Deep Sensor Fusion for ADAS Applications

Vijay John, Seiichi Mita, Smart Vehicle Research Center

Title of Content

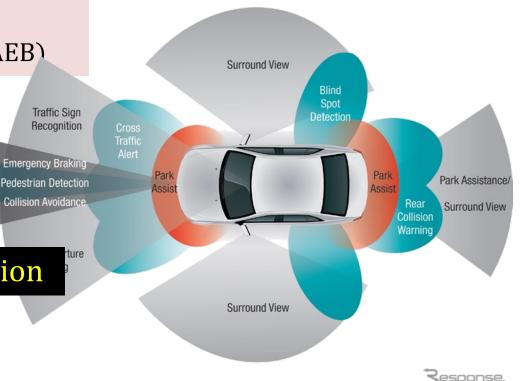
- Deep Learning-based ADAS Application
- Why Sensor Fusion (Depth + Texture) ?
- How to Fuse Depth & Intensity
- Proposed Deep Learning Model for Fusion
- Results and Evaluation

Popular ADAS Applications

ADAS Applications

- Adaptive Cruise Control (ACC)
- Adaptive Front Lights (AFL)
- Driver Monitoring System (DMS)
- Forward Collision Warning (FCW)
- Intelligent Speed Adaptation (ISA)
- Lane Departure Warning (LDW)
- Pedestrian Detection System (PDS)
- Surround-View Cameras (SVC)
- Autonomous Emergency Braking (AEB)

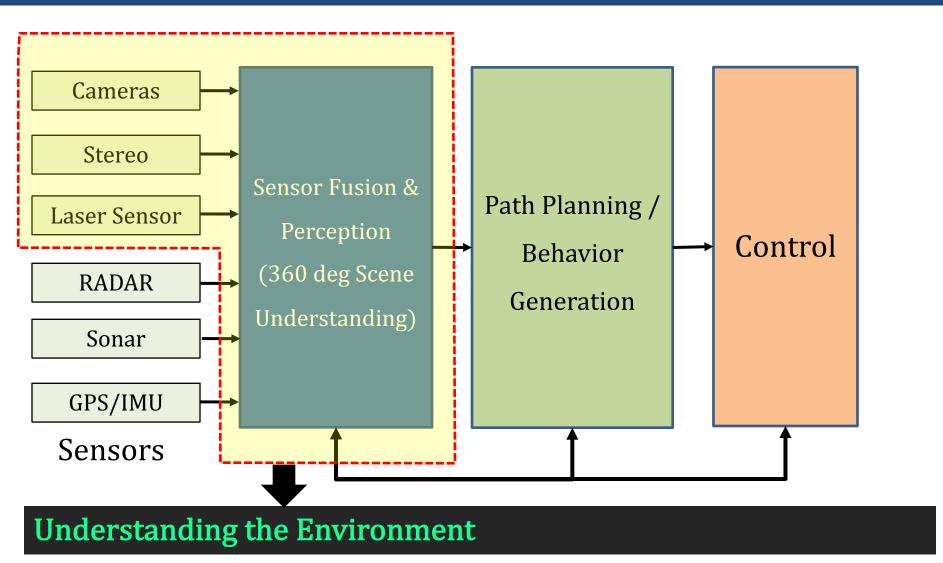
TTI Research Vehicle



Adaptive

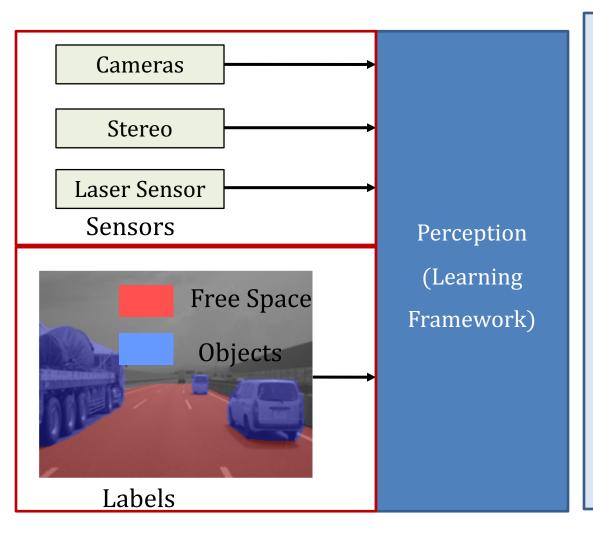
Cruise Control

General Framework for ADAS and AD



Learning Framework for Perception

Training a learning framework for perception tasks



Traditional Learning

Feature Extraction (HOG,

DPM etc)

Feature Classification

(SVM, Random Forest etc)

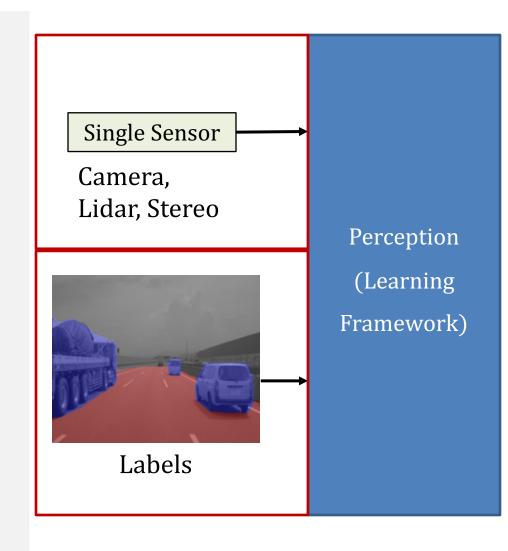
Deep learning

(Feature Extraction +

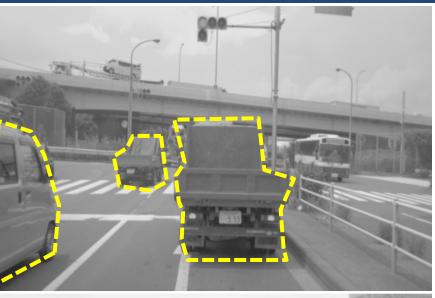
Feature Classification)

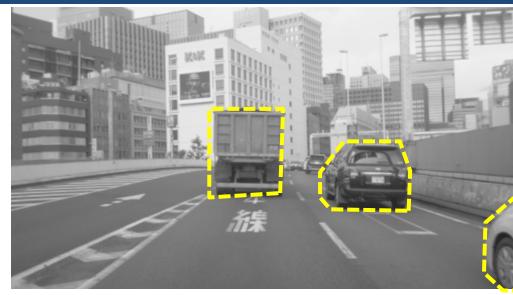
Single Sensor-based learning

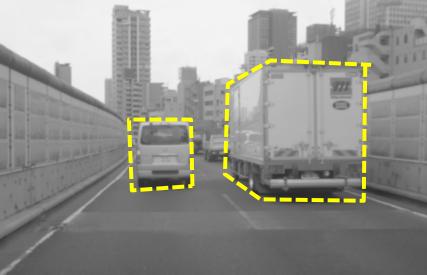
- Single sensor-based learning is not robust or descriptive enough
- Challenges
 - Environmental
 Variation (occlusion, illumination variation, etc.)
 - High Inter-Class and Intra-Class Variability

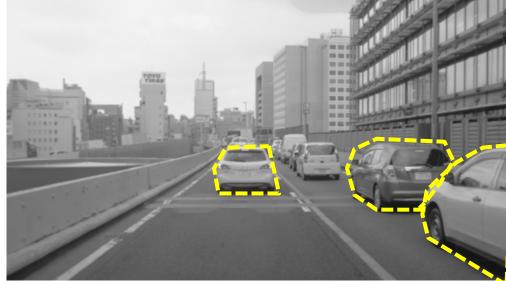


Intra-class Vehicle Variations





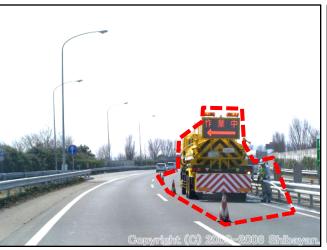


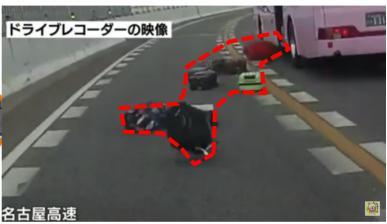


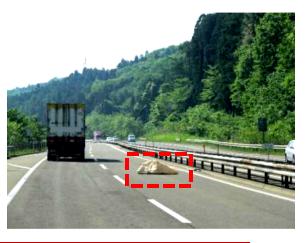
There are many vehicle varieties with different orientations

Intra-class On-Road Objects Variations

We have a large number of On-Road Objects



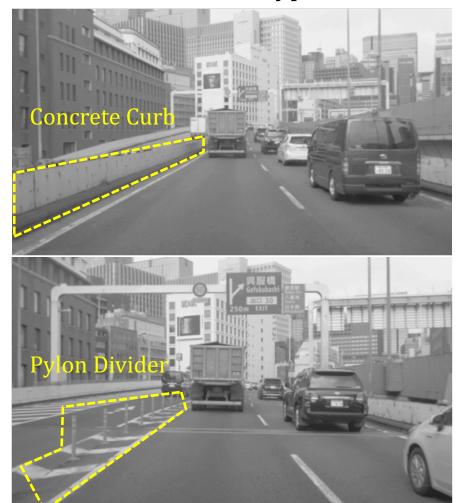


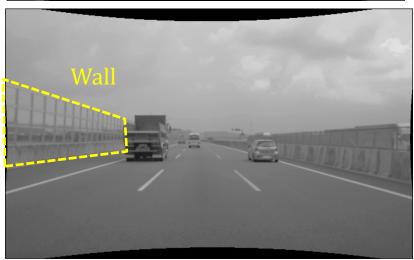


We have a lot of variety of on road objects!!!!

Intra-Class Free Space Boundary Variations

We have the different type of road boundaries



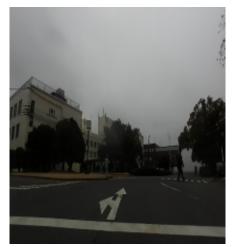


We have a lot of variety of Free Space Boundary!!!!

Environmental Variation

Illumination variation as observed by a monocular camera image with appearance features

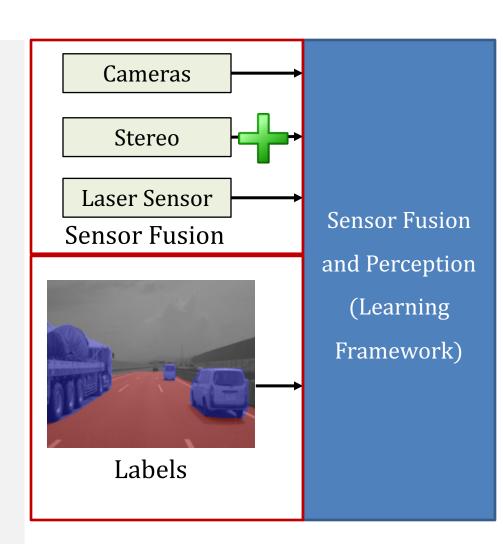




Sensor fusion-based learning

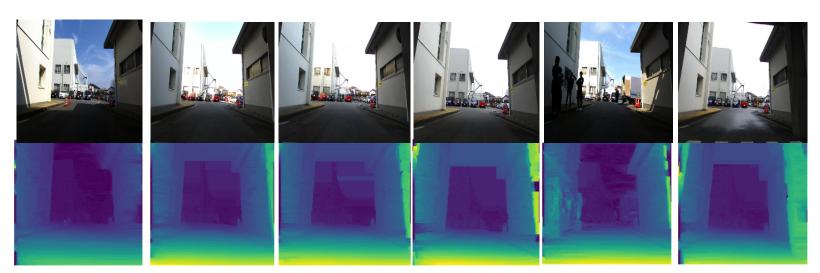
 Sensor Fusion-based learning with complementary sensors addresses these issues

Monocular Camera
 appearance features and
 depth features are
 complementary features



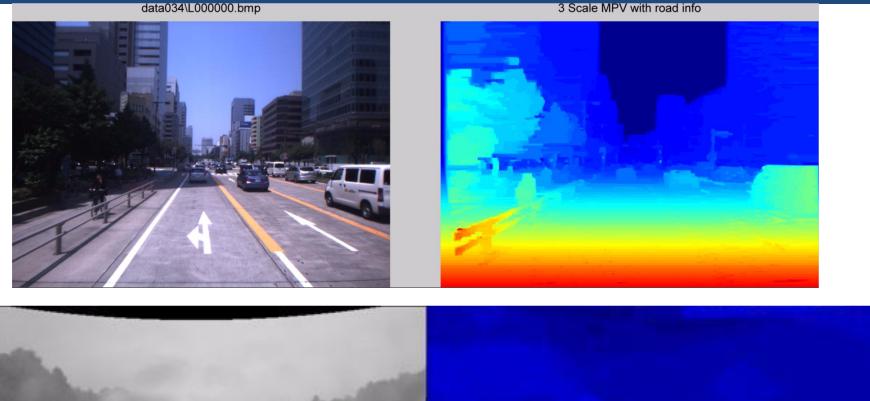
Complementary sensors

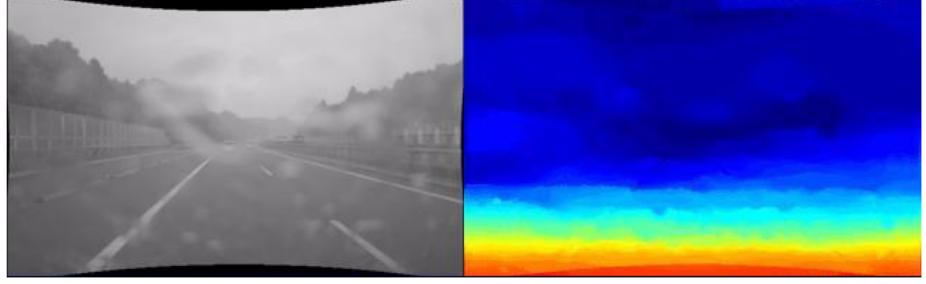
Monocular camera	Depth camera
Monocular camera provides rich appearance information	Depth camera provides depth information
Inexpensive	Stereo-based depth inexpensive
Illumination variation	Illumination invariant due to robust stereo algorithm [1]



Depth information from stereo camera robust to illumination variation

Robust Stereo Vision

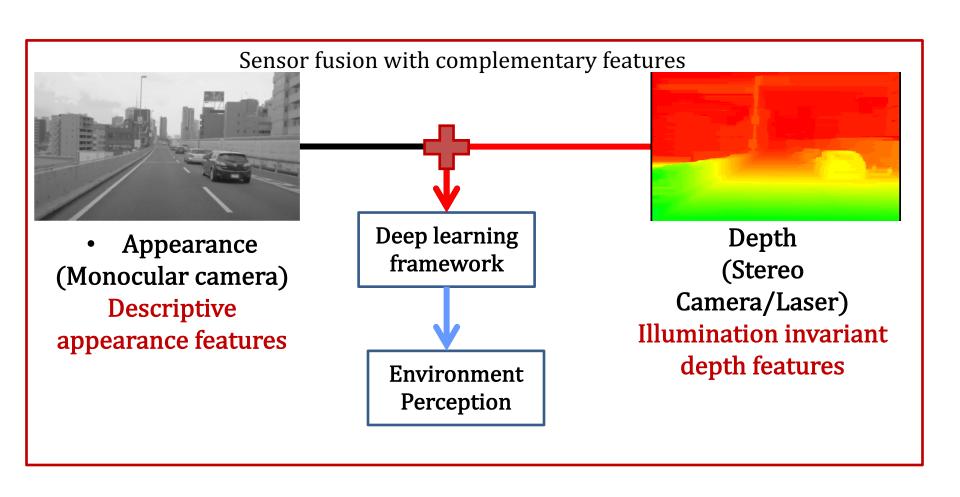




Stereo processing for 1280x960 image: 15ms/frame on Geforce GTX

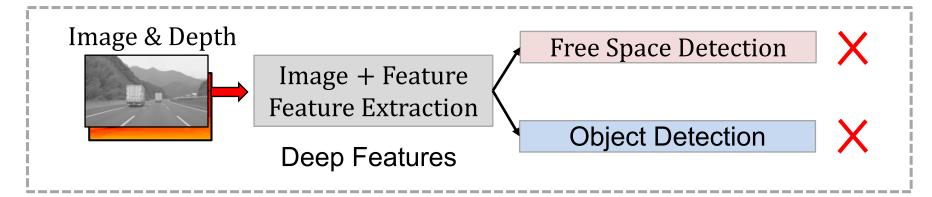
Complementary Sensor Fusion for Deep Learning

Appearance and **Depth Features** are Fused within a Deep learning Framework for Environment Perception

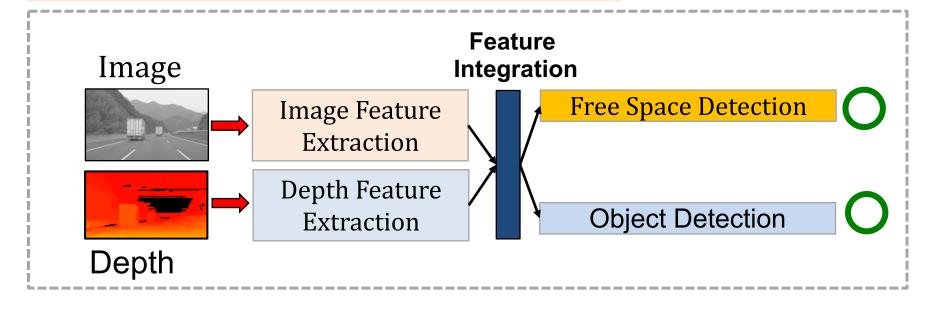


How to Fuse Sensors Data ??

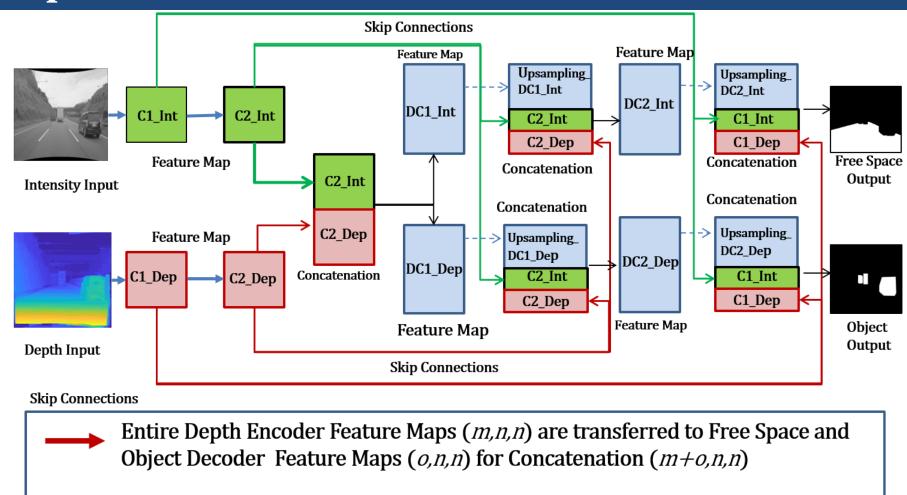
■ Sensor Fusion : Raw Data Level Fusion



■ Sensor Fusion : Feature Level Fusion



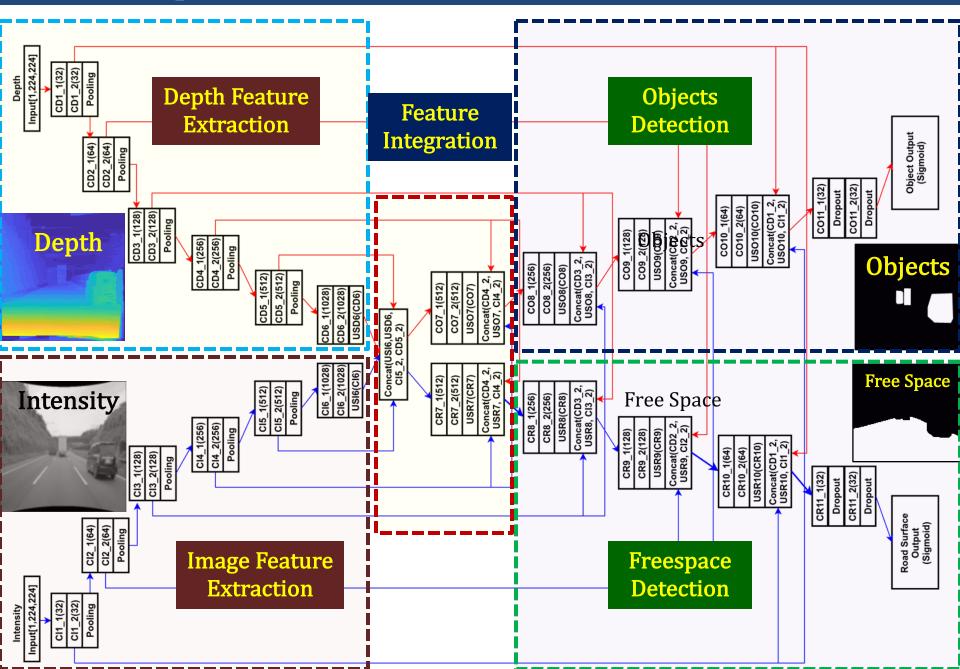
Proposed Model



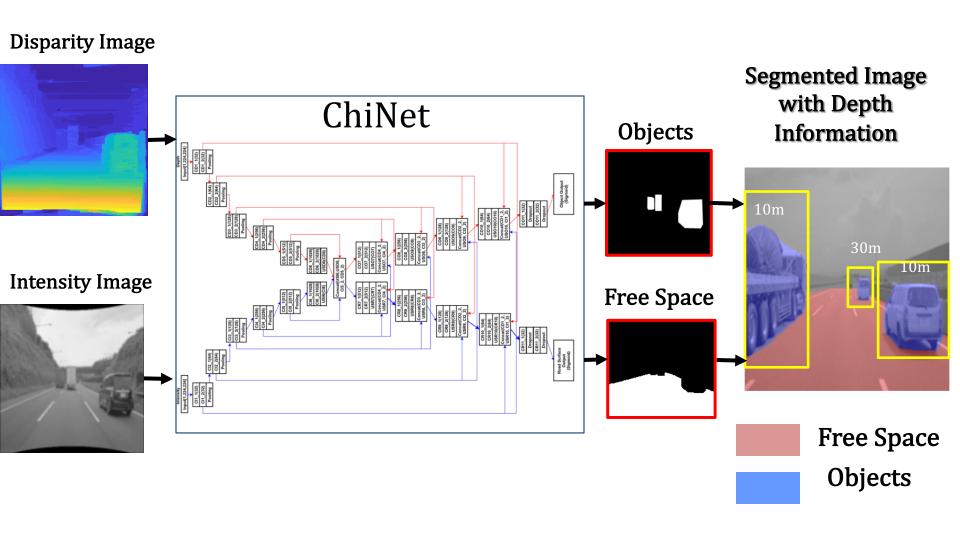
Entire Intensity Encoder Feature Maps (m,n,n) are transferred to Free Space

and Object Decoder Feature Maps (o,n,n) for Concatenation (m+o,n,n)

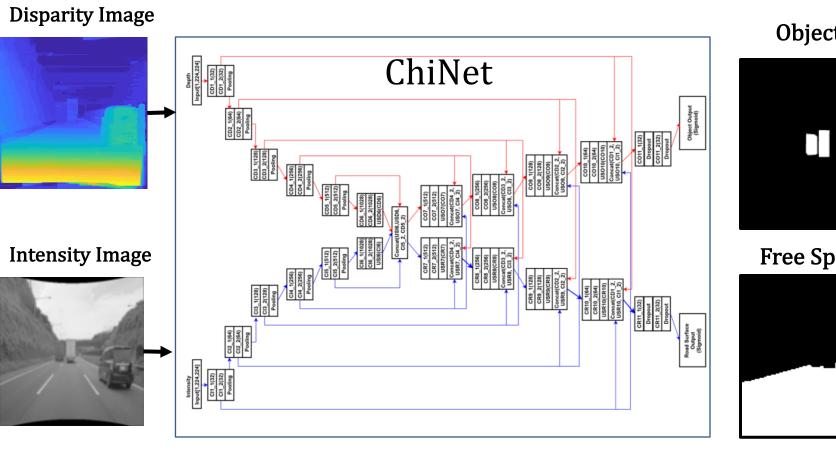
Final Proposed Architecture



Proposed Method: ChiNet



Learning ChiNet

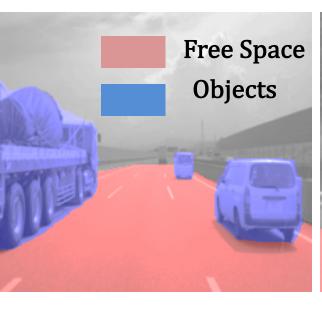


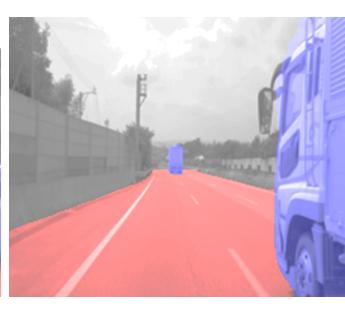
Objects

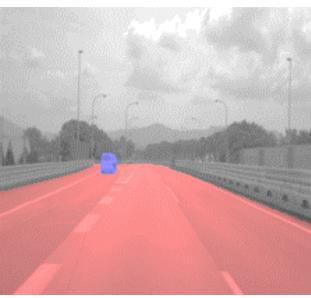
Free Space

- Trained with 9000 Samples from Japanese Highway dataset
 - Manually annotated free space and objects
- Trained on Keras with theano backend
- Trained with Nvidia Titan X GPU

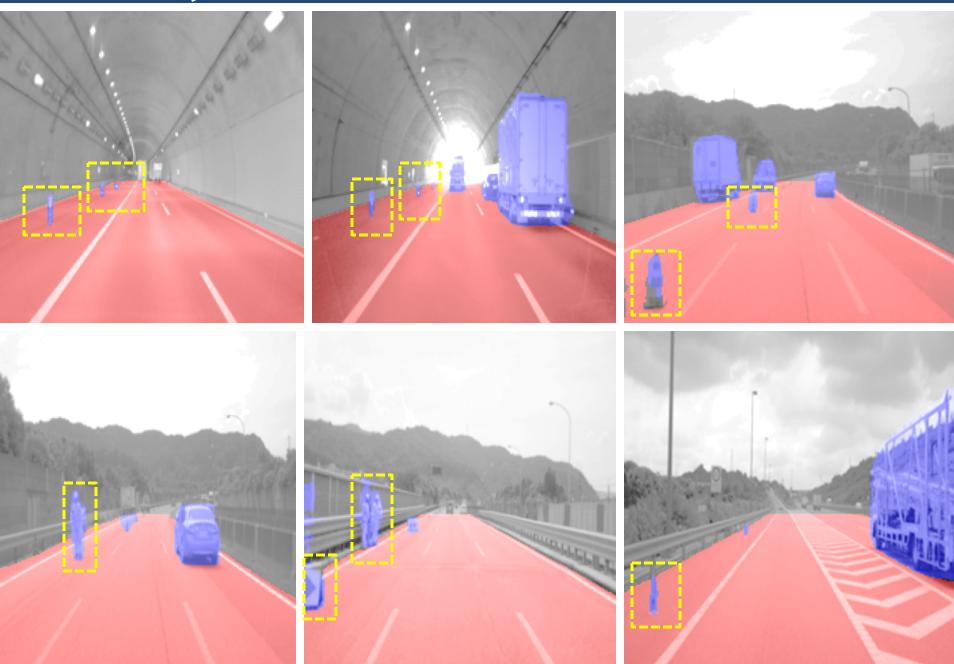
Results for Tomei Highway



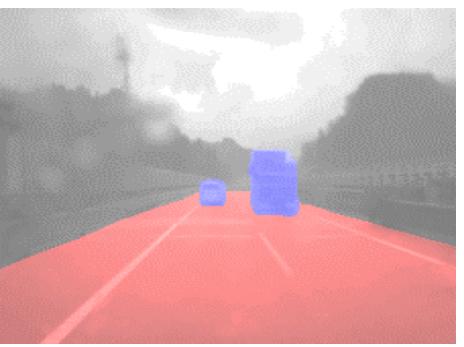




Small Objects Detection

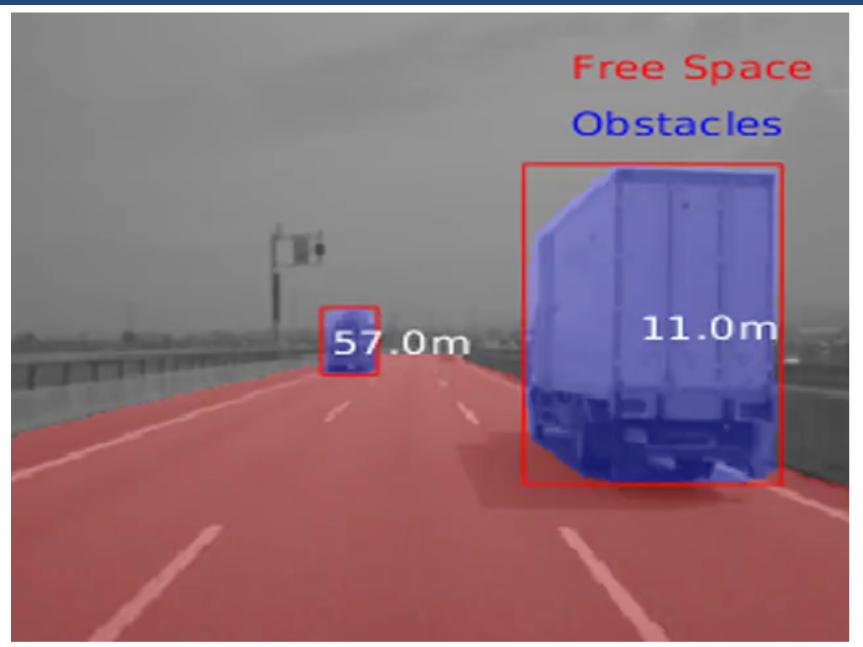


Raining Weather





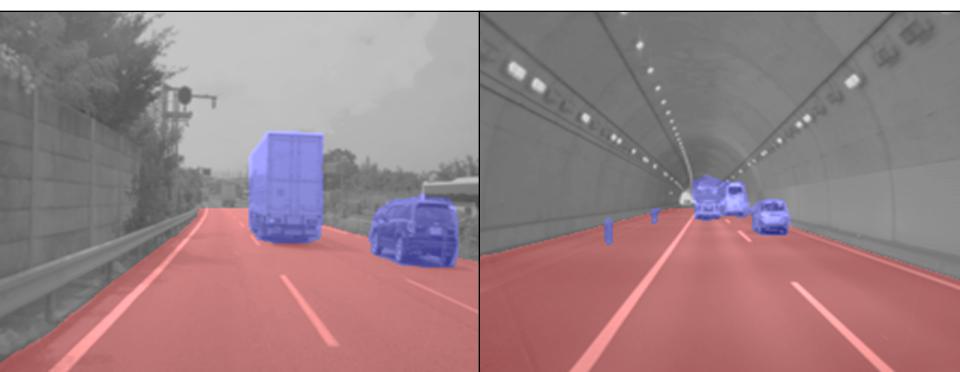
Sample Movie



ChiNet vs Baseline

Algorithm	Acc.	Time
ChiNet	97.35	192ms
U-Net [1]	94.2	82ms
FuseNet[2]	95.2	125ms

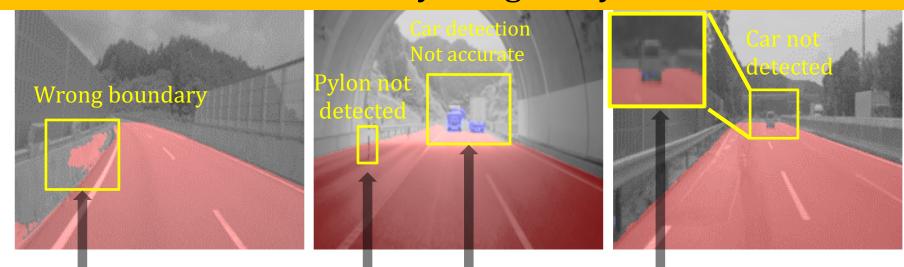
Implemented on GeForce Titan X using Keras with Theano backend



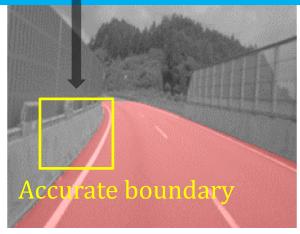
Evaluation Result

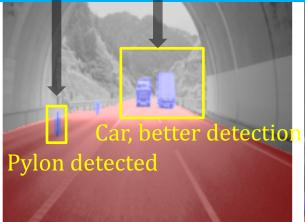
Comparison: "Intensity" vs "Intensity and Depth"

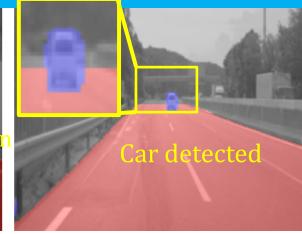
Intensity image only



Intensity and Disparity fusion

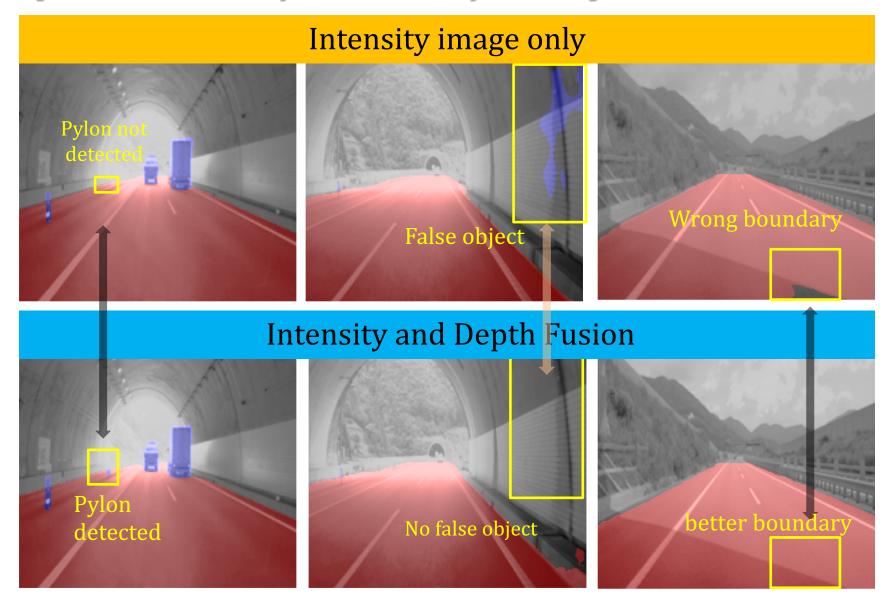






Evaluation Result

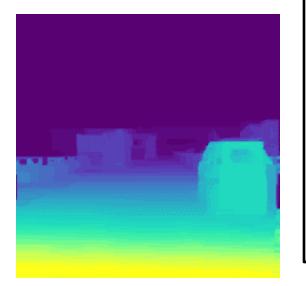
Comparison: "Intensity" vs "Intensity and Dept



Learned Features by Chi-Net

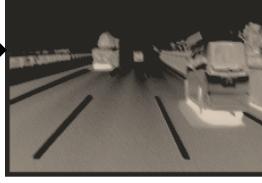
Intensity Image

Depth

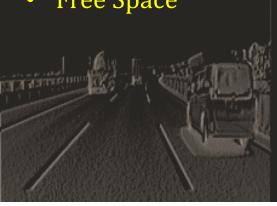


Some of Learned Image Feature

- Vehicle Lower Part
- Free Space



- Edge
- Free Space



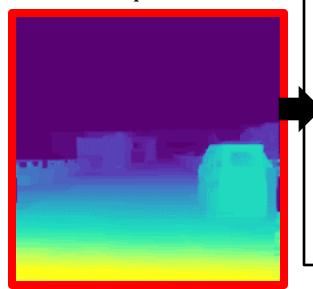
Strong

Weak

Learned Features by Chi-Net

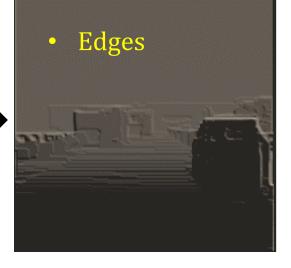
Intensity Image

Depth



Some of Learned Depth Features

- Close Distance Objects
 Close Free Space
- Far Distance Objects
- Far Free Space



Strong

Weak

Conclusion

- Sensor fusion of appearance and depth features for environment perception
- Increased robustness and perception accuracy
- ChiNet advantages
 - Precise object boundary detection
 - Detection of small objects in the road
 - Detection of far-away objects
- Computational time
 - Reduction of computational time to ~50ms possible with optimized CUDA libraries and advances in GPU computing

THANKS AND QUESTIONS