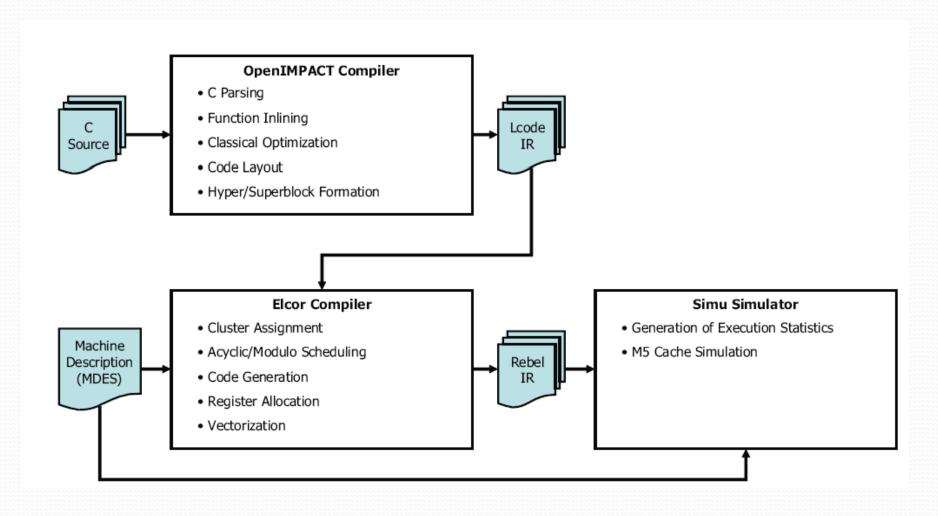
ILP Project

April 13, 2009


Introduction

- Suppose your company has been making the standard processor with one functional unit, which can satisfy general-computing requirements for a long time.
 - integer, floating point, memory, and branch (one for each)
- Now to expand the market share, your company wants to better appeal to the needs of the customers.
 - General-purpose users who want good performance for their money
 - Scientific users who want loads of computation power
- Please write a report to a technical manager who needs to make design decisions
 - Suggest the best mix of functional units for the 2 processors

Project Overview

- Part 1
 - How processor architecture affects benchmark performance
 - Explore the effects of varying functional units
- Part 2
 - Design 2 processors:
 - General purpose
 - Scientific purpose

Trimaran Organization

Steps in Part 1

- First logon and run the Trimaran setup script
 - source /afs/ece/users/jowens/eec171/trimaran/scripts/envrc
- Create a working directory in /tmp
- Copy the MDES file into your working directory
 - hpl_pd_elcore_std.hmdes2
- Modify the MDES file as desired
- Compile the MDES file
 - hc hpl_pd_elcor_std.hmdes2
- Run a benchmark
 - tcc -bench mm_dyn -M/tmp/wdir/hpl_pd_elcor_std.lmdes2
- Use the Sumstat command to review statistics obtained during the run

Modifying MDES file

- Modify num_clusters
 - \$def !num_clusters 1
- Modify functional units as needed
 - // Per-cluster Functional Units
 - \$def !integer_units 1
 - \$def !float_units 1
 - \$def !memory_units 1
 - \$def !branch_units 1
- Modify float unit latency as needed
 - \$def !float_multiply_latency 3
 - \$def !float_divide_latency 8

Benchmarks

- mm_double: matrix multiply
 - both float and int
- fft: fast fourier transform
 - float and int
- mm_dyn: matrix multiply
 - int
- mpeg2dec: decode a MPEG2 file
 - int and float
- epic: experimental image compression
 - float and int
- pegwitenc: encryption code
 - int

Part2

- Design two processors
 - General purpose (Performance/\$)
 - Scientific purpose (Performance)
- Design Constraints:
 - Up to 12 total functional units (int, float, memory, branch)
 - Incremental cost for functional units
 - 4 units are included in the \$50 base price
 - Unit 5 = \$10, unit 6 = \$20, unit 7 = \$40, unit 8 = \$70, unit 9 = \$110, unit 10 = \$160, unit 11 = \$220, unit 12 = \$290
 - Floating point units
 - Slow floating point units (adds 1 cycle to mult and div latency) = saves \$5 per
 - Fast floating point units (subs 1 cycle from mult and div latency) = costs \$5 per

Turn In

- 2 files will be submitted via SmartSite.
 - A written report(.PDF).
 - No more than 3 pages (2 pages prefer)
 - A zip file
 - For each processor you designed, submit the MDES file and the Sumstat output for each benchmark.
 - Submit a text file named "README" that describes each of the MDES and stats files.
- DUE DATE: Wednesday 4/22 at 5PM.