The Most Powerful Compute Platform for Every Workload

The NVIDIA® A100 Tensor Core GPU delivers unprecedented acceleration—at every scale—to power the world’s highest-performing elastic data centers for AI, data analytics, and high-performance computing (HPC) applications. As the engine of the NVIDIA data center platform, A100 provides up to 20X higher performance over the prior NVIDIA Volta™ generation. A100 can efficiently scale up or be partitioned into seven isolated GPU instances, with Multi-Instance GPU (MIG) providing a unified platform that enables elastic data centers to dynamically adjust to shifting workload demands.

NVIDIA A100 Tensor Core technology supports a broad range of math precisions, providing a single accelerator for every workload. The latest generation A100 80GB doubles GPU memory and debuts the world’s fastest memory bandwidth at 2 terabytes per second (TB/s), speeding time to solution for the largest models and most massive data sets.

A100 is part of the complete NVIDIA data center solution that incorporates building blocks across hardware, networking, software, libraries, and optimized AI models and applications from NGC™. Representing the most powerful end-to-end AI and HPC platform for data centers, it allows researchers to deliver real-world results and deploy solutions into production at scale.
Incredible Performance Across Workloads

Groundbreaking Innovations

NVIDIA AMPERE ARCHITECTURE
Whether using MIG to partition an A100 GPU into smaller instances, or NVIDIA NVLink® to connect multiple GPUs to speed large-scale workloads, A100 can readily handle different-sized acceleration needs, from the smallest job to the biggest multi-node workload. A100 versatility means IT managers can maximize the utility of every GPU in their data center, around the clock.

THIRD-GENERATION TENSOR CORES
NVIDIA A100 delivers 312 teraFLOPS (TFLOPS) of deep learning performance. That’s 20X the Tensor FLOPS for deep learning training and 20X the Tensor TOPS for deep learning inference, compared to NVIDIA Volta GPUs.

MULTI-INSTANCE GPU (MIG)
An A100 GPU can be partitioned into as many as seven GPU instances, fully isolated at the hardware level with their own high-bandwidth memory, cache, and compute cores. MIG gives developers access to breakthrough acceleration for all their applications, and IT administrators can offer right-sized GPU acceleration for every job, optimizing utilization and expanding access to every user and application.

HBM2E
With up to 80 gigabytes (GB) of high-bandwidth memory (HBM2e), A100 delivers a world’s first GPU memory bandwidth of over 2TB/sec, as well as higher dynamic random-access memory (DRAM) utilization efficiency at 95%. A100 delivers 1.7X higher memory bandwidth over the previous generation.

STRUCTURAL SPARSITY
AI networks have millions to billions of parameters. Not all of these parameters are needed for accurate predictions, and some can be converted to zeros, making the models “sparse” without compromising accuracy. Tensor Cores in A100 can provide up to 2X higher performance for sparse models. While the sparsity feature more readily benefits AI inference, it can also improve the performance of model training.
The NVIDIA A100 Tensor Core GPU is the flagship product of the NVIDIA data center platform for deep learning, HPC, and data analytics. The platform accelerates over 1,800 applications, including every major deep learning framework. A100 is available everywhere, from desktops to servers to cloud services, delivering both dramatic performance gains and cost-saving opportunities.