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VOLTA TENSORY

EataEEE Volta Tensor Core

FP16 FP32

P100 V100

FP16/Tensor_1) 20 TFLOPS 125 TFLOPS
FP32 10 TFLOPS 15.6 TFLOPS



Geometric Mean Speedup of

CUDNN: TENSORI 7 DE3h%sE

6X

5X

4X

3X

Convolution Layers

2X

1X

0X
Model:

Pascal FP32 vs. V100 Tensor_1)’

cuDNN Convolution Speedup

Tesla V100 Tensor Cores vs. Pascal P100 FMA

Alexnet

VGG-A Inception_v3 Resnet50
M FP161/0 + FP32 Math (V100 Tensor Cores vs P100 FMA)

Convolution/&

DEHELEE
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Resnet50, Imagenet, Batch:128
P100 FP32, V100 FP32 vs. V100 Tensor1/)’

Time per iteration [ms]

0 100 200 300 400 500 600

|

V100
Tensord7 F I 197 ms m

“Conv mBN mRelu mCupy_* mMisc.
(*) Chainer 3.0.0rc1+ & CuPy 2.0.0rc1+ Z{$F 6 <INVIDIA
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Forward

Yk_" Loss E r
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FORWARD PASS
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Backprop

yk—» | lossE | ——dE/dYy
dE/dY,,=dE/dY| *W
Yie WictYier /dY¥icy=dE/dYi Wi —dE/dWy o
dE/dW=dE/dY, *Y\ 1 m
X |
| | 0O
Y, dE/dY,.
| ‘; k-1 X
|
dE/dY;=dE/dY; *W, -O
Ya= Wa*Y: —dE/dW ﬂ
dE/dW,=dE/dY; *Y; O
A |
Y, dE/dY, 'D
| 4
= *
Y= WX dE/dX=dE/dY; *W; L dE/dW;
dE/dW,=dE/dY; *X
T
FORWARD PASS BACKPROP 8 <INVIDIA




MNo—=2Y Dih

e ——dE/dYy
dEdek_lsz/dYk W
Yi= Wi* Yk —dE/dW > W= W -A*dE/dW —Wy
. dE{’de:dE/’dYk *Yia
& I
[ I
Yz dE/‘dYk—l
I I
| A 4
dE/dY,=dE/dY; *W
Yo= Wo*Ys /Y, =dE/dY;*W, —dE/dW:» Wo= W, -A*dE/dW,— W5
dE(’deszdeg *Yi
Y, dE/dY,
| L4
dE/dX=dE/dY,*W
Y= Wi*X / [d¥2 T W, —dE/dW P W1= Wy -A*dE/dW1[—
dE/de_:dE{rdY:l *X
T
FORWARD PASS BACKPROP

Wi

WEIGHT UPDATE
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MNo—=2Y Dih

Forward
vk —dE/dYy Loss E
Yk
_ ~ dEIdYk_]_:dE/dYk W, N _ . | _ ~
Yi= Wi*Yia dE/dW, =dE/dY, *Yy1 dE/dWi» W= W -A*dE/dW, — Wi Yi= ‘W:k Yi1
X | x
[ [
YZ dE/‘dYk_l Y2
|
| ¥ |
Ya= Wa*Yy dE/dY,=dE/dY; *W, —dE/dWy P Wo= Wy -A*dE/dW, [ — W Ya= Wa*Y,
dEdezszfdvz *Yi
* | *
Y, dE/dY, Y1
| 4 |
Yim WX dE/dX=dE/dY,*W, /AW P W= Wy A*dE/dWs|— Wi Yi= Wi*X
dE/dW1=dE[dY1 *X
f f
X X
( | ) ( ‘ )
FORWARD PASS BACKPROP WEIGHT UPDATE | | FORWARD PASS
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FP32, FP16, RS taE
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FREZFE/NNS(FP16)

sign exponent fraction
(5 bit) (10 bit)
15|14 13j12Q11jwojs| &l 7vQels]aj3ajzagi|o
sign exponent fraction
(8 bit) (23 bit)

FP32

Normal range: [ 6x10> , 65504 ]
Sub-normal range: [ 6x10% , 6x107> ]

IEEE/54

HHFEE (FP32)ELENDE,
RIFATEEL VI HIEE(C
LN

FP16
} ——— i >
-127 -24 -14 0 15 128
FLOAT 32
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TENSORIV DEtEHE

FP32(SiR VSR
1.2
IEE?E"E
1.1 - TensordVDEEFER(T.
FP16&LLEART. FP32ED
z sRZAEDVINEL

0.9 1THIA: 3BEX D10 (activation)

175B: IEFRT3TR (weight)
(F130.0, 538%1.0)

0.8

N XY o0 O N < N X 60 O N * N XX 60O O N X <
MeERES PS8 R8 "°YRSES ANiEE: 32 - 1024
FP32 TensorCore FP16 :f;jlzj;;}lquy
P R
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ARL=20
45

N

N—(EFP16

—=>% (FP16, BSEE)
A

e ——dE/d Yy » Lo
_ _ * Yk
el [ R =
i == (FP16) ;
Y2 dE/dY\.1 Y2
: v R ™ |
Ya= Wa*Y, :g::;;j:s: E @E (j:/ J \é L\ Y1
QF dgidvl B HNEFTSNRVB]EEE
Vie Wi dE/X=dE Y. BEFmHKEIRE .x—
v dE/dW,=dE/dr; ‘A | | |
x A
\ V \ Y}
FORWARD PASS BACKPROP WEIGHT UPDATE | |[FORWARD PASS
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FP16

FP32

sign exponent

(5 bit)

FREZFE/NNS(FP16)

fraction
(10 bit)

15

14

13

12

11

10

9

sign

exponent

(8 bit)

fraction
(23 bit)

Normal range:

[ 6x10> , 65504 ]
Sub-normal range: [ 6x10% , 6x107> ]

FP16

I ] HEED

HVJE

FP160REXEB(L10EY b
2048 + 1 = 2048

-127

-24 -14 0 15

128

FLOAT 32
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ARL=20
7]

T4 MIFP32TERh

yk—» | lossE | ——dE/dYy » Loss E
Yk
Yi= Wiy dE/dYia=dE/dY, *W —dE/dWP W= Wi -A*dE/dW, [—WiP{  Yie WY
= WY dE/dW,=dE/dY, *Y, . K k= Wi k K K= lk k-1
X | x
| |
Yz dE/‘dYk_l YZ
| ! |
| h 4 |
dE/dY,=dE/dY, *W
Yo= Wo*Y, /dY,=dE/dY; "W, —dE/dW P Wo= Wy A*dE/dW,— W Yo= Wa*Y;
dEdezszfdvz *Yi
Y, dE/dY, Y1
| v |

dE/dX=dE/dY, *W,
dE/dW,=dE/dY; *X

FORWARD PASS

FP16

BACKPROP

W1= W1 -A*dE/dW;

FP1A

WEIGHT UPDATE

FORWARD PASS
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DIA MIFP32TERh

Weight Update

Backprop Forward

— A
(FP32) (FP16)
% Z ik

Updateld. FP32TEtE 9%

FP16(MLficz. FP32(CZ i Q FP32—C§¥E§-5t
FP3207 14 MNXAA—1E—)%. FP32TEH BB N

FP320D714 hh5. FP16MDI 1A MaAERk
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Mo —Z=>0 OBSREIEEER

Update

Forward Backward

No—Z> T BEEIDKERD (L. BackwardéForward
UpdateDBFEI(3FE0), FP325TEICLBRAE — ME T (3ED
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No—=2P D5 %R

1TYIRE 1TYIRE

R/E (x) s (+)
FP32 FP32 FP32
FP16 FP16 FP16
FP16 FP16 FP32

14 FE*h

FP32

FP16/FP32

FP16/FP32

Pascal

Volta
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BEaWRE+JIAMP32E

FP32ETILEREDORENMESNDT —AHZ0)
BICYILIN—. BU/\A/IN=)\5X—=4, BEIUZEZEL -2 M=) ...

B35 (ImageNet)
GoogleNet, VGG-D, Inception v3, ResNet-50
IYWIN—: EXALSGD
SEETIL. BEAREIER
NMT
Y)V)\—: ADAM

22 NVIDIA.



GOOGLENET
FP320FEH—-TJE—H

80%
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—F32

—\/olta TensorOp

64.0%

BE.5M

68.0%

100,000

200,000

300,000

400,000

67.5%

67.0%
‘400,000

920,000

930,000 230,000

540,000

950,000

QE0,000

970,000 CE0,000

590,000

1,000,000

500,000

600,000

700,000

800,000

900,000

1,000,000

23 <ANVIDIA.



INCEPTION V1
FP320FEH—-TJE—H

B0%

0% -

6% -

50% -

40% -

Eli-

20% -

10%

0% -

—F32

—\olta TensorQOp

50,000

100,000

150,000

200,000

250,000

B7.0%
00,000

A10.000

420,000

430,000

440,000 50,000

460,000

470,000

4B0.000

450,000

SO0, 000

300,000

350,000

400,000

450,000

500,000
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RESNET-50

FP3200 B H—JE—E

70%

50%

30%

20%

10%

0%

6%
300,000

302,000

308,000

310,000

312,000

314,000

316,000

—F31

—Wiits Tanser0p

18,000

50,000

100,000

150,000

200,000

250,000

200,000
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mafmE+JIA MP32EH
INERURLVT—X

CNN (B[S *E)

Alexnet, CaffeNet
CNN (¥D{KRtRiL)

Multibox SSD (VGG-D): Z&TZ9

Faster R-CNN (VGG-D): /8E1EKTF mAP: 69.1% (FP32) = 68.5% (Tensord7’)
RNN

Seq2seq (7 >>3AT): PERAEW Q: FEIE&E(Zfm ?
bigLSTM: IR NSFERT

26 <4NVIDIA.
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|

AN—>3 D L)L

Yk > Loss E
Yk
dEdek_]_sz,,dYk W
Yi= Wi* Yk —dE/dWi» W= W -A*dE/dW, — Wi Yi=s Wi*Yia
. dE{’de:dE/’dYk *Yia .
L ap
| |
I |
| |
dE/dY;=dE/dY, *W
Ya= Wa*Y, [AGEAE/AGEWa | Wb Wam Wa A*dE/dWs—Wodl Vo= WatYs
dEdezszdeQ *Yi
dE/dX=dE/dY,*W
Yi= Wi*X / /Y, "W, —dE/dW P Wi= W1 -A*dE/dWi[—Wi» Y= W, *X
dE/de_:dE{rdY:l *X

( y

FORWARD PASS

BACKPROP

WEIGHT UPDATE

| |

FORWARD PASS
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Percentage of all activation gradient values

(] -
P '3

=
=

- i ' =

/2
174
1M&
1716
1/32
1/64
1/128
1/156

17512

PIOTAN—230DBTDEAN T A

Become zero in FP16

Multibox SSD (VGG-D, FP32)

FP16 Representable range

6] 40 -2 -32 -3 -IT

5 i L
o -75 -45 3B -34 -30 -} -6

5 23 -1 a

Z
.

FP16 denorms
- e

21 -I |
2@ -M -18 15 1a

5 813 -11 ] 7 5 3 1 1 3
12 -10 -4 £ = 1 a 2 E

log;(magnitude)

FP32:
0: 67%
JETO: 33%

FP16:
£0O: 94%
JEFO: 6%
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Percentage of all activation gradient values

PIOTAN—230DBTDEAN T A

Multibox SSD (VGG-D, FP32)

FP16 Representable range

Become zero in FP16 ;FF'15 dennrms.‘ FP1 6t\\§£ﬁﬁjﬁl€@

LOIHN (FEAELE
DNTLRL

-
'3

(]
P

- i ' =

12

14

18

1716

1/32

1/64
1/128

17156

17512
: 0 40 -3 -32 -8 -27 -Ih 3 -21 -19 -17 -15%-13 - ] 7 5 3 1 1 3 5 7 3 11 13i%
o -75 -45 3F -34 30 - - - -2 -M -1B 15 14 -12 @i -8 £ = 1 a 2 E B 8 i 12 f 16

log;(magnitude
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OR-AF5-—=U>Y

ﬁ:ﬁﬂE:«EI @ @E‘;‘Iﬁ 9&
PITAR—23> DA EeEFZ/ NSV T—YBIZFP16(C9BETOICRD

fERE: OART -2
OZDIEERT—IVT7vT (KEK) LTHS. Backpropd 3
14 MEFOERIC, 114 NAEERT—ILITI> (N&K) T3
AT =20 T795—: FT)I\ALIN—=)\S5A=5?



AT=)
7w

OR-AF5-—=U>Y

» Loss E
Yk
I [
i dE/dY 1 =dE/dYi *W, |/ )] B . B o
Yi= Wi*Yia dE/dW, =dE/dY, *Yy1 dE/|'d|'Wk‘] W= Wi -A*dE/dW, — Wi Y= “ik Yi1
X x
| |
| |
| |
= * | |
Yo= Wo*Y, kR L ——dE/dwﬂlwzz W, -A*dE/dW,[— W Yo= Wa*Y,
dE/dW,=dE/dY, *Y, |
" Can ) | *
Yl Y1
| |
— . u
Vo W dE/dX=dE/dY,*W, | /T dwlal Wim WA dE/ AW —Wep] Yoo WeK
£
SN/
! /R[NP S ‘
\
( | O] 1kt ( |
FORWARD PASS BACKPROP WEIGHT UPDATE | |[FORWARD PASS
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OR-R5-U>)

Percentage of values during training

F32 training

-%0 75 60 -45 -30) -25 -20%4 -7 14 12 9 & -3 O 3 & ] 12 15  Inf
d, 2 to the listed exponent

(5) ORDAEZ 25615
ARCDEE25615(CRD
SHER :

—a—wd

ercentage of values during training

iy

7ITANR—=23> DA EAENFP160D

15k(CAD

o training, loss scaled by 256
I RIFOJgEE(CS T
3 14 N BESFP16DIEARLSE

%0 -75 60 4% -39 -5 - 17 -4 -12 & 6 -3 0 3 [} 9 12 15 Inf

Upgper bound, 2 tothe listed exponent

33 <INVIDIA.



OR - A=V D%

Alexnet
N—==>JFE—R Top1 (%) | Top5 (%)
FP32 58.6 81.3
FP16 (RT—U> T L) 56.7 78.1

(*) Nvcaffe-0.16, momentum SGD, 100 epochs, 1024 batch, DGX1 ., @nvio



Accuracy [%]

OAR-AT—=U>J) DR
Alexnet

OX- 2T =U>J#U OR-RT=)>80

Top 1
100 ; ; —F ; ; ; 100 ! ; Topl

Accuracy (%)

Sl /A —— FP32 | 20 —— FP32
7 | —— FP16 (no scaling) —— FP16 (scaling=1000)
0 ZOOIOO 40600 600|00 80600 100|000 120600 140000 00 20600 40600 60600 80600 100|000 120I000 140000

Iteration [teration
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OR - A=V D%

YARAR

—_ A - Multibox SSD Facter-RCNN
b —=>TF-F (MAP) (MAP)

FP32
TensordY (RT—U> ) H

76.9% 69.1%

{9y X 68.5%

36 <ANVIDIA.



SEQ2SEQ

OpenSeq25eq

NMT_ONE model
Encoder: 2-layer bi-directional (512 LSTM)
Attention: Normalized Bahdanau

Decoder: 4-layer (512 LSTM)

37 NVIDIA.


https://github.com/NVIDIA/OpenSeq2Sseq

SEQ2SEQ

OpenSeq2Seq

OpenSeq2Seq: training loss

B (CTensor17%
B9 3T Tl
raEMET

OX-XT7-U>%
(1024)T. FP32¢&
EiEEORE

— fp32 -~ TensorCore — TensorCore (s=1024)
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20000

OpenSeq2Seq training: eval BLEU score

40000 &0000 E0000 100000 120000

— fp32 —— TensorCore (s=32K)

OZ-2T=U>J{ERET,
FP32LEIEEDIEE

27> 07989 —: 32K

SEQ2SEQ

NMT_ONE

AT =2 I75—
INSCTERLAY?

OpenSeq2Seq training: training loss

40000 B0000 BOO0D 10000 0000 140000

— fp32 —— TensorCore (s=32K)

ﬂﬂﬂﬂﬂ



OABZEEEST——2) L — MNAEE

Ave Loss =2 Sum Loss

LosSqvg = AVGparch (AVGtimesteps(crossentropy(logits, targets)))

Lﬂsssum = Avgbatch (SUMtfmesteps (CTOSSETIfTOpr(JgifS, targE?tS)))

LARS (Layer-wise Adaptive Rate Scaling) Aw! =~y x A« VL(wh)

LAV —B(C 2B RA K N |
— T VL (wh)]|

(*) Yang You, et al., “Large Batch Training of Convolutional Networks”, 2017 4 <nvibia



0.3

0.25

0.2

0.15

0.1

0.05

-0.05

SEQ2SEQ

NMT_ ONE

OpenSeq2Seq training: Eval BLEU score

20000 40000 60000 80000 100000 120000

— fp32 —— TensorCore (s=512)

Sum Loss&LARS{EFH

2= 75— 312
FP32LEIEE DA

120

OpenSeq2Seq training: training loss

40000

— fp32

60000 20000 100000

—— TensorCore (s=512)

120000

'IDIA.



SEQ2SEQ

GNMT-like

EVAL BLEU
D_:;S Encoder: 8-layer bi-directional (1024 LSTM)
Attention: GNMT-style normalized Bahdanau
”‘2 Decoder: 8-layer (1024 LSTM)
" Training loss
— fp32 TensorCore (s=1024)

150

Sum LosséLARS{ER “

30

27=)>977949—: 1024
FP32L[EIZEDIEE

(*) Yonghui Wu, et al.: “Google’s neural machine translation system: Bridging the gap between human and machine translation.”, 2016

0 5000 10000 15000 20000 25000 30000 35000 40000

— fp32 TensorCore (s=1024)

42 <ANVIDIA.



1 Billion Word Language Benchmark

BigLSTM
2 x 8192 LSTM, 1024 Projection
Vocabulary: 800K words

Solver: Adagrad

(*) Rafal Jozefowicz, et al.: “Exploring the Limits of Language Modeling.”, 2016 43 SAnviDIA



| 5.0
4.5
4.0
3.5
3.0

2.5

SRETI

BigLSTM: 2 x 8192 LSTM, 1024 projection

OX-XT-=U>9

—F32 ‘

L TIHUNERE T

——Volta, scale=1
l ——\/olta, scale=128 ‘

I
0K 500K

I I 1
1,000K 1,500K 2,000K
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| 5.0
4.5
4.0
3.5
3.0

2.5

SRETI

BigLSTM: 2 x 8192 LSTM, 1024 projection

31 ¢

3.0 -

—F32 ‘

29 PN,
I]

——Volta, scale=1
——\/olta, scale=128 ‘

OK

I
500K

I
1,000K

2.8

2.6

2.7

1,250K 1,350K 1,450K 1,550K 1,650K

I
1,500K

1
2,000K

OX- 2=
(128) . FP32¢L

RIIZEDOIE
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T}
2
£ 1.
E ]
E
g 2
5 1
T
¢
© 1/8
5 1/16
@ 1732
g e
g 18
&

Percentage of values during training

111111

activation gradient magnitudes

Upper bound, 2 to the listed exponent

weight gradient magnitudes

Upper bound, 2 to the listed exponent

L) B EDYTEY

Activation

Weight

RECOFEH S, FP16MFRIRATRERAILD. /\&
WES(cAmOTLD

mRAEEE X 10i2E?

A=N\JO-92L AT =L 7y T a]gE
(~ 102412 )

EHDLALE >> ActivationDA)EL

SHEULPIL\D(E, ActivationDA) L
(FFETOET ) THIBEDAE]

46 <ANVIDIA.



VOLTA R&HBEN—-=)

ARL—2 (weights, activation, gradients): FP16
Forward¢éBackprop®st&E: Tensordy’

Batch Normalization®51E(3FP32 (cuDNN(Z. FP16 A1, FP3251E)
UpdateDstE: FP32 (weights(dfp16£fp320l 5 TEIR)

TR
AfE. FP16TRIRTETRVZE, /NEKRBIENHD (BIECHK)
ABCHK(E ORRT-) I TRETED

47 NVIDIA.



DLIL — LD =TI DRI



NVIDIA CAFFE 0.16

FP16. Tensord7 (52X IS

ForwardéBackward: Z2N€1., 7—458, stEEIZI5E RIEE (FP32 or FP16)
14 NEFHT: FP32EE5T3 G

OX- R =25

—




NVIDIA CAFFE 0.16

name: "AlexNet fplo"

default forward type: FLOAT16
default backward type: FLOAT16

# default forward math: FLOAT
# default backward math: FLOAT

global grad scale: 1000.
layer {

forward_math: FLOAT1é6
backward;math: FLOAT

}
solver data type: FLOAT16

# GP100 only
# GP100 only

50

NVIDIA.



TENSOR FLOW

Tensord)’: TensorFlow 1.4TXJit

T—HBIZFP16(C9%&. Tensord 7z {E
tf.cast(tf.get_variable(..., dtype=tf.float32), tf.floatl6)

14 NFP325E3: BIHEE

OXZ& =>4 algg  scale=128

grads = [grad / scale for grad in tf.gradients(loss * scale, params)]

51 NVIDIA.



Tensord7: Xt

FP16 AN —(CF &, Tensord7={EFE

14 NFP325E3: BIHEE

OXXT—1)>%: B]ge

PYTORCH

Input = input.cuda().half()
model = model.cuda().half()

PYTHRCH



CHAINER

TensorJd7: Chainer VAT ISP E Chainer
T—ABIZFP16(C9 DL, Tensord7{EFE

X = F.cast(x, np.float16)

FP32/)\SA—=585%: XIS optimizer = chinaer.optimizers.SGD()
optimizer.use fp32_update()

ORRT =Y MG (FIE)

loss = lossfunc(y, t)
loss.backward(loss_scale=1024)

53 NVIDIA.
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UIA M2FP32TEM9 Sl

FP16£FP320D2FEXENT —ARU T, U114 M BIEITAMNENHD
AEVEHEOIENN
FP16 TUIA MNEFT TSN

555555555



SGD

SGDICLBIIA NEFh

W(t+1) = W(t) — (MFHXK)

G

FP16ZfE5L. A*AW(t) hVNSKRBDTZBRENHD
FEYER: AW(H)DIER(C/NEWN (A<1)

(

ARELARE: FEAHALD. AW (1) [EREDN NI/ NEKT2D

IIIIIII



EAZHALSGD

| EASHLEE: H(t+1) = m * H(t) — (MEX MFE)

2914 REHT:  W(t+1) = W(1) + H(t+1)

)I;F;GO) . EXJALETE. A * AW() ORE TEFTEHENMTE
A

IIIIIIIII



1LEASHLETE:  H(t+1) =m * H(t) — A * AW(t)

EA>SASGD

2.011 NEEFF: W(t+1) = W(t) + H(t+1)

EXAHLEGTEBZE

H(t+1) = — A*AW(t) + m*H(t)

= — N*AW(t) + m*( = A*AW(t-1) + m*H(t-1) )
= = NAW(t) + m*(— AAW(t-1) + m*( = MAW(t-2) + m*H(t-2) ) )
=— A" (AW() + m*AW(t-1) + m*AW(t-2) + ... + m*AW(t-K) + ...)

EADANE BECDE

L RRBITENTES?

(MEXDA LMZRER

58 NVIDIA.



{EIEEAALSGD

X5 LSGD

1.BXDALSTE:  H(t+1) =m * H(t) — A * AW(t)
2914 NEFT:  W(t+1) = W(t) + H(t+1)

Ny N R T & ST |1

1.EASLETE: =m * G(t) + AW(t)

2.9 MEFT: W(t+1) = W(t) -
G()(FBBCDOBRBRDTIHKRUIKLY &> D14 MED

FUCEEFTENS?
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ALEXNET
{ETEEA>HLSGD

Toot 0

FP32
FP16 (RT—YU>J#EL)
FP16 (scaling=1000)
Tensor_1)’ (scaling=1000)

58.6
56.7
58.9
59.1

81.3
78.1
81.1
81.2
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INCEPTION-V3
ENZSZINIC

Toot 0

FP32 73.8 91.4
FP16 (R —U>J#EL) 51.4 90.8
FP16 (scaling=100) 74.1 91.5
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Accuracy [%]
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RESNETS50
ENZSZINIC

Toot 0

FP32 73.2 91.2
FP16 (no scaling) 73.2 90.9
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Forward&Backprop(GTEDAEEF3)(ETensorJ7 CaTHE IS
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Z{DETIUIINTULER (FPI2LFEEEDIRE)
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LINKS

“Mixed-Precision Training of Deep Neural Networks”, NVIDIA blog post
devblogs.nvidia.com/parallelforall/mixed-precision-training-deep-neural-networks/
“Training with Mixed Precision”, NVIDIA DL SDK doc
docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
Paulius Micikevicius, et al., “Mixed Precision Training”

arxiv.org/abs/1710.03740
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