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VOLTA TENSORコアで、
高速かつ高精度にDLモデルを
トレーニングする方法
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アジェンダ

• Tensorコアとトレーニングの概要

• 混合精度(Tensorコア)で、FP32と同等の精度を得る方法

• ウェイトをFP16とFP32を併用して更新する

• ロス・スケーリング

• DLフレームワーク対応状況

• ウェイトをFP16で更新する
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VOLTA TENSORコア
4x4の行列の乗算を1サイクルで実行

D = AB + C

D = 

FP16 or FP32 FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3
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VOLTA TENSORコア
Volta Tensor Core

P100 V100

FP16/Tensorコア 20 TFLOPS 125 TFLOPS

FP32 10 TFLOPS 15.6 TFLOPS

FP16

FP16

× + FP32

FP32

FP16 FP32

混合精度演算

16bit

16bit

32bit
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CUDNN: TENSORコアの実効性能
Pascal FP32 vs. V100 Tensorコア

Convolution層
の性能比較
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Resnet50, Imagenet, Batch:128
P100 FP32, V100 FP32 vs. V100 Tensorコア

0 100 200 300 400 500 600

Conv BN Relu Cupy_* Misc.

570 ms

360 ms

197 ms

Time per iteration [ms]

約3倍

P100 FP32

V100 FP32

V100
Tensorコア

(*) Chainer 3.0.0rc1+ と CuPy 2.0.0rc1+ を使用
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トレーニングの流れ
Forward
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トレーニングの流れ
Backprop
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トレーニングの流れ
Update

Update



10

トレーニングの流れ
Forward

F
o
rw

a
rd
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データ型に基づくトレーニングの分類
FP32, FP16, 混合精度

トレーニング 入力データ
行列演算
乗算 (x)

行列演算
加算 (+)

GPU

FP32 FP32 FP32 FP32 ○

FP16 FP16 FP16 FP16 Pascal

混合精度 FP16 FP16 FP32 Volta
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半精度浮動小数点(FP16)

• IEEE754

• 単精度(FP32)と比べると、
表現可能レンジが非常に
狭い

FP16

FP32



13

TENSORコアの計算精度

Tensorコアの演算結果は、
FP16と比べて、FP32との
誤差が小さい

FP32に近い結果

• 行列A: 指数分布 (activation)

• 行列B: 正規分布 (weight)

(平均0.0, 分散1.0)

• 内積長: 32 – 1024

• 1万サンプル

• 誤差区間: 99%
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混合精度(TENSORコア)でトレーニング

Q: FP32でトレーニングしたモデルと、同じ精度を得られるのか?

A: 可能です、その方法を説明します
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ウェイトの更新には、
FP16とFP32を併用する
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トレーニング (FP16、混合精度)
ストレージはFP16

FP16FP16 FP16ストレージの
データ型 FP16

W = W – λ*ΔW

(FP16)

勾配は小さい

重みが更新されない可能性

更新消失問題
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半精度浮動小数点(FP16)

表現可能範囲が狭い

FP16の仮数部は10ビット

FP16

FP32

2048 + 1 = ?2048 + 1 = 2049 ?2048 + 1 = 2048
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ウェイトはFP32で更新

FP16FP16 FP16ストレージの
データ型

FP16
FP32
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ウェイトはFP32で更新

• Updateは、FP32で計算する

• FP16の勾配を、FP32に変換

• FP32のウェイト(マスターコピー)を、FP32で更新

• FP32のウェイトから、FP16のウェイトを作成

W = W – λ*ΔW
(FP32)

ΔW
(FP16)

ΔW
(FP32)

W
(FP32)

W
(FP16)

Weight Update
Backprop Forward

変換 変換

Q: FP32で更新すると
遅くならないか?
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トレーニングの時間比率

トレーニング時間の大部分は、BackwardとForward

Updateの時間は短い、FP32計算によるスピード低下は僅か

BackwardForward

U
p
d
a
te
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トレーニングの分類

トレーニング 入力データ
行列乗算
乗算 (x)

行列乗算
加算 (+)

ウェイト更新 GPU

FP32 FP32 FP32 FP32 FP32

FP16 FP16 FP16 FP16 FP16/FP32 Pascal

混合精度 FP16 FP16 FP32 FP16/FP32 Volta
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混合精度+ウェイトFP32更新

• FP32モデルと同等の精度が得られるケースも多い

• 同じソルバー、同じハイパーパラメータ、同じ学習レートコントロール、…

• 画像分類 (ImageNet)

• GoogleNet, VGG-D, Inception v3, ResNet-50

• ソルバー: モメンタムSGD

• 言語モデル、機械翻訳

• NMT

• ソルバー: ADAM

多くのモデルは、これで収束する
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GOOGLENET
FP32の学習カーブと一致
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INCEPTION V1
FP32の学習カーブと一致
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RESNET-50
FP32の学習カーブと一致
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混合精度+ウェイトFP32更新

• CNN (画像分類)

• Alexnet, CaffeNet

• CNN (物体検出)

• Multibox SSD (VGG-D): 学習できず

• Faster R-CNN (VGG-D): 精度低下 mAP: 69.1% (FP32)  68.5% (Tensorコア) 

• RNN

• Seq2seq (アテンション付): 収束が遅い

• bigLSTM: 途中から発散

収束しないケース

Q: 問題は何？
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アクティベーションの勾配
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アクティベーションの勾配のヒストグラム

FP32:

• ゼロ: 67%

• 非ゼロ: 33%

FP16:

• ゼロ: 94%

• 非ゼロ: 6%

Multibox SSD (VGG-D, FP32)
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アクティベーションの勾配のヒストグラム

• FP16で表現可能な
レンジが、ほとんど使
われていない

Multibox SSD (VGG-D, FP32)
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ロス・スケーリング
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ロス・スケーリング

• 問題: 勾配消失

• アクティベーションの勾配値は小さい、データ型をFP16にするとゼロになる

• 解決法: ロススケーリング

• ロスの値をスケールアップ（大きく）してから、Backpropする

• ウェイト更新の直前に、ウェイトの勾配をスケールダウン（小さく）する

• スケーリングファクター: 新ハイパーパラメータ？
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ロス・スケーリング
スケール
アップ

スケール
ダウン

勾配消失
回避
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ロス・スケーリング

• (例) ロスの値を256倍

• 勾配の値も256倍になる

• 効果:

• アクティベーションの勾配値がFP16の
表現可能域にシフト

• ウェイトの勾配値はFP16の正規数領
域に入る
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ロス・スケーリングの効果

トレーニングモード Top1 (%) Top5 (%)

FP32 58.6 81.3

FP16 (スケーリング無し) 56.7 78.1

FP16 (scaling=1000) 58.9 81.1

Tensorコア (scaling=1000) 59.1 81.2

Alexnet

(*) Nvcaffe-0.16, momentum SGD, 100 epochs, 1024 batch, DGX1
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ロス・スケーリングの効果
Alexnet

FP32

FP16 (scaling=1000)

FP32

FP16 (no scaling)

ロス・スケーリング無し ロス・スケーリング有り
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ロス・スケーリングの効果

トレーニングモード
Multibox SSD

(mAP)

Facter-RCNN

(mAP)

FP32 76.9% 69.1%

Tensorコア (スケーリング無し) X 68.5%

Tensorコア (scaling=256) 77.1% 69.7%

物体検出
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SEQ2SEQ

• OpenSeq2Seq

• https://github.com/NVIDIA/OpenSeq2Sseq

• NMT_ONE model

• Encoder: 2-layer bi-directional (512 LSTM)

• Attention: Normalized Bahdanau

• Decoder: 4-layer (512 LSTM)

NMT: ドイツ語 – 英語

https://github.com/NVIDIA/OpenSeq2Sseq
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SEQ2SEQ
OpenSeq2Seq

fp32 TensorCore TensorCore (s=1024)

単にTensorコアを
使用するだけでは、
精度が低下

ロス・スケーリング
(1024)で、FP32と
同程度の精度
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SEQ2SEQ
NMT_ONE

fp32 TensorCore (s=32K)

fp32 TensorCore (s=32K)

スケーリングファクター
小さくできないか?

ロス・スケーリング使用で、
FP32と同程度の精度

スケーリングファクター: 32K
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ロス関数変更とラーニングレート調整

• Ave Loss  Sum Loss

• LARS (Layer-wise Adaptive Rate Scaling)

レイヤー毎に学習率を調整

(*) Yang You, et al., “Large Batch Training of Convolutional Networks”, 2017
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SEQ2SEQ
NMT_ONE

fp32 TensorCore (s=512)

fp32 TensorCore (s=512)

Sum LossとLARS使用

スケーリングファクター: 512
FP32と同程度の精度
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fp32 TensorCore (s=1024)

fp32 TensorCore (s=1024)

Encoder: 8-layer bi-directional (1024 LSTM)
Attention: GNMT-style normalized Bahdanau
Decoder: 8-layer (1024 LSTM)

SEQ2SEQ
GNMT-like

(*) Yonghui Wu, et al.: “Google’s neural machine translation system: Bridging the gap between human and machine translation.”, 2016

Sum LossとLARS使用

スケーリングファクター: 1024
FP32と同程度の精度
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言語モデル

• 1 Billion Word Language Benchmark

• BigLSTM

• 2 x 8192 LSTM, 1024 Projection

• Vocabulary: 800K words

• Solver: Adagrad

(*) Rafal Jozefowicz, et al.: “Exploring the Limits of Language Modeling.”, 2016
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言語モデル
BigLSTM: 2 x 8192 LSTM, 1024 projection

ロス・スケーリング
無しでは収束せず
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言語モデル
BigLSTM: 2 x 8192 LSTM, 1024 projection

ロス・スケーリング
(128)で、FP32と
同程度の精度
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勾配値の特徴

勾配の範囲は、FP16の表現可能領域より、小さ
いほうに偏っている

• 最大値は高々10程度?

• オーバフローすることなく、スケールアップ可能
( ～ 1024倍 )

重みの勾配 >> Activationの勾配

• 消失しやすいのは、Activationの勾配

• ほぼ全てのモデルで共通の傾向

Activation

Weight
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VOLTA 混合精度トレーニング

• ストレージ (weights, activation, gradients): FP16

• ForwardとBackpropの計算: Tensorコア

• Batch Normalizationの計算はFP32 (cuDNNは、FP16入力、FP32計算)

• Updateの計算: FP32 (weightsはfp16とfp32の両方で管理)

注意

• 勾配は、FP16で表現できないほど、小さくなることがある (勾配消失)

• 勾配消失は、ロススケーリングで解消できる

FP32と同じ精度のモデルをトレーニングする方法
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DLフレームワークの対応状況
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NVIDIA CAFFE 0.16

FP16、Tensorコアに完全対応

ForwardとBackward: それぞれ、データ型、計算型を指定可能 (FP32 or FP16)

ウェイト更新: FP32更新対応

ロス・スケーリング対応

https://github.com/NVIDIA/caffe/tree/caffe-0.16
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NVIDIA CAFFE 0.16
https://github.com/NVIDIA/caffe/tree/caffe-0.16
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TENSOR FLOW

Tensorコア: TensorFlow 1.4で対応

データ型をFP16にすると、Tensorコアを使用

ウェイトFP32更新: 可能

ロススケーリング: 可能

tf.cast(tf.get_variable(..., dtype=tf.float32), tf.float16)

scale = 128

grads = [grad / scale for grad in tf.gradients(loss * scale, params)]
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PYTORCH

Tensorコア: 対応

FP16ストレージにすると、Tensorコアを使用

ウェイトFP32更新: 可能

ロススケーリング: 可能

Input = input.cuda().half()

model = model.cuda().half()
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CHAINER

Tensorコア: Chainer V4で対応予定

データ型をFP16にすると、Tensorコア使用

FP32パラメータ更新: 対応

ロススケーリング: 対応(予定)

x = F.cast(x, np.float16)

optimizer = chinaer.optimizers.SGD()

optimizer.use_fp32_update()

loss = lossfunc(y, t)

loss.backward(loss_scale=1024)
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ウェイトをFP16で更新できないか?
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ウェイトをFP32で更新する問題

FP16とFP32の2種類のデータ型で、ウェイトを管理する必要がある

メモリ使用量の増加

FP16でウェイトを更新できないか?
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SGD

SGDによるウェイト更新

W(t+1) = W(t)  – λ * ΔW(t) (λ:学習率)

FP16を使うと、λ*ΔW(t) が小さくなりすぎることがある

• 学習初期: ΔW(t)が非常に小さい (λ<1)

• 中盤以降: 学習初期より、ΔW(t)は大きくなるが、λは小さくなる

FP16の問題: 更新消失
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モメンタムSGD

1.モメンタム計算: H(t+1) = m * H(t) – λ * ΔW(t)      (m:モメンタム係数)

2.ウェイト更新:     W(t+1) = W(t) + H(t+1)

FP16の場合、モメンタム計算、 λ * ΔW(t) の減算で更新消失が起き
やすい
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モメンタムSGD

1.モメンタム計算:    H(t+1) = m * H(t) – λ * ΔW(t)        (m:モメンタム係数)

2.ウェイト更新: W(t+1) = W(t) + H(t+1)

モメンタム計算再考

H(t+1) = – λ*ΔW(t) + m*H(t)

= – λ*ΔW(t) + m*( – λ*ΔW(t-1) + m*H(t-1) )

= – λ*ΔW(t) + m*( – λ*ΔW(t-1) + m*( – λ*ΔW(t-2) + m*H(t-2) ) ) 

= – λ * ( ΔW(t) + m*ΔW(t-1) + m2*ΔW(t-2) + … + mk*ΔW(t-k) + …)

モメンタムは、勾配の蓄積と見なすことができる?
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修正モメンタムSGD

モメンタムSGD

1.モメンタム計算:    H(t+1) = m * H(t) – λ * ΔW(t)

2.ウェイト更新: W(t+1) = W(t) + H(t+1)

こう、解釈することも可能

1.モメンタム計算:    G(t+1) = m * G(t) + ΔW(t)

2.ウェイト更新: W(t+1) = W(t)  – λ * G(t+1)

G(t)は勾配の蓄積なので消失しにくい ウェイトは正しく更新される?

FP32を使わなくても、更新消失を回避できる?
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ウェイトもFP16で更新

AlexNet

• FP32と同じ精度を達成

修正モメンタムSGD
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ALEXNET

トレーニングモード Top1 (%) Top5 (%)

FP32 58.6 81.3

FP16 (スケーリング無し) 56.7 78.1

FP16 (scaling=1000) 58.9 81.1

Tensorコア (scaling=1000) 59.1 81.2

Tensorコア (scale=1000), FP16ウェイト更新 58.5 81.2

修正モメンタムSGD
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INCEPTION-V3

トレーニングモード Top1 (%) Top5 (%)

FP32 73.8 91.4

FP16 (スケーリング無し) 51.4 90.8

FP16 (scaling=100) 74.1 91.5

FP16 (scale=100), FP16ウェイト更新 73.5 91.1

修正モメンタムSGD
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INCEPTION-V3
修正モメンタムSGD
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RESNET50

トレーニングモード Top1 (%) Top5 (%)

FP32 73.2 91.2

FP16 (no scaling) 73.2 90.9

FP16 (no scaling), FP16ウェイト更新 72.7 91.4

Tensorコア (no scaling), FP16ウェイト更新 73.5 91.4

修正モメンタムSGD
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RESNET50
修正モメンタムSGD

Iteration
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まとめ

Tensorコア(混合精度)トレーニング

• ForwardとBackprop(計算の大部分)はTensorコアで計算する

• ウェイトをFP32で更新する

• 多くのモデルはこれで収束 (FP32と同程度の精度)

• それ以外も、ロス・スケーリング設定でFP32レベルの精度に回復

ウェイトもFP16で更新

• モメンタムSGDの修正で、CNNでFP32と同等の精度を確認



67

LINKS

“Mixed-Precision Training of Deep Neural Networks”, NVIDIA blog post

• devblogs.nvidia.com/parallelforall/mixed-precision-training-deep-neural-networks/

“Training with Mixed Precision”, NVIDIA DL SDK doc

• docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

Paulius Micikevicius, et al., “Mixed Precision Training”

• arxiv.org/abs/1710.03740




