Fundamental Optimizations
Paulius Micikevicius | NVIDIA
Outline

• Kernel optimizations
 – Launch configuration
 – Global memory throughput
 – Shared memory access
 – Instruction throughput / control flow

• Optimization of CPU-GPU interaction
 – Maximizing PCIe throughput
 – Overlapping kernel execution with memory copies
Launch Configuration
Launch Configuration

• How many threads/threadblocks to launch?
• Key to understanding:
 – Instructions are issued in order
 – A thread stalls when one of the operands isn’t ready:
 • Memory read by itself doesn’t stall execution
 – Latency is hidden by switching threads
 • GMEM latency: 400-800 cycles
 • Arithmetic latency: 18-22 cycles

• Conclusion:
 – Need enough threads to hide latency
Launch Configuration

Hiding arithmetic latency:
- Need ~18 warps (576) threads per Fermi SM
- Fewer warps for pre-Fermi GPUs (Fermi SM more than doubled issue rate)
- Or, latency can also be hidden with independent instructions from the same warp
 - For example, if instruction never depends on the output of preceding instruction, then only 9 warps are needed, etc.

Maximizing global memory throughput:
- Depends on the access pattern, and word size
- Need enough memory transactions in flight to saturate the bus
 - Independent loads and stores from the same thread
 - Loads and stores from different threads
 - Larger word sizes can also help (float2 is twice the transactions of float, for example)
Maximizing Memory Throughput

• Increment of an array of 64M elements
 – Two accesses per thread (load then store)
 – The two accesses are dependent, so really 1 access per thread at a time
• Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller accesses have the same effect as one larger one.

For example:
Four 32-bit ~ one 128-bit
Launch Configuration: Summary

• Need enough total threads to keep GPU busy
 – Typically, you’d like 512+ threads per SM
 • More if processing one fp32 element per thread
 – Of course, exceptions exist

• Threadblock configuration
 – Threads per block should be a multiple of warp size (32)
 – SM can concurrently execute up to 8 threadblocks
 • Really small threadblocks prevent achieving good occupancy
 • Really large threadblocks are less flexible
 • I generally use 128-256 threads/block, but use whatever is best for the application

• For more details:
 – Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”
Global Memory Throughput
Fermi Memory Hierarchy Review
Fermi Memory Hierarchy Review

• Local storage
 – Each thread has own local storage
 – Mostly registers (managed by the compiler)

• Shared memory / L1
 – Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
 – Shared memory is accessible by the threads in the same threadblock
 – Very low latency
 – Very high throughput: 1+ TB/s aggregate

• L2
 – All accesses to global memory go through L2, including copies to/from CPU host

• Global memory
 – Accessible by all threads as well as host (CPU)
 – Higher latency (400-800 cycles)
 – Throughput: up to 177 GB/s
Programming for L1 and L2

• Short answer: DON’T
 – GPU caches are not intended for the same use as CPU caches
 • Smaller size (especially per thread), so not aimed at temporal reuse
 • Intended to smooth out some access patterns, help with spilled registers, etc.
 – Don’t try to block for L1/L2 like you would on CPU
 • You have 100s to 1,000s of run-time scheduled threads hitting the caches
 • If it is possible to block for L1 then block for SMEM
 – Same size, same bandwidth, hw will not evict behind your back

• Optimize as if no caches were there
 – No Fermi-only techniques to learn per se (so, all you know is still good)
 – Some cases will just run faster
Fermi GMEM Operations

- **Two types of loads:**
 - Caching
 - Default mode
 - Attempts to hit in L1, then L2, then GMEM
 - Load granularity is 128-byte line
 - Non-caching
 - Compile with `-Xptxas -dlcm=cg` option to nvcc
 - Attempts to hit in L2, then GMEM
 - Do not hit in L1, invalidate the line if it’s in L1 already
 - Load granularity is 32-bytes

- **Stores:**
 - Invalidate L1, write-back for L2
Load Caching and L1 Size

• Non-caching loads can improve perf when:
 – Loading scattered words or only a part of a warp issues a load
 • Benefit: transaction is smaller, so useful payload is a larger percentage
 • Loading halos, for example
 – Spilling registers (reduce line fighting with spillage)

• Large L1 can improve perf when:
 – Spilling registers (more lines so fewer evictions)
 – Some misaligned, strided access patterns
 – 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
 • CUDA call, can be set for the app or per-kernel

• How to use:
 – Just try a 2x2 experiment matrix: \{CA,CG\} x \{48-L1, 16-L1\}
 • Keep the best combination - same as you would with any HW managed cache, including CPUs
Load Operation

- Memory operations are issued per warp (32 threads)
 - Just like all other instructions
 - Prior to Fermi, memory issues were per half-warp

- Operation:
 - Threads in a warp provide memory addresses
 - Determine which lines/segments are needed
 - Request the needed lines/segments
Caching Load

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

Memory addresses

© NVIDIA 2010
Non-caching Load

- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448

Memory addresses
Caching Load

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 1 cache-line
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%

addresses from a warp

Memory addresses
Non-caching Load

- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 4 segments
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss
 - Bus utilization: 100%
Caching Load

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within 2 cache-lines
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses
 - Bus utilization: 50%

addresses from a warp

Memory addresses

© NVIDIA 2010
Non-caching Load

- Warp requests 32 misaligned, consecutive 4-byte words
- Addresses fall within at most 5 segments
 - Warp needs 128 bytes
 - At most 160 bytes move across the bus
 - Bus utilization: at least 80%
 - Some misaligned patterns will fall within 4 segments, so 100% utilization
Caching Load

• All threads in a warp request the same 4-byte word
• Addresses fall within a single cache-line
 – Warp needs 4 bytes
 – 128 bytes move across the bus on a miss
 – Bus utilization: 3.125%
Non-caching Load

- All threads in a warp request the same 4-byte word
- Addresses fall within a single segment
 - Warp needs 4 bytes
 - 32 bytes move across the bus on a miss
 - Bus utilization: 12.5%

addresses from a warp

| Memory addresses | 0 | 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 416 | 448 |
|------------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

Caching Load

- Warp requests 32 scattered 4-byte words
- Addresses fall within \(N \) cache-lines
 - Warp needs 128 bytes
 - \(N \times 128 \) bytes move across the bus on a miss
 - Bus utilization: \(\frac{128}{(N \times 128)} \)
Non-caching Load

• Warp requests 32 scattered 4-byte words
• Addresses fall within N segments
 – Warp needs 128 bytes
 – $N \times 32$ bytes move across the bus on a miss
 – Bus utilization: $\frac{128}{N \times 32}$
Impact of Address Alignment

- Warps should access aligned regions for maximum memory throughput
 - Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region
 - ECC further significantly reduces misaligned store throughput

Experiment:
- Copy 16MB of floats
- 256 threads/block

Greatest throughput drop:
- GT200: 40%
- Fermi:
 - CA loads: 15%
 - CG loads: 32%
GMEM Optimization Guidelines

• Strive for perfect coalescing per warp
 – Align starting address (may require padding)
 – A warp should access within a contiguous region

• Have enough concurrent accesses to saturate the bus
 – Launch enough threads to maximize throughput
 • Latency is hidden by switching threads (warps)
 – Process several elements per thread
 • Multiple loads get pipelined
 • Indexing calculations can often be reused

• Try L1 and caching configurations to see which one works best
 – Caching vs non-caching loads (compiler option)
 – 16KB vs 48KB L1 (CUDA call)
Shared Memory
Shared Memory

• **Uses:**
 – Inter-thread communication within a block
 – Cache data to reduce redundant global memory accesses
 – Use it to improve global memory access patterns

• **Fermi organization:**
 – 32 banks, 4-byte wide banks
 – Successive 4-byte words belong to different banks

• **Performance:**
 – 4 bytes per bank per 2 clocks per multiprocessor
 – smem accesses are issued per 32 threads (warp)
 • per 16-threads for GPUs prior to Fermi
 – **serialization:** if n threads in a warp access different 4-byte words in the same bank, n accesses are executed serially
 – **multicast:** n threads access the same word in one fetch
 • Could be different bytes within the same word
 • Prior to Fermi, only broadcast was available, sub-word accesses within the same bank caused serialization
Bank Addressing Examples

- No Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Thread 31

Bank 31

= No Bank Conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Bank 0
Bank 1
Bank 2
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7

Thread 31

Bank 31
Bank Addressing Examples

• 2-way Bank Conflicts

• 8-way Bank Conflicts
Shared Memory: Avoiding Bank Conflicts

- **32x32** SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

```
<table>
<thead>
<tr>
<th>Bank 0</th>
<th>Bank 1</th>
<th>...</th>
<th>Bank 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>31</td>
</tr>
</tbody>
</table>
```

© NVIDIA 2010
Shared Memory: Avoiding Bank Conflicts

• Add a column for padding:
 – 32x33 SMEM array

• Warp accesses a column:
 – 32 different banks, no bank conflicts
Additional “memories”

• *Texture* and *constant*
• Read-only
• Data resides in global memory
• Read through different caches
Constant Memory

- Ideal for coefficients and other data that is read uniformly by warps
- Data is stored in global memory, read through a constant-cache
 - `__constant__` qualifier in declarations
 - Can only be read by GPU kernels
 - Limited to 64KB

- Fermi adds uniform accesses:
 - Kernel pointer argument qualified with `const`
 - Compiler must determine that all threads in a threadblock will dereference the same address
 - No limit on array size, can use any global memory pointer

- Constant cache throughput:
 - 32 bits per warp per 2 clocks per multiprocessor
 - To be used when all threads in a warp read the same address
 - Serializes otherwise
Constant Memory

- Ideal for coefficients and other data that is read uniformly by warps.
- Data is stored in global memory.
 - `__constant__` qualifier in declarations.
 - Can only be read by GPU kernels.
 - Limited to 64KB.
- Fermi adds uniform access:
 - Kernel pointer argument qualified with `const`.
 - Compiler must determine that all threads in a threadblock will dereference the same address.
 - No limit on array size, can use any global memory pointer.
- Constant cache throughput:
 - 32 bits per warp per 2 clocks per multiprocessor.
 - To be used when all threads in a warp read the same address.
 - Serializes otherwise.

```c
__global__ void kernel( const float *g_a )
{
    ... 
    float x = g_a[15]; /* uniform */
    float y = g_a[blockIdx.x+5]; /* uniform */
    float z = g_a[threadIdx.x]; /* non-uniform */
    ...
}
```
Constant Memory

• Ideal for coefficients and other data that is read uniformly by warps
• Data is stored in global memory, read through a constant-cache
 – `__constant__` qualifier in declarations
 – Can only be read by GPU kernels
 – Limited to 64KB
• Fermi adds uniform accesses:
 – Kernel pointer argument qualified with `const`
 – Compiler must determine that all threads in a threadblock will dereference the same address
 – No limit on array size, can use any global memory pointer
• Constant cache throughput:
 – 32 bits per warp per 2 clocks per multiprocessor
 – To be used when all threads in a warp read the same address
 • Serializes otherwise
Constant Memory

- Kernel executes 10K threads (320 warps) per SM during its lifetime
- All threads access the same 4B word
- Using GMEM:
 - Each warp fetches 32B -> 10KB of bus traffic
 - Caching loads potentially worse - 128B line, very likely to be evicted multiple times
Constant Memory

- Kernel executes 10K threads (320 warps) per SM during its lifetime
- All threads access the same 4B word
- Using constant/uniform access:
 - First warp fetches 32 bytes
 - All others hit in constant cache -> 32 bytes of bus traffic per SM
 - Unlikely to be evicted over kernel lifetime - other loads do not go through this cache

Addresses from a warp

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Texture

• Separate cache
• Dedicated texture cache hardware provides:
 – Out-of-bounds index handling
 • clamp or wrap-around
 – Optional interpolation
 • Think: using fp indices for arrays
 • Linear, bilinear, trilinear
 – Interpolation weights are 9-bit
 – Optional format conversion
 • {char, short, int} -> float
 – All of these are “free”
Instruction Throughput / Control Flow
Runtime Math Library and Intrinsics

• Two types of runtime math library functions
 – __func__(): many map directly to hardware ISA
 • Fast but lower accuracy (see CUDA Programming Guide for full details)
 • Examples: __sinf(x), __expf(x), __powf(x, y)
 – func(): compile to multiple instructions
 • Slower but higher accuracy (5 ulp or less)
 • Examples: sin(x), exp(x), pow(x, y)

• A number of additional intrinsics:
 – __sincosf(), __frcp_rz(), …
 – Explicit IEEE rounding modes (rz,rn,ru,rd)
Control Flow

- Instructions are issued per 32 threads (warp)
- Divergent branches:
 - Threads within a single warp take different paths
 - if-else, ...
 - Different execution paths within a warp are serialized
- Different warps can execute different code with no impact on performance
- Avoid diverging within a warp
 - Example with divergence:
 - if \((\text{threadIdx.x}) > 2\) \{...\} else \{...\}
 - Branch granularity < warp size
 - Example without divergence:
 - if \((\text{threadIdx.x} / \text{WARP_SIZE}) > 2\) \{...\} else \{...\}
 - Branch granularity is a whole multiple of warp size
Control Flow

if (...)
{
 // then-clause
}
else
{
 // else-clause
}
Execution within warps is coherent
Execution diverges within a warp
CPU-GPU Interaction
Pinned (non-pageable) memory

• Pinned memory enables:
 – faster PCIe copies
 – memcopies asynchronous with CPU
 – memcopies asynchronous with GPU

• Usage
 – cudaHostAlloc / cudaFreeHost
 • instead of malloc / free

• Implication:
 – pinned memory is essentially removed from host virtual memory
Streams and Async API

• Default API:
 – Kernel launches are asynchronous with CPU
 – Memcopies (D2H, H2D) block CPU thread
 – CUDA calls are serialized by the driver

• Streams and async functions provide:
 – Memcopies (D2H, H2D) asynchronous with CPU
 – Ability to concurrently execute a kernel and a memcopy

• Stream = sequence of operations that execute in issue-order on GPU
 – Operations from different streams may be interleaved
 – A kernel and memcopy from different streams can be overlapped
Overlap kernel and memory copy

• Requirements:
 – D2H or H2D memcpy from pinned memory
 – Device with compute capability ≥ 1.1 (G84 and later)
 – Kernel and memcpy in different, non-0 streams

• Code:

cudaStream_t stream1, stream2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(...);
Call Sequencing for Optimal Overlap

- CUDA calls are dispatched to the hw in the sequence they were issued.

- Fermi can concurrently execute:
 - Upto 16 kernels
 - Upto 2 memcopies, as long as they are in different directions (D2H and H2D)

- A call is dispatched if both are true:
 - Resources are available
 - Preceding calls in the same stream have completed

- Note that if a call blocks, it blocks all other calls of the same type behind it, even in other streams
 - Type is one of \{ kernel, memcpy\}
Stream Examples

K1,M1,K2,M2:

K1 K2
M1 M2

K1,K2,M1,M2:

K1 K2 M1 M2

K1,M1,M2:

K1 M1 M2

K1,M2,M1:

K1 M2 M1

K1,M2,M2:

K1 M2 M2

K: kernel
M: memcpy
Integer: stread ID
More on Fermi Concurrent Kernels

• Kernels may be executed concurrently if they are issued into different streams

• Scheduling:
 – Kernels are executed in the order in which they were issued
 – Threadblocks for a given kernel are scheduled if all threadblocks for preceding kernels have been scheduled and there still are SM resources available
More on Fermi Dual Copy

• Fermi is capable of duplex communication with the host
 – PCIe bus is duplex
 – The two memcopies must be in different streams, different directions

• Not all current host systems can saturate duplex PCIe bandwidth:
 – Likely limitations of the IOH chips
 – If this is important to you, test your host system
Duplex Copy: Experimental Results

10.8 GB/s

- PCIe, x16
 16 GB/s
- QPI, 6.4 GT/s
 25.6 GB/s
- 3xDDR3, 1066 MHz
 25.8 GB/s

7.5 GB/s

© NVIDIA 2010
Duplex Copy: Experimental Results

10.8 GB/s

- PCIe, x16
 - 16 GB/s
- QPI, 6.4 GT/s
 - 25.6 GB/s
- 3xDDR3, 1066 MHz
 - 25.8 GB/s

11 GB/s

- PCIe, x16
 - 16 GB/s
- QPI, 6.4 GT/s
 - 25.6 GB/s
- 3xDDR3, 1066 MHz
 - 25.8 GB/s
Summary

• Kernel Launch Configuration:
 – Launch enough threads per SM to hide latency
 – Launch enough threadblocks to load the GPU

• Global memory:
 – Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Use shared memory when applicable (over 1 TB/s bandwidth)

• GPU-CPU interaction:
 – Minimize CPU/GPU idling, maximize PCIe throughput

• Use analysis/profiling when optimizing:
 – “Analysis-driven Optimization” talk next
Additional Resources

• **Basics:**
 – CUDA webinars on NVIDIA website (just google for CUDA webinar)
 – CUDA by Example” book by J. Sanders and E. Candrot

• **Profiling, analysis, and optimization for Fermi:**
 – GTC-2010 session 2012: “Analysis-driven Optimization” (tomorrow, 3-5pm)

• **GT200 optimization:**
 – GTC-2009 session 1029 (slides and video)
 • Slides:
 • Materials for all sessions:

• **CUDA Tutorials at Supercomputing:**

• CUDA Programming Guide
• CUDA Best Practices Guide
Questions?