Invent the Future With Us.

Your Future Starts Here
NVIDIA pioneered accelerated computing to tackle challenges no one else can solve. We engineer technology for the da Vincis and Einsteins of our time. Our work in AI and the metaverse is profoundly impacting society and transforming the world’s largest industries. From gaming to robotics, self-driving cars to life-saving healthcare, climate change to virtual worlds where we can all connect and create.

Our work is truly unique. Part science. Part art. Completely rewarding. We take on challenges that make a significant difference in the world. Every breakthrough helps shape what comes next.

Find Your Perfect Fit
There are endless opportunities at NVIDIA, and you have the freedom to explore them all. It is all about landing where you are the most valued, challenged, and inspired in your work.

Below are general hiring areas for NVIDIA. Check out where your skills fit and search for your area of interest at www.nvidia.com/university.
Hardware

ASIC Design
- Digital Systems, Digital Design, VLSI Design or Real-Time Logic (RTL) Design
- Computer Architecture, Computer Arithmetic, Object-Oriented Programming, CMOS Transistors, Circuits

Programming Skills & Technologies: Verilog, SystemVerilog, VHDL, Perl, TCL, C, C++, Linux

Verification
- Formal Verification, GPU or processor Verification or Validation
- Digital Systems, Digital Design, VLSI Design or Real-Time Logic (RTL) Design
- Random functional testing, writing test plans, directed/random diagnostics
- CPU Architecture, Computer Architecture, Software Infrastructure (for validation of architecture)

Physical Design
- Synthesis, Static Timing Analysis, Clock/Power Distribution and Analysis, RC Extraction and Correlation, Place and Route, Circuit Design

Programming Skills & Technologies: Perl, C, C++, TCL, Linux, Scheme, Python, SKILL, Make, ICC2, Design Compiler, PrimeTime (Synopsys, First Encounter), Innovus, Virtuso (Cadence)

Architecture

Computer Architecture
- Digital Systems, VLSI Design, Computer Architecture (GPU or CPU Architecture), Computer Arithmetic, CMOS Transistors and Circuits, Deep Learning, Modelling/Performance Analysis, Parallel Programming

Programming Skills & Technologies: Verilog, SystemVerilog, VHDL, Linux, C, C++, Perl

Software

Compiler
- Compiler Development, Open Source Programming, High-Performance Computing (HPC)

Data Science
- Data Science, Data Engineering, Open Source Data Science Tools, Open Source Libraries
- Building Cloud and On-Premise Infrastructure for back-end analytics

Programming Skills & Technologies: Python, C, C++, Data Technologies (Kafka, ELK, Cassandra, Apache Spark)

Dev Tools
- Linear Algebra & Numerical Methods, Operating Systems (memory/resource management), Scheduling and Process Control, Hardware Virtualization

Programming Skills & Technologies: Java, Python, Testing Methodologies (Jenkins), GUI Technologies (AngularJS, Web Services, SOAP/REST), Relational Databases (MySQL, NoSQL, Elastic Search, MongoDB, HBase), Systems Administration (Windows, Linux)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programming Skills & Technologies: C, C++, Linux</td>
</tr>
<tr>
<td>Firmware & Embedded Software</td>
<td>Operating Systems (Threads, Process Control, Memory/Resource Management, Virtual Memory), Embedded Systems Software Development</td>
</tr>
<tr>
<td></td>
<td>Programming Skills & Technologies: C, C++, CUDA, Perl, Bash/Shell Scripting, Linux</td>
</tr>
<tr>
<td></td>
<td>3D/2D Graphics Theory, Implementation & Optimizations, Simulation or Emulation experience (writing & debugging tests)</td>
</tr>
<tr>
<td></td>
<td>Programming Skills & Technologies: C, C++, CUDA, x86, ARM CPU, GPU, Linux, Direct3D, Vulkan, OpenCL</td>
</tr>
<tr>
<td></td>
<td>Programming Skills & Technologies: Java, Go, C++, SPARK, RAPIDS, REST API, CI/CD, Container Tools (Docker/Containers, Kubernetes), Infrastructure Platforms (AWS, Azure, GCP)</td>
</tr>
<tr>
<td>Software Security</td>
<td>Operating Systems, Data Structures & Algorithms, Cybersecurity, Cryptography, Computer Systems Architecture, Microcontroller and Microprocessor fundamentals (Caches, Buses, Memory Controllers, DMA, etc.)</td>
</tr>
<tr>
<td>Tools Infrastructure</td>
<td>Operating Systems, Distributed Systems, Micro-Services Architecture, Logic, Simulation</td>
</tr>
<tr>
<td></td>
<td>GPU Development - modeling, analyzing, and debugging GPU hardware for performance</td>
</tr>
<tr>
<td></td>
<td>Chip Design, Validation, and Workflow - software design and validation for chips to support hardware</td>
</tr>
<tr>
<td></td>
<td>Metrics, Process Management, and Compute Infrastructure - distributed/scalable applications to enable the chip design process</td>
</tr>
<tr>
<td></td>
<td>Programming Skills & Technologies: Perl, Java, JavaScript, Unix/Shell Scripting, Graphics & GPGPU APIs (Vulkan, DirectX, OpenGL, CUDA, OpenCL), Data Processing Tools (ElasticSearch, Kibana, Grafana, MongoDB), CI/CD (Jenkins), C++, CUDA, OOP, Go, Python, GitLab, Linux</td>
</tr>
</tbody>
</table>
Artificial Intelligence

Autonomous Vehicles

- Computer Vision, Mapping, Localization, SLAM, Image Processing, Segmentation
- Programming Skills & Technologies: C, C++, CUDA, Python, Linux, Sensor Input Devices (LiDAR, cameras, radars), Training Frameworks (TensorFlow, Keras, PyTorch)
- NVIDIA Projects: DRIVE

Deep Learning Applications and Algorithms

- Deep Neural Networks, Linear Algebra, Numerical Methods and/or Computer Vision, Software Design, Computer Memory (Disk, Memory, Caches), CPU and GPU Architectures, Networking, Numeric Libraries, Embedded System Design and Development, Drivers, Real-Time Software
- NVIDIA Projects: Riva (Conversational AI), Metropolis (Smart Cities), Clara (Medical Imaging), and more

Deep Learning Frameworks and Libraries

- Computer Architecture (CPUs, GPUs, FPGAs or other accelerators), GPU Programming Models, Performance-Oriented Parallel Programming, Optimizing for High-Performance Computing (HPC), Algorithms, Numerical Methods
- Building underlying frameworks and libraries that accelerate Deep Learning on GPUs
- Programming Skills & Technologies: C, C++, CUDA, TensorRT, Python, Linux, Docker Containers, CPU, GPU, FPGA
- NVIDIA Projects: Deep Learning Frameworks, TensorRT, cuDNN

Machine Learning

- Machine Learning, Deep Learning, Accelerated Computing, GPU Computing, Deep Learning Frameworks, NVIDIA RAPIDS

Robotics

- Programming Skills & Technologies: C, C++, CUDA, ROS, Python, OpenGL, Linux
- NVIDIA Projects: Isaac SDK, Isaac Sim, Omniverse, Jetson AGX Xavier
Research

(PhD Required)
> PhD candidacy in CE, EE, CS, Mathematics, Physics, Signal Processing, Statistics, Neuroscience, or equivalent research experience in those fields
> Track record of research excellence with a strong publication record
> Research Application Areas: Parallel Algorithms, Parallel Programming Systems, Computer Vision, Robotics, Natural Language Processing (NLP), or Recommender Systems
Check out Research Application Areas here

Applied Research
(BS, MS, PhD)
> Applied Research Areas: Deep Learning Theory and Applications to Natural Language Processing (NLP), Computer Vision, Graphics, Speech, Reinforcement Learning, or another relevant domain

Business Operations

(MBA)
> Product Management, Marketing, Finance, and Operations across multiple teams

What We Do

<table>
<thead>
<tr>
<th>Autonomous Machines</th>
<th>Gaming and Entertainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud and Data Center</td>
<td>Healthcare</td>
</tr>
<tr>
<td>Deep Learning and Artificial Intelligence</td>
<td>High-Performance Computing</td>
</tr>
<tr>
<td>Design and Pro Visualization</td>
<td>Self-Driving Cars</td>
</tr>
</tbody>
</table>

Where We Work

> Austin, TX
> Bethesda, MD
> Boulder, CO
> Champaign, IL
> Durham, NC
> Hillsboro, OR
> Holmdel, NJ
> New York, NY
> Pittsburgh, PA
> Redmond, WA
> Santa Clara, CA
> Seattle, WA
> Toronto, Canada
> Westford, MA
A Truly Inclusive Culture

Everyone is welcome. Every background offers a new perspective that can only help us grow smarter and better.

Everyone has a voice. Great ideas drive us, no matter who or where they come from.

Early Talent Programs

Internships

Whether you’re pursuing a BS, MS, PhD, or MBA, we have year-round internships available—for a minimum of 12 weeks—with great benefits

NVIDIA Intern, Ignite, and MBA programs make this a great place to kickstart your journey and take part in meaningful work making an impact on the next generation of innovation. You’ll make a difference on real projects, connect with the greatest minds in our industry, and build lifelong connections.

New College Graduate (NCG)

Our NCG program, gives you the opportunity to influence areas ranging from high-performance computing and graphics to edge computing, networking, and autonomous machines. We provide great benefits that include ESPP, tuition reimbursement, continuous learning and development programs, paid time off, and more.

How To Apply

1. Explore University Opportunities. Check out our general hiring areas above to see where your skills and interests may fit. Search for your area of interest at www.nvidia.com/university and submit a resume!

2. Get Noticed. Make sure your resume aligns with the area you’re interested in. For our technical and engineering opportunities, our teams like to see your technical and programming skills through past internships, relevant coursework, and cool projects.

3. Stay Connected. Once your resume has been submitted, we have a dedicated team to review profiles who can help match your skills to areas of interest and/or direct openings.

4. We have new roles opening throughout the season. If there’s a fit, our recruiting team will reach out with next steps.

5. In the meantime, follow us on LinkedIn, Instagram and NVIDIA Blog to stay connected!

Ready to Get Started?

For more, visit www.nvidia.com/university