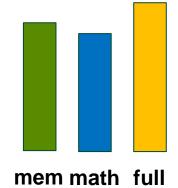
(assuming memory throughput is not low compared to HW theory)



Math-bound

Good mem-math overlap: latency not a problem

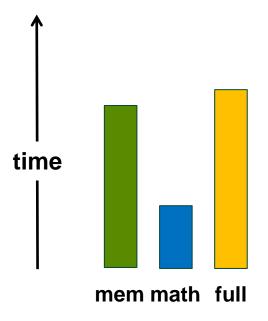
(assuming instruction throughput is not low compared to HW theory)



Balanced

Good mem-math overlap: latency not a problem

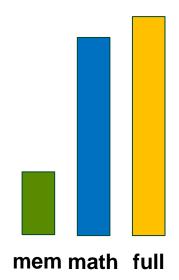
(assuming memory/instr throughput is not low compared to HW theory)



Memory-bound

Good mem-math overlap: latency not a problem

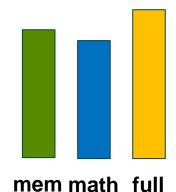
(assuming memory throughput is not low compared to HW theory)



Math-bound

Good mem-math overlap: latency not a problem

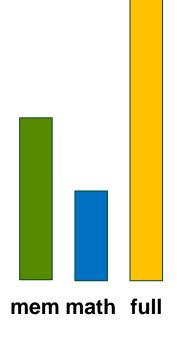
(assuming instruction throughput is not low compared to HW theory)



Balanced

Good mem-math overlap: latency not a problem

(assuming memory/instr throughput is not low compared to HW theory)



Memory and latency bound

Poor mem-math overlap: latency is a problem

Source Modification

Memory-only:

- Remove as much arithmetic as possible
 - Without changing access pattern
 - Use the profiler to verify that load/store instruction count is the same

Store-only:

- Also remove the loads
- Math-only:
 - Remove global memory accesses
 - Need to trick the compiler:
 - Compiler throws away all code that it detects as not contributing to stores
 - Put stores inside conditionals that always evaluate to false
 - Condition should depend on the value about to be stored (prevents other optimizations)
 - Condition outcome should not be known to the compiler

Source Modification for Math-only

```
__global__ void fwd_3D( ..., int flag)
{
    ...
    value = temp + coeff * vsq;
    if( 1 == value * flag )
        g_output[out_idx] = value;
}
If you compare only the flag, the compiler may move the computation into the conditional as well
```

Source Modification and Occupancy

- Removing pieces of code is likely to affect register count
 - This could increase occupancy, skewing the results
 - See slide 23 to see how that could affect throughput
- Make sure to keep the same occupancy
 - Check the occupancy with profiler before modifications
 - After modifications, if necessary add shared memory to match the unmodified kernel's occupancy

```
kernel<<< grid, block, smem, ...>>>(...)
```

Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):

- Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

Memory access transactions:

- Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only:

- Analysis:
 - Instr:byte ratio = ~2.66
 - 32*18,194,139 / 128*1,708,032
 - Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
 - App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off

Case Study: Limiter Analysis

- 3DFD of the wave equation, fp32
- Time (ms):

– Full-kernel: 35.39

– Mem-only: 33.27

– Math-only: 16.25

Instructions issued:

– Full-kernel: 18,194,139

– Mem-only: 7,497,296

– Math-only: 16,839,792

Memory access transactions:

- Full-kernel: 1,708,032

– Mem-only: 1,708,032

– Math-only:

- Analysis:
 - Instr:byte ratio = ~2.66
 - 32*18,194,139 / 128*1,708,032
 - Good overlap between math and mem:
 - 2.12 ms of math-only time (13%) are not overlapped with mem
 - App memory throughput: 62 GB/s
 - HW theory is 114 GB/s, so we're off
- Conclusion:
 - Code is memory-bound
 - Latency could be an issue too
 - Optimizations should focus on memory throughput first
 - math contributes very little to total time (2.12 out of 35.39ms)

Summary: Limiter Analysis

- Rough algorithmic analysis:
 - How many bytes needed, how many instructions
- Profiler analysis:
 - Instruction count, memory request/transaction count
- Analysis with source modification:
 - Memory-only version of the kernel
 - Math-only version of the kernel
 - Examine how these times relate and overlap

Optimizations for Global Memory

Memory Throughput Analysis

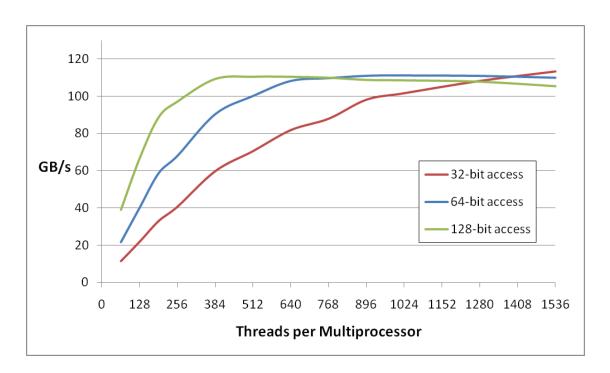
- Throughput: from application point of view
 - From app point of view: count bytes requested by the application
 - From HW point of view: count bytes moved by the hardware
 - The two can be different.
 - Scattered/misaligned pattern: not all transaction bytes are utilized
 - Broadcast: the same small transaction serves many requests
- Two aspects to analyze for performance impact:
 - Addressing pattern
 - Number of concurrent accesses in flight

Memory Throughput Analysis

- Determining that access pattern is problematic:
 - Profiler counters: access instruction count is <u>significantly</u> smaller than transaction count
 - gld_request < (l1_global_load_miss + l1_global_load_hit) * (word_size / 4B)
 - gst_request < 4 * I2_write_requests * (word_size / 4B)
 - Make sure to adjust the transaction counters for word size (see slide 8)
 - App throughput is much smaller than HW throughput
 - Use profiler to get HW throughput
- Determining that the number of concurrent accesses is insufficient:
 - Throughput from HW point of view is much lower than theoretical

Concurrent Accesses and Performance

- Increment a 64M element array
 - Two accesses per thread (load then store, but they are dependent)
 - Thus, each warp (32 threads) has one outstanding transaction at a time
- Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s



Several independent smaller accesses have the same effect as one larger one.

For example:

Four 32-bit ~= one 128-bit

Optimization: Address Pattern

Coalesce the address pattern

- 128-byte lines for caching loads
- 32-byte segments for non-caching loads, stores
- A warp's address pattern is converted to transactions
 - Coalesce to maximize utilization of bus transactions
 - Refer to CUDA Programming Guide / Best Practices Guide / Fundamental Opt. talk

Try using non-caching loads

- Smaller transactions (32B instead of 128B)
 - more efficient for scattered or partially-filled patterns

Try fetching data from texture

- Smaller transactions and different caching
- Cache not polluted by other gmem loads

Optimizing Access Concurrency

- Have enough concurrent accesses to saturate the bus
 - Need (mem_latency)x(bandwidth) bytes in flight (Little's law)
 - Fermi C2050 global memory:
 - 400-800 cycle latency, 1.15 GHz clock, 144 GB/s bandwidth, 14 SMs
 - Need 30-50 128-byte transactions in flight per SM
- Ways to increase concurrent accesses:
 - Increase occupancy
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - Reduce register count (-maxrregcount option, or __launch_bounds__)
 - Modify code to process several elements per thread

Case Study: Access Pattern 1

- Same 3DFD code as in the previous study
- Using caching loads (compiler default):
 - Memory throughput: 62 / 74 GB/s for app / hw
 - Different enough to be interesting
- Loads are coalesced:
 - gld_request == (l1_global_load_miss + l1_global_load_hit)
- There are halo loads that use only 4 threads out of 32
 - For these transactions only 16 bytes out of 128 are useful
- Solution: try non-caching loads (-Xptxas -dlcm=cg compiler option)
 - Performance increase of 7%
 - · Not bad for just trying a compiler flag, no code change
 - Memory throughput: 66 / 67 GB/s for app / hw

Case Study: Accesses in Flight

- Continuing with the FD code
 - Throughput from both app and hw point of view is 66-67 GB/s
 - Now 30.84 out of 33.71 ms are due to mem
 - 1024 concurrent threads per SM
 - Due to register count (24 per thread)
 - Simple copy kernel reaches ~80% of achievable mem throughput at this thread count
- Solution: increase accesses per thread
 - Modified code so that each thread is responsible for 2 output points
 - Doubles the load and store count per thread, saves some indexing math
 - Doubles the tile size -> reduces bandwidth spent on halos
 - Further 25% increase in performance
 - App and HW throughputs are now 82 and 84 GB/s, respectively

Case Study: Access Pattern 2

- Kernel from climate simulation code
 - Mostly fp64 (so, at least 2 transactions per mem access)
- Profiler results:

```
- gld_request: 72,704
```

- l1_global_load_hit: 439,072

– l1_global_load_miss: 724,192

Analysis:

- L1 hit rate: 37.7%
- 16 transactions per load instruction
 - Indicates bad access pattern (2 are expected due to 64-bit words)
 - Of the 16, 10 miss in L1 and contribute to mem bus traffic
 - So, we fetch **5x** more bytes than needed by the app

Case Study: Access Pattern 2

Looking closer at the access pattern:

- <u>Each thread</u> linearly traverses a contiguous memory region
- Expecting CPU-like L1 caching
 - Remember what I said about coding for L1 and L2
 - (Fundamental Optimizations, slide 11)
- One of the worst access patterns for GPUs

Solution:

- Transposed the code so that <u>each warp</u> accesses a contiguous memory region
- 2.17 transactions per load instruction
- This and some other changes improved performance by 3x

Optimizing with Compression

 When all else has been optimized and kernel is limited by the number of bytes needed, consider compression

Approaches:

- Int: conversion between 8-, 16-, 32-bit integers is 1 instruction (64-bit requires a couple)
- FP: conversion between fp16, fp32, fp64 is one instruction
 - fp16 (1s5e10m) is storage only, no math instructions
- Range-based:
 - Lower and upper limits are kernel arguments
 - Data is an index for interpolation between the limits

Application in practice:

- Clark et al. "Solving Lattice QCD systems of equations using mixed precision solvers on GPUs"
- http://arxiv.org/abs/0911.3191

Summary: Memory Analysis and Optimization

Analyze:

- Access pattern:
 - Compare counts of access instructions and transactions
 - Compare throughput from app and hw point of view
- Number of accesses in flight
 - Look at occupancy and independent accesses per thread
 - Compare achieved throughput to theoretical throughput
 - Also to simple memcpy throughput at the same occupancy

Optimizations:

- Coalesce address patterns per warp (nothing new here), consider texture
- Process more words per thread (if insufficient accesses in flight to saturate bus)
- Try the 4 combinations of L1 size and load type (caching and non-caching)
- Consider compression

Optimizations for Instruction Throughput

Possible Limiting Factors

Raw instruction throughput

- Know the kernel instruction mix
- fp32, fp64, int, mem, transcendentals, etc. have different throughputs
 - Refer to the CUDA Programming Guide / Best Practices Guide
- Can examine assembly, if needed:
 - Can look at PTX (virtual assembly), though it's not the final optimized code
 - Can look at post-optimization machine assembly for GT200 (Fermi version coming later)

Instruction serialization

- Occurs when threads in a warp issue the same instruction in sequence
 - As opposed to the entire warp issuing the instruction at once
 - Think of it as "replaying" the same instruction for different threads in a warp
- Some causes:
 - Shared memory bank conflicts
 - Constant memory bank conflicts

Instruction Throughput: Analysis

- Profiler counters (both incremented by 1 per warp):
 - instructions executed: counts instructions encoutered during execution
 - instructions issued: also includes additional issues due to serialization
 - Difference between the two: issues that happened due to serialization, instr cache misses, etc.
 - Will rarely be 0, cause for concern only if it's a significant percentage of instructions issued
- Compare achieved throughput to HW capabilities
 - Peak instruction throughput is documented in the Programming Guide
 - Profiler also reports throughput:
 - GT200: as a fraction of theoretical peak for fp32 instructions
 - Fermi: as IPC (instructions per clock)

Instruction Throughput: Optimization

- Use intrinsics where possible (__sin(), __sincos(), __exp(), etc.)
 - Available for a number of math.h functions
 - 2-3 bits lower precision, much higher throughput
 - Refer to the CUDA Programming Guide for details
 - Often a single instruction, whereas a non-intrinsic is a SW sequence
- Additional compiler flags that also help (select GT200-level precision):

```
- -ftz=true: flush denormals to 0
```

- prec-div=false : faster fp division instruction sequence (some precision loss)
- prec-sqrt=false : faster fp sqrt instruction sequence (some precision loss)
- Make sure you do fp64 arithmetic only where you mean it:
 - fp64 throughput is lower than fp32
 - fp literals without an "f" suffix (34.7) are interpreted as fp64 per C standard

Serialization: Profiler Analysis

- Serialization is significant if
 - instructions issued is significantly higher than instructions executed
- Warp divergence
 - Profiler counters: divergent_branch, branch
 - Compare the two to see what percentage diverges
 - However, this only counts the branches, not the rest of serialized instructions
- SMEM bank conflicts
 - Profiler counters:
 - I1_shared_bank_conflict: incremented by 1 per warp for each replay
 - double counts for 64-bit accesses
 - shared_load, shared_store: incremented by 1 per warp per instruction
 - Bank conflicts are significant if both are true:
 - instruction throughput affects performance
 - I1_shared_bank_conflict is significant compared to instructions_issued

Serialization: Analysis with Modified Code

- Modify kernel code to assess performance improvement if serialization were removed
 - Helps decide whether optimizations are worth pursuing
- Shared memory bank conflicts:
 - Change indexing to be either broadcasts or just threadIdx.x
 - Should also declare smem variables as volatile.
 - Prevents compiler from "caching" values in registers
- Warp divergence:
 - change the condition to always take the same path
 - Time both paths to see what each costs

Serialization: Optimization

Shared memory bank conflicts:

- Pad SMEM arrays
 - For example, when a warp accesses a 2D array's column
 - See CUDA Best Practices Guide, Transpose SDK whitepaper
- Rearrange data in SMEM

Warp serialization:

- Try grouping threads that take the same path
 - Rearrange the data, pre-process the data
 - Rearrange how threads index data (may affect memory perf)

Case Study: SMEM Bank Conflicts

- A different climate simulation code kernel, fp64
- Profiler values:
 - Instructions:

```
Executed / issued: 2,406,426 / 2,756,140
Difference: 349,714 (12.7% of instructions issued were "replays")
```

- GMEM:
 - Total load and store transactions: 170,263
 - Instr:byte ratio: 4
 - suggests that instructions are a significant limiter (especially since there is a lot of fp64 math)
- SMEM:
 - Load / store: 421,785 / 95,172
 - Bank conflict: 674,856 (really 337,428 because of double-counting for fp64)
 - This means a total of 854,385 SMEM access instructions, (421,785 +95,172+337,428), 39% replays
- Solution:
 - Pad shared memory array: performance increased by 15%
 - replayed instructions reduced down to 1%

Instruction Throughput: Summary

Analyze:

- Check achieved instruction throughput
- Compare to HW peak (but must take instruction mix into consideration)
- Check percentage of instructions due to serialization

Optimizations:

- Intrinsics, compiler options for expensive operations
- Group threads that are likely to follow same execution path
- Avoid SMEM bank conflicts (pad, rearrange data)

Optimizations for Latency

Latency: Analysis

Suspect if:

- Neither memory nor instruction throughput rates are close to HW theoretical rates
- Poor overlap between mem and math
 - Full-kernel time is significantly larger than max{mem-only, math-only}

Two possible causes:

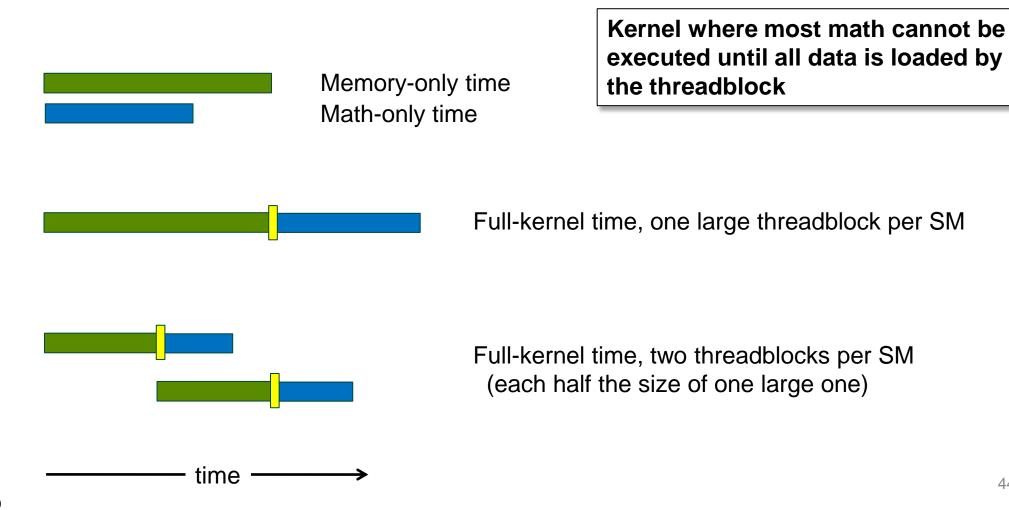
- Insufficient concurrent threads per multiprocessor to hide latency
 - Occupancy too low
 - Too few threads in kernel launch to load the GPU
 - elapsed time doesn't change if problem size is increased (and with it the number of blocks/threads)
- Too few concurrent threadblocks per SM when using __syncthreads()
 - __syncthreads() can prevent overlap between math and mem within the same threadblock

Simplified View of Latency and Syncs

Kernel where most math cannot be executed until all data is loaded by the threadblock

Full-kernel time, one large threadblock per SM

Simplified View of Latency and Syncs



Latency: Optimization

- Insufficient threads or workload:
 - Increase the level of parallelism (more threads)
 - If occupancy is already high but latency is not being hidden:
 - Process several output elements per thread gives more independent memory and arithmetic instructions (which get pipelined)

Barriers:

- Can assess impact on perf by commenting out __syncthreads()
 - Incorrect result, but gives upper bound on improvement
- Try running several smaller threadblocks
 - Think of it as "pipelining" blocks
 - In some cases that costs extra bandwidth due to halos
- Check out Vasily Volkov's talk 2238 at GTC 2010 for a detailed treatment:
 - "Better Performance at Lower Latency"

Register Spilling

Register Spilling

- Compiler "spills" registers to local memory when register limit is exceeded
 - Fermi HW limit is 63 registers per thread
 - Spills also possible when register limit is programmer-specified
 - Common when trying to achieve certain occupancy with -maxrregcount compiler flag or __launch_bounds__ in source
 - lmem is like gmem, except that writes are cached in L1
 - Imem load hit in L1 -> no bus traffic
 - Imem load miss in L1 -> bus traffic (128 bytes per miss)
 - Compiler flag –Xptxas –v gives the register and lmem usage per thread
- Potential impact on performance
 - Additional bandwidth pressure if evicted from L1
 - Additional instructions
 - Not always a problem, easy to investigate with quick profiler analysis

Register Spilling: Analysis

- Profiler counters: I1_local_load_hit, I1_local_load_miss
- Impact on instruction count:
 - Compare to total instructions issued
- Impact on memory throughput:
 - Misses add 128 bytes per warp
 - Compare 2*l1_local_load_miss count to gmem access count (stores + loads)
 - Multiply Imem load misses by 2: missed line must have been evicted -> store across bus
 - Comparing with caching loads: count only gmem misses in L1
 - Comparing with non-caching loads: count all loads

Optimization for Register Spilling

- Try increasing the limit of registers per thread
 - Use a higher limit in -maxrregcount, or lower thread count for __launch_bounds__
 - Will likely decrease occupancy, potentially making gmem accesses less efficient
 - However, may still be an overall win fewer total bytes being accessed in gmem
- Non-caching loads for gmem
 - potentially fewer contentions with spilled registers in L1
- Increase L1 size to 48KB
 - default is 16KB L1 / 48KB smem

Register Spilling: Case Study

- FD kernel, (3D-cross stencil)
 - fp32, so all gmem accesses are 4-byte words
 - Need higher occupancy to saturate memory bandwidth
 - Coalesced, non-caching loads
 - one gmem request = 128 bytes
 - all gmem loads result in bus traffic
 - Larger threadblocks mean lower gmem pressure
 - Halos (ghost cells) are smaller as a percentage
- Aiming to have 1024 concurrent threads per SM
 - Means no more than 32 registers per thread
 - Compiled with –maxrregcount=32

Case Study: Register Spilling 1

- 10th order in space kernel (31-point stencil)
 - 32 registers per thread: 68 bytes of lmem per thread: upto 1024 threads per SM
- Profiled counters:

```
    - I1_local_load_miss = 36 inst_issued = 8,308,582
    - I1_local_load_hit = 70,956 gld_request = 595,200
    - local store = 64,800 gst request = 128,000
```

- Conclusion: spilling is not a problem in this case
 - The ratio of gmem to lmem bus traffic is approx 8,444 : 1 (hardly any bus traffic is due to spills)
 - L1 contains most of the spills (99.9% hit rate for lmem loads)
 - Only 1.6% of all instructions are due to spills

Case Study: Register Spilling 2

- 12th order in space kernel (37-point stencil)
 - 32 registers per thread: 80 bytes of lmem per thread: upto 1024 threads per SM
- Profiled counters:

```
    - I1_local_load_miss = 376,889 inst_issued = 10,154,216
    - I1_local_load_hit = 36,931 gld_request = 550,656
    - local store = 71,176 gst request = 115,200
```

- Conclusion: spilling is a problem in this case
 - The ratio of gmem to lmem bus traffic is approx 7:6 (53% of bus traffic is due to spilling)
 - L1 does not contain the spills (8.9% hit rate for lmem loads)
 - Only 4.1% of all instructions are due to spills
- Solution: increase register limit per thread
 - 42 registers per thread: no spilling: upto 768 threads per SM
 - Single 512-thread block per SM: 13% perf increase
 - Three 256-thread blocks per SM: 37% perf increase

Register Spilling: Summary

- Doesn't always decrease performance, but when it does it's due to:
 - Increased pressure on the memory bus
 - Increased instruction count
- Use the profiler to examine the impact by comparing:
 - 2*I1_local_load_miss to all gmem accesses that don't hit in L1
 - Local access count to total instructions issued
- Impact is significant if:
 - Memory-bound code: Imem misses are a significant percentage of total bus traffic
 - Instruction-bound code: Imem accesses are a significant percentage of all instructions

Summary

- Determining what limits your kernel most:
 - Arithmetic, memory bandwidth, latency
- Address the bottlenecks in the order of importance
 - Analyze for inefficient use of hardware
 - Estimate the impact on overall performance
 - Optimize to most efficiently use hardware
- More resources:
 - Fundamental Optimizations talk
 - Prior CUDA tutorials at Supercomputing
 - http://gpgpu.org/{sc2007,sc2008,sc2009}
 - CUDA Programming Guide, CUDA Best Practices Guide
 - CUDA webinars

Questions?