You need to do great things. Create and collaborate from anywhere, on any device, without distractions like slow performance, poor stability, or incompatibility. NVIDIA Quadro is the technology that lets you unleash your vision and enjoy the ultimate creative freedom.

Whether you’re developing revolutionary products, using AI to work smarter and faster, telling spectacularly vivid visual stories, designing groundbreaking architecture, or creating the most lifelike, immersive virtual experiences, NVIDIA Quadro gives you the performance to do it brilliantly. Support for NVIDIA deep learning SDKs and accelerated AI frameworks, multiple 8K displays, large graphics memory capacity, advanced physically based rendering, VR-specific features, and flexible multi-GPU configurations give you the power to tackle the most challenging visual computing tasks.
GPU Specifications

<table>
<thead>
<tr>
<th>GPU</th>
<th>CUDA Cores</th>
<th>RT Cores</th>
<th>Tensor Cores</th>
<th>GPU Memory</th>
<th>Peak Memory Bandwidth (GB/s)</th>
<th>NVLink® (GB/s)</th>
<th>Floating-Point Performance (TFLOPS, Peak)</th>
<th>Tensor Core Performance (TFLOPS, Peak)</th>
<th>Error Correcting Code (ECC)</th>
<th>Maximum Active Displays</th>
<th>VR Ready</th>
<th>GPU Direct® for Video</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro GV100</td>
<td>5,120</td>
<td>640</td>
<td>32 GB</td>
<td>870 GB</td>
<td>•</td>
<td>14.8</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro GP100</td>
<td>3,584</td>
<td>486</td>
<td>16 GB</td>
<td>717 GB</td>
<td>•</td>
<td>10.3</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro RTX 6000 NEW</td>
<td>4,608</td>
<td>72</td>
<td>576 GB</td>
<td>672 GB</td>
<td>•</td>
<td>16.3</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro RTX 5000 NEW</td>
<td>3,072</td>
<td>48</td>
<td>16 GB</td>
<td>448 GB</td>
<td>•</td>
<td>11.2</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P6000</td>
<td>3,840</td>
<td>486</td>
<td>24 GB</td>
<td>432 GB</td>
<td>•</td>
<td>12.6</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P5000</td>
<td>2,560</td>
<td>384</td>
<td>16 GB</td>
<td>288 GB</td>
<td>•</td>
<td>8.9</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P4000</td>
<td>1,792</td>
<td>256</td>
<td>8 GB</td>
<td>256 GB</td>
<td>•</td>
<td>5.3</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P2000</td>
<td>1,024</td>
<td>128</td>
<td>5 GB</td>
<td>140 GB</td>
<td>•</td>
<td>3.0</td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P1000</td>
<td>640</td>
<td>96</td>
<td>4 GB</td>
<td>80 GB</td>
<td>1.8</td>
<td></td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P620</td>
<td>512</td>
<td>32</td>
<td>2 GB</td>
<td>80 GB</td>
<td>1.3</td>
<td></td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P600</td>
<td>384</td>
<td>32</td>
<td>2 GB</td>
<td>64 GB</td>
<td>1.1</td>
<td></td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quadro P400</td>
<td>256</td>
<td>16</td>
<td>2 GB</td>
<td>32 GB</td>
<td>0.6</td>
<td></td>
<td>•</td>
<td>•</td>
<td>4 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>NVS 810</td>
<td>1,024</td>
<td>4 GB</td>
<td>29 GB</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>8 GB</td>
<td>8</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

1. CUDA parallel processing cores cannot be compared between GPU generations due to several important architectural differences that exist between streaming multiprocessor designs.
2. FP16 matrix multiply with FP16 or FP32 accumulate.
3. Maximum display resolution: 1050M Pixels/sec [32.4 Gbps] | 7680x4320 @ 60Hz or 5120x2880 @ 60Hz. Pascal GPUs support Dual-Link DVI-D.
4. Turing, Volta and Pascal architecture support DP1.4. Adapters available for DVI-SL, DVI-DL, HDMI, and VGA.
5. Quadro RTX 6000 and Quadro RTX 5000 support display stream compression (DSC).
6. SLI functionality provided via the NVLink.
7. Supported adaptors required for HDMI.
8. VR Ready GPUs have the performance & features required for high-quality VR experiences.
10. Ensures data integrity and reliability by eliminating soft errors on both GPU cache and on-board DRAM.
11. Ensures data integrity and reliability by eliminating soft errors on DRAM only.
12. Supports Turing GPU Multi-View Rendering (MVR) feature.
14. P400 can drive 4 displays via MST.
15. The NVS 810 is a dual GPU design, so half of this total number is per GPU.

For more information on NVIDIA NVS mobile solutions please visit, www.nvidia.com/object/notebook-nvs.html