

June 29, 2009| TB-04701-001_v01

Technical Brief

30-Bit Color Technology for
NVIDIA® Quadro®

 ii
 June 29, 2009| TB-04701-001_v01

Document Change History

Version Date Responsible Description of Change
01 May 28, 2009 SV, AP, SM Initial Release

02 June 23, 2009 SV, SM Update to Table 1

 June 29, 2009 | TB-04701-001_v01 iii

Table of Contents

30-Bit Color ... 1

Introduction ... 1

Bit Depth Vs Color Gamut .. 1

Why 30-Bit Color? ... 3

System Specific Information .. 4

Supported Graphics Cards ... 4

Supported Monitors ... 4

Supported Connectors ... 5

Setup Over DisplayPort ... 5

30-Bit Pixel Format - Win32 ... 7

30-Bit Visual on Linux .. 9

Cross-Platform - GLUT ... 9

Off-Screen Rendering ... 10

Rendering for 30-Bit ... 12

Shaded Geometry ... 12

Higher Bit Depth Pixels .. 13

Packed Pixel Format .. 13

Multi-Display Configurations .. 15

Multi-GPU Compatibility ... 15

Multi-Display Setup ... 15

Programming for Multi-Display ... 16

Mixing 30-Bit Color with 24-Bit Color Displays .. 17

Moving and Spanning Windows Across Displays ... 18

References .. 19

Implementation Details ... 20

 iv
 June 29, 2009| TB-04701-001_v01

List of Figures

Figure 1. Comparing sRGB with Adobe RGB Color Space ... 2

Figure 2. Radial Banding Observed on a 24-Bit Color Display ... 3

Figure 3. Color Ramp with Increasing Bit Depth .. 4

Figure 4. 30-Bit Window within 24-Bit Desktop and the Scan Out Process ... 6

Figure 5. Control Panel Setting on Windows Vista to Disable 30-Bit Color .. 6

Figure 6. Off-Screen Rendering Using FBO’s ... 10

Figure 7. Comparing 24-Bit (Banded) and 30-Bit (Smooth) .. 12

Figure 8. Display Properties Before and After all the Displays are Enabled 15

List of Tables

Table 1. 30-Bit Capable Cards ... 4

 June 29, 2009 | TB-04701-001_v01 1

30-Bit Color

Introduction

Color precision is critical for professionals in the graphic design, film and scientific
visualization communities. Within the film industry color is a critical story telling
component; managing color from beginning to end of the pipeline is requirement to
correctly expressing the artists’ creative vision. Likewise in graphic design, color is used to
define a brand or create an emotion; it is crucial that designers be able to correctly visualize
these colors and how they interact. Medical and seismic imaging systems often produce raw
12 to 16-bit data that are mapped to color by means of lookup tables. In a system like this
the image and graphics processing pipeline may use high-precision floating point data, but
the end results will be need to be rendered, or down sampled, for display on 24-bit monitors.
This down sampling can lead to color difference, where what is seen on the display does not
correctly represent the data underneath. It is critical for all these businesses that the colors
and all the subtle transitions between them be correctly mapped and preserved throughout
the pipeline.

Recent advances in display and graphics processing unit (GPU) technology are bringing the
capability to better represent this critical color information. GPU’s like the NVIDIA
Quadro® FX line are capable of processing high precision graphics at faster speeds, including
30-bit color. Displays like the HP lp2480zx DreamColor display with its ability to show over
a billion shades of colors are setting new standards for profession grade LCD panels.
Industry standard display connection like the DisplayPort are making it possible to connect
GPU’s and displays and reliable move all this critical information. Putting each of these
components together provides an easy to use solution for professionals whose livelihood
demands the utmost in color quality.

Bit Depth Vs Color Gamut
Concepts of bit depth and color gamut while related should be looked as two separate items.
Bit depth, the 30-bit part of “30-bit color” is a reference to how many bits of data are
allocated for each color value in a pixel. Color Gamut refers to how much color a display or
printer can give. It is possible to have a format with a high bit depth even though it is a low
color gamut.

Most professional grade displays available define the color of a pixel by an 8-bit value for
each of the red, green and blue components. For each of the Red, Green and Blue values a
programmer or artist can select from a range of 0 – 255 (0 being black; 255 full color
saturation) giving each pixel a possibility of 16.7 million colors. Now, in a 30-bit display each
pixel component is provided 10 bits of color, or 1024 shades resulting in a bit over 1.07
billion shades of color per pixel. As color gamut and bit depth are two separate things, while
we have a billion possible shades of color, we do not know what those colors are.

30-Bit Color Technology

 2
 June 29, 2009| TB-04701-001_v01

Defining what those colors are is where the color gamut comes in. The color gamut for a
display is defined by 5 things:

 The color of red, green and blue color filters: The formulation of these filters
defines how saturated each color can get.

 The color and spectra of the backlight: This light interacts with the filters to
create the color that is perceived.

 The “blackness” of the display of black: Often overlooked but the performance
of a display in the shadow details is often what separates a regular display from a
professional display

All of these components can be measured and charted. A common chart for this is a
chromaticity diagram, shown in Figure 1. The points on the outside of the triangles are the
colors seen at 100% saturation for each primary. The circle in the middle, with the D65 mark
is the color of the back light or the color of the display when it is showing 100% white. This
diagram has no notion of the black level and a 3D representation is needed for that.

The figure also shows two triangles labeled sRGB [1]and Adobe RGB [2] - both standard
color spaces used throughout the photo and imaging world. The sRGB triangle is smaller
than Adobe RGB and as such it has a smaller color gamut. The consequence of the
differences in color gamut size is that when an application needs colors not inside the color
gamut they cannot be reproduced on the display. As an example, an Adobe RGB file with
100% green cannot be shown on a sRGB display. Mapping from one color gamut to another
is where color management comes in which is beyond the scope of this paper.

As the color gamut gets bigger, the need for higher bit depth addressability becomes more
and more important. Recall that in a 24-bit system the gamut is always divided into 16.7M
voxels, as the gamut grows so too do the voxels.

Figure 1. Comparing sRGB with Adobe RGB Color Space

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 3

Why 30-Bit Color?
30-bit color means that each pixel can be built from a bit over a billion shades of color.
While there is some value in being able to exactly specify a color, the real value of these extra
shades is in the transition from one color to another. The easiest way to see this is in
gradient fills, although they will often appear in photographs as well. Figure 2 shows a radial
gradient from sRGB (0,90,0) to pure black. Unless viewed on a very high quality display,
chances are it has circular bands that run through it. These bands are a result of not having
enough shades of color to transition from the mark green to black.

Figure 3 shows a gradient from 0 to 25% sRGB green with increasing bit depth thereby
increases the number of shades of color available; the smaller the steps, the smoother the
image. Continuing to 10-bit would make the divisions even smaller providing a smooth
gradient without resorting to techniques like dithering, or adding some noise into the image
to smooth the bands out. While dithering produces a visually smooth image, the pixels no
longer correlate to the source data. This matters in mission critical applications like
diagnostic imaging where a tumor may only be one or two pixels big.

Figure 2. Radial Banding Observed on a 24-Bit Color Display

30-Bit Color Technology

 4
 June 29, 2009| TB-04701-001_v01

Figure 3. Color Ramp with Increasing Bit Depth

System Specific Information

 30-bit color is currently supported on the following:

 Windows XP
 Windows Vista
 Windows 7
 Linux

 OpenGL- windowed and full screen modes
 Direct3D 10 – exposed in full screen only

Supported Graphics Cards
30-bit color is supported on Quadro FX boards (Table 1) that are DisplayPort capable.

Note: 30-bit color is not supported on Quadro NVS boards (including Quadro NVS 450 even
though DisplayPort is supported).

Table 1. 30-Bit Capable Cards

GT200GL G94GL G96GL

Quadro FX 5800
Quadro FX 4800
Quadro CX
Quadro FX 3800

Quadro FX 1800 Quadro FX 580

Supported Monitors
At least one EDID 1.04 30-bit color monitor must be attached for the driver to
automatically switch to 30-bit mode. The tested monitors are HP Dreamcolor LP 2480zx.

target

5 bit

6 bit

7 bit

sRGB (0,0,0) sRGB (0,90,0)

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 5

Supported Connectors
 DisplayPort

DisplayPort allows a mode with 10 bits per component or 30-bit color. This is the
approach explained in this paper.

 Dual-link DVI
DVI will not natively support 30-bit deep color. It is possible to enable 30-bit color
over DVI using device specific pixel packing method. In this approach, off screen
buffers are used for rendering at a deep color value and a fragment shader is used to
implement the monitor-specific pixel packing. Since this approach is display specific
it will not be covered by this paper.

Setup Over DisplayPort

30-bit color over display port is significantly easier and all that is required is a 30-bit
compatible Quadro FX board. On current operating systems, 8 bits per component or a
total of 24-bit color is the default for the desktop and GDI rendering. However, applications
can use 30-bit color through OpenGL by requesting the appropriate pixel format (explained
in the next section). This approach allows for windowed 30-bit OpenGL buffers that are
then composited with the GDI components before scan out. The entire pipeline is done in
30-bit as shown in Figure 4.

When connected to a 30-bit capable monitor, the driver by default switches to 30-bit scan
out. On Windows Vista, this mode automatically disables Windows Aero regardless of
whether 30-bit application is running. If Aero must be enabled (therefore reverting to 24-bit
color rendering), the NVIDIA® Display Control Panel has a "Deep Color for 3D
Applications" setting that can be set to “disable” (Figure 5).

30-Bit Color Technology

 6
 June 29, 2009| TB-04701-001_v01

Figure 4. 30-Bit Window within 24-Bit Desktop and the Scan Out
Process

Figure 5. Control Panel Setting on Windows Vista to Disable 30-
Bit Color

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 7

// Create a dummy window to query the WGL_ARB_pixelformats
HWND dummyWin = CreateDummyGLWindow(szClassName, "Dummy", FALSE);
if (dummyWin == NULL) {
 // TODO - Error Handling here
}
HDC dummyDC = GetDC(dummyWin);
// TODO – Set Pixel Format
HGLRC dummyRC = (HGLRC) wglCreateContext (dummyDC);
// Set the OpenGL context current
wglMakeCurrent(dummyDC, dummyRC);

// Find the 30-bit color ARB pixelformat
wglGetExtensionsString = (PFNWGLGETEXTENSIONSSTRINGARBPROC)
 wglGetProcAddress("wglGetExtensionsStringARB");
if (wglGetExtensionsString == NULL) {
 // TODO - Error Handling and Cleanup here
}
const char *szWglExtensions = wglGetExtensionsString(dummyDC);
if (strstr(szWglExtensions, " WGL_ARB_pixel_format ") == NULL) {
 // TODO - Error Handling and Cleanup here
}

wglGetPixelFormatAttribiv = (PFNWGLGETPIXELFORMATATTRIBIVARBPROC)
 wglGetProcAddress("wglGetPixelFormatAttribivARB");
wglGetPixelFormatAttribfv = (PFNWGLGETPIXELFORMATATTRIBFVARBPROC)
 wglGetProcAddress("wglGetPixelFormatAttribfvARB");
wglChoosePixelFormat = (PFNWGLCHOOSEPIXELFORMATARBPROC)
 wglGetProcAddress("wglChoosePixelFormatARB");
if ((wglGetPixelFormatAttribfv == NULL) || (wglGetPixelFormatAttribiv ==
 NULL) || (wglChoosePixelFormat == NULL))
 // TODO - Error Handling and Cleanup here

30-Bit Pixel Format - Win32
On Windows, the displayable 30-bit pixel formats are exported via WGL_ARB_pixelformat
extension[3]. To access these pixel formats, the WGL pixelformat functions are used instead
of their GDI equivalents. A dummy OpenGL window must be created in order to get a
handle to these WGL functions.

The 10 bits per component is specified in the desired attribute list before calling the
wglChoosePixelFormat which returns the matching pixel formats. The code listing below
also checks the RGB color depth after the call to make sure that a 30-bit color pixel format
is in place.

30-Bit Color Technology

 8
 June 29, 2009| TB-04701-001_v01

int attribsDesired[] = {
 WGL_DRAW_TO_WINDOW_ARB, 1,
 WGL_ACCELERATION_ARB, WGL_FULL_ACCELERATION_ARB,
 WGL_RED_BITS_ARB, 10,
 WGL_GREEN_BITS_ARB, 10,
 WGL_BLUE_BITS_ARB, 10,
 WGL_ALPHA_BITS_ARB, 2,
 WGL_DOUBLE_BUFFER_ARB, 1,
 0,0
};

UINT nMatchingFormats;
int index = 0;
if (!wglChoosePixelFormat(dummyDC, attribsDesired, NULL, 1, &index,
&nMatchingFormats)) {
 printf("ERROR: wglChoosePixelFormat failed!\n");
 goto cleanup;
}

if (nMatchingFormats == 0) {
 printf("ERROR: No 10bpc WGL_ARB_pixel_formats found!\n");
 goto cleanup;
}

// Double-check that the format is really 10bpc
int redBits;
int alphaBits;
int uWglPfmtAttributeName = WGL_RED_BITS_ARB;
wglGetPixelFormatAttribiv(dummyDC, index, 0, 1, &uWglPfmtAttributeName,
&redBits);
uWglPfmtAttributeName = WGL_ALPHA_BITS_ARB;
wglGetPixelFormatAttribiv(dummyDC, index, 0, 1, &uWglPfmtAttributeName,
&alphaBits);

printf("pixelformat chosen, index %d red bits: %d alpha bits: %d",
index, redBits, alphaBits);

Note: With 30-bit enabled, both active stereo and rotation are NOT possible.

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 9

Display *dpy = XOpenDisplay(0);
//The desired 30-bit color visual
int attributeList[] = {
 GLX_DRAWABLE_TYPE, GLX_WINDOW_BIT,
 GLX_RENDER_TYPE, GLX_RGBA_BIT,
 GLX_DOUBLEBUFFER, True,
 GLX_RED_SIZE, 10, /* 10bits for R */
 GLX_GREEN_SIZE, 10, /* 10bits for G */
 GLX_BLUE_SIZE, 10, /* 10bits for B */
 None
};

int fbcount;
GLXFBConfig *fbc = glXChooseFBConfig(dpy, DefaultScreen(dpy),
 attributeList, &fbcount);
if (!fbc) {
 //Error Handler
}

XVisualInfo *vi = glXGetVisualFromFBConfig(dpy, fbc[0]);

//Make sure we have 10bit Red, Green and Blue
int redSize, greenSize, blueSize,
glXGetFBConfigAttrib(dpy, fbc[0], GLX_RED_SIZE, &redSize);
glXGetFBConfigAttrib(dpy, fbc[0], GLX_GREEN_SIZE, &greenSize);
glXGetFBConfigAttrib(dpy, fbc[0], GLX_BLUE_SIZE, &blueSize);
printf("RGB size %d:%d:%d\n",redSize, greenSize, blueSize);

//Create colormap and window here

glutInitDisplayString("red=10 green=10 blue=10 alpha=2");
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutCreateWindow("30-bit Demo");
//check to get the no of color bits we have
int redSize, greenSize, blueSize;
glGetIntegerv(GL_RED_BITS,& redSize);
glGetIntegerv(GL_GREEN_BITS,& greenSize);
glGetIntegerv(GL_BLUE_BITS,& blueSize);
printf("RGB size %d:%d:%d\n",redSize, greenSize, blueSize);

30-Bit Visual on Linux
On Linux, the GLX interface is used to request a 30-bit Config similar to the pixel format
on Windows. The desired attributes (10-bit RGB) are set and a matching Config is returned
by the glXChooseFBConfig as followed. The associated X Visual can then be queried from
this Config and subsequently used to create the 30-bit window. It is assumed that the
handles to the glx functions are already obtained using glXGetProcAddress.

Cross-Platform - GLUT
The GLUT library[4] allows a simple cross-platform way to create a 30-bit color window.
The 10 bits per components must be specified at startup before the window creation.

30-Bit Color Technology

10
 June 29, 2009| TB-04701-001_v01

Off-Screen Rendering

Common HDR operations such as tone-mapping and shadowing are often done in high-
precision floating point or 32-bit integer not supported on the window frame buffer. The
OpenGL Framebuffer Objects (FBO) extension[5] allows rendering to be diverted from the
window’s frame buffer (which has limited precision) to off-screen buffers that can be
attached to higher-precision integer, float or packed pixel RGB10_A2 textures. The render-
to-texture feature of FBO’s is used to store the results of a rendering for intermediate
calculations. Finally, contents of these off-screen buffers are made visible by a simple blit to
the onscreen window (Figure 6). An FBO can be attached to multiple color buffers of
various types that can be written to simultaneously. The framebufferObject helper class in
the attached 30bitdemo example handles the creation, attachment and management of
FBO’s.

Figure 6. Off-Screen Rendering Using FBO’s

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 11

The following code snippet shows the two texture formats – unsigned byte and floating
point as intermediate rendering targets. The scene is rendered to these 2 textures
simultaneously and a second pass blits the 2 textures side by side to an onscreen quad. It is at
this point that the data is scaled to the window pixel format specific 30-bit RGB. Full source
is given in the accompanying 30bitdemo project. Key ‘f’ when running 30bitdemo toggles
rendering between the dual-viewport FBO mode and single viewport onscreen rendering.

CFBO fbo; GLuint fboTextures[2];
unsigned int imgWidth = 2048, imgHeight = 2048;
void oglInit() {
 glGenTextures(2, &fboTextures);
 // offscreen floating pt texture
 glBindTexture(GL_TEXTURE_2D, fboTextures[0]);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, imgWidth, imgHeight,
 0, GL_RGBA, GL_HALF_FLOAT_ARB, 0);
 // offscreen unsigned byte texture
 glBindTexture(GL_TEXTURE_2D, fboTextures[1]);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, imgWidth, imgHeight, 0,
 GL_RGBA, GL_UNSIGNED_BYTE , 0);
 fbo.AttachTexture(GL_TEXTURE_2D, fboTextures[0],
 GL_COLOR_ATTACHMENT0_EXT);
 fbo.AttachTexture(GL_TEXTURE_2D, fboTextures[1],
 GL_COLOR_ATTACHMENT1_EXT);
 fbo.IsValid();// Validate the FBO after attaching textures
 CFBO::Disable(); //Disable FBO rendering for now
}

//1:1 texel->onscreen quad blit
void drawQuads() {
 glBegin(GL_QUADS);

 glTexCoord2f(0.0, 0.0); glVertex2f(0.0, 0.0);
 glTexCoord2f(0.0, imgHeight); glVertex2f(0.0, 1.0);
 glTexCoord2f(imgWidth, imgHeight); glVertex2f(1.0, 1.0);
 glTexCoord2f(imgWidth, 0.0); glVertex2f(1.0, 0.0);

 glEnd();
}

void oglDraw (int winWidth, int winHeight) {
 fbo.bind(); // Draw to offscreen buffer
 // 1st PASS - Render to the two offscreen textures at once
 GLenum buffers[]={GL_COLOR_ATTACHMENT0_EXT,GL_COLOR_ATTACHMENT1_EXT};
 glDrawBuffers(2, buffers);

 // TODO – All app drawing here including viewport/projection/camera
 fbo.unbind();// Revert to onscreen draw

 // 2nd PASS - Blit offscreen texture to onscreen window

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_TEXTURE_RECTANGLE_NV);
// Create left viewport, BLIT the float texture to screen
glBindTexture(GL_TEXTURE_RECTANGLE_NV, fboTextures[0]);
glViewport(0, 0, winWidth/2, winHeight);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, 0.5, 0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
drawQuads();
// Create right viewport, BLIT the unsigned byte texture to screen
glBindTexture(GL_TEXTURE_RECTANGLE_NV, fboTextures[1]);
glViewport(winWidth/2, 0, winWidth/2, winHeight);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, 0.5, 0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
drawQuads();

}

30-Bit Color Technology

12
 June 29, 2009| TB-04701-001_v01

void oglDraw() {
 glViewport(0, 0, gWinWidth, gWinHeight);
 glMatrixMode(GL_PROJECTION);
 gluOrtho2D(-1.0, 1.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_QUADS);
 glColor3f(0.0,0.0,0.0); glVertex2f(-1.0,-1.0);
 glColor3f(0.0,0.0,0.0); glVertex3f(-1.0,1.0);
 glColor3f(0.0,0.5,0.0); glVertex3f(1.0,1.0);
 glColor3f(0.0,0.5,0.0); glVertex3f(1.0,-1.0);
 glEnd();
 // Swap Buffers
}

Rendering for 30-Bit

This section deals with 30-bit rendering modes for geometry, pixels and textures. Running
the example 30bitdemo by default will display 2 identical windows. One rendered in 24-bit
and another in 30-bit. The space bar switches between the 4 rendering modes as explained in
the following section. Key ‘f’ toggles between dual-viewport off-screen and regular onscreen
rendering explained in the previous section.

Shaded Geometry
Any existing shaded OpenGL drawing should work as is on a 30-bit system. Application
color values for vertices, lights etc will be interpolated and shaded using high precision and
only at the end, scaled to 10-bit per RGB component when the pixel is written. A good test
to check 30-bit is to simply draw a shaded quad with existing color interpolated between the
vertices. This same quad on an 8-bit pixel format will show banding while the 10-bit shows
smooth transitions (Figure 7). The 30bitdemo on startup shows this mode. Maximizing the
window or downscaling the color values will show more prominent banding on the 24-bit.

Figure 7. Comparing 24-Bit (Banded) and 30-Bit (Smooth)

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 13

//typedef here
glEnum packedType = GL_UNSIGNED_INT_10_10_10_2; //or
GL_UNSIGNED_INT_2_10_10_10_REV
glEnum packedFormat = GL_RGBA; //GL_RGB/GL_BGRA/GL_BGR

//the 4 components will be packed in 1 unsigned int
unsigned int* packedData = new unsigned int[imgWidth*imgHeight];
for (unsigned int y=0; y < imgHeight; y++)
 for (unsigned int x=0; x < imgWidth; x++) {

uint alpha = data[offset*4+3]&0x3;
blue = data[offset*4+2]&0x3FF;
green = data[offset*4+1]&0x3FF;
red = data[offset*4]&0x3FF;
if (packedType == GL_UNSIGNED_INT_10_10_10_2) {
 if (packedFormat == GL_RGBA) //R10G10B10A2
 packedData[offset] = (red<<22 | green<<12 | blue<<2 | alpha);
 else //glformat is GL_BGRA, packed in B10G10R10A2
 packedData[offset] = (blue<<22 | green<<12 |red<<2 | alpha);
}
else if (packedType == GL_UNSIGNED_INT_2_10_10_10_REV) {
 if (packedFormat == GL_RGBA) //A2B10G10R10
 packedData[offset] = (alpha<<30 | red<<22 | green<<12 | blue<<2);
 else //glformat = GL_BGRA, packed as A2R10G10B10
 packedData[offset] = (alpha<<30 | red<<22 | green<<12 | blue<<2);

 }
}
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

unsigned int imgWidth, imgHeight;
unsigned short* data_short = new unsigned short[imgWidth*imgHeight*4];
//TODO - read from file or generate values to data
//TODO – Standard OpenGL texture initialization goes here
glPixelStorei(GL_UNPACK_ALIGNMENT, 4); //4 components per pixel
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16, imgWidth, imgHeight, 0,
 GL_RGBA,GL_UNSIGNED_SHORT, data_short);
//Make sure we got the right RGBA16 internal format
GLint internalFormat;
glGetTexLevelParameteriv(GL_TEXTURE_2D,0, GL_TEXTURE_INTERNAL_FORMAT,
 &internalFormat);
assert(internalFormat == GL_RGBA16);

Higher Bit Depth Pixels
For data types higher than 8-bit (for example, short or int) it is also possible and often
simpler to do the pixel and texture operations as is on unsigned short/int data as shown in
the following code sample. In this case, the color values in the application are scaled to the
window bit depth at the display stage by the graphics. No code changes are required from an
application programming perspective. However, the drawback is that when only 10-bits per
component are needed for display, 16 and 32-bits per component are stored blowing up
memory footprint. For example, a RGBA unsigned int texel requires 16bytes or 4X more
than the corresponding 4 byte RGB16_A2 format.

Packed Pixel Format
The OpenGL Packed Pixel extension[6] addresses the memory overhead introduced earlier
with higher bit depth pixels. A packed pixel is represented entirely by 1 unsigned integer.
10 bits are allocated for each of the RGB components and 2 alpha bits (referred to as
RGB10_A2). The following code snippet shows the 2D unsigned short image allocated
earlier packed into the RGB10_A2 format. Note how the alignment here is set to 1 instead
of 4 in the previous example as the packed pixel is considered as a 1-component texture.

30-Bit Color Technology

14
 June 29, 2009| TB-04701-001_v01

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, imgWidth, imgHeight, 0,
 packedFormat , packedType, packedData);
//confirm we have packed pixel internal format
glGetTexLevelParameteriv(GL_TEXTURE_2D,0, GL_TEXTURE_INTERNAL_FORMAT,
 &internalFormat);
assert(internalFormat == GL_RGB10_A2);

#include <ImfRgbaFile.h>
#include <ImfArray.h>
#include <half.h>

//Load EXR file now
Imf::Rgba * pixelBuffer;
try
{

Imf::RgbaInputFile in("test.exr");
Imath::Box2i win = in.dataWindow();
Imath::V2i dim(win.max.x - win.min.x + 1, win.max.y - win.min.y + 1);
pixelBuffer = new Imf::Rgba[dim.x * dim.y];
int dx = win.min.x;
int dy = win.min.y;
in.setFrameBuffer(pixelBuffer - dx - dy * dim.x, 1, dim.x);
in.readPixels(win.min.y, win.max.y);
imgWidth = dim.x; imgHeight = dim.y;

}
catch(Iex::BaseExc & e) {
 std::cerr << e.what() << std::endl;
 // Handle exception.
}
glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA16F_ARB, imgWidth,
 imgHeight, 0,GL_RGBA,GL_HALF_FLOAT_ARB, pixelBuffer);
glGetTexLevelParameteriv(GL_TEXTURE_RECTANGLE_NV,0,
 GL_TEXTURE_INTERNAL_FORMAT, &internalFormat);
assert(internalFormat == GL_RGBA16F_ARB);

The populated packed pixel data can now be used as the source to a 2D texture. The internal
format is queried after the texture download to verify that the requested format is supported
by the hardware. When drawing, this texture is mapped 1:1 onto an onscreen quad.

OpenEXR File Format
OpenEXR [7], developed by ILM, is a set of C++ libraries which implement a high-dynamic
range (HDR) image file format for computer imaging. It supports 3 pixel types -- 16-bit
floating-point, 32-bit floating-point, and 32-bit integer. Its 16-bit FP called "half" is
compatible with NVIDIA's 16-bit FP format and supported natively on the Quadro FX
hardware. Reading a EXR image and mapping to OpenGL textures is made simple with the
open source ILM library as shown below. The ILM library and header files along with
sample EXR images are included with the accompanying code.

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 15

Multi-Display Configurations

In the case when a single GPU drives multiple displays, as long as there is one 30-bit
compatible display active, 30-bit color is automatically enabled on all displays. At scan out,
the driver automatically downgrades the 30-bit output to 24-bit for regular displays.

Multi-GPU Compatibility
It is possible to combine the 30-bit color capable Quadro boards (Table 1) with each other
to drive more than 2 displays. In this case, for a valid 30-bit pixel format to be obtained, the
primary display MUST be attached to the GPU also driving the 30-bit panel. The ultra high-
end cards like the Quadro FX 5800 requires the full 2 auxiliary power inputs and are typically
used with lower-end Quadro cards that do not have any auxiliary power requirements (for
example, Quadro FX 1800).

Multi-Display Setup
To enable multi-display from the desktop, open the Display Properties→Settings Tab and
check the “Extend my Windows desktop onto this monitor” checkbox for each display as
shown in Figure 8.

Figure 8. Display Properties Before and After all the Displays are
Enabled

30-Bit Color Technology

16
 June 29, 2009| TB-04701-001_v01

class CDisplayWin {
 HWND hWin; // handle to display window
 HDC winDC; // DC of display window
 HGLRC winRC; // GL resource context from winDC
 RECT rect; // rectangle limits of display
 bool primary; //Is this the primary display
 char displayName[128]; //name of this display
 char gpuName[128]; //name of associated GPU
 bool color30bit; //Is this a 30-bit display
public:
 //Full public function definitions are found in CDisplayWin.h
}
#define MAX_NUM_GPUS 4
int displayCount = 0; //number of active displays
//list of displays, each gpu can attach to max 2 displays
CDisplayWin displayWinList[MAX_NUM_GPUS*2];

DISPLAY_DEVICE dispDevice;
DWORD displayCount = 0;
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE));
dispDevice.cb = sizeof(DISPLAY_DEVICE);
// loop through the displays and print out state
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) {
if (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
 printf("DeviceName = %s\n", dispDevice.DeviceName);
 printf("DeviceString = %s\n",dispDevice.DeviceString);
 if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE)
 printf("\tPRIMARY DISPLAY\n");
 DEVMODE devMode;
 memset((void *)&devMode, 0, sizeof(devMode));
 devMode.dmSize = sizeof(devMode);
 EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS,
 &devMode);
 printf("\tPosition/Size = (%d, %d), %dx%d\n",
 devMode.dmPosition.x, devMode.dmPosition.y,devMode.dmPelsWidth,
 devMode.dmPelsHeight);
 }//if attached to desktop
 displayCount++;
} //while(enumdisplay);

Programming for Multi-Display
For an application using multiple displays it is often useful to programmatically find out their
attributes and capabilities. This section and the following sections show code samples to
demonstrate that in progressive detail. Full source is found in Check30bit project within the
accompanying source. The CDisplayWin structure defined in CDisplayWin.[h|cpp]
encapsulates the attributes of each display with an attached window and the
displayWinList is a container for all DisplayWin’s.

The following code is a simple example using the Windows GDI to enumerate the attached
displays, gets their extents and also check if the display is set as primary. The code can be
easily modified to include unattached displays.

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 17

DeviceName = \\.\DISPLAY1
DeviceString = NVIDIA Quadro FX 1800
PRIMARY DISPLAY
Position/Size = (0, 0), 1280x1024

DeviceName = \\.\DISPLAY2
DeviceString = NVIDIA Quadro FX 5800
Position/Size = (1280, 0), 1920x1200

DeviceName = \\.\DISPLAY3
DeviceString = NVIDIA Quadro FX 5800
Position/Size = (3200, 0), 1920x1200

// Declare array of displays and associated grayscale flag
NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0};
NvU32 displayCount = 0;
// Enumerate all the display handles
for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) {

nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]);
if (nvapiStatus == NVAPI_OK) displayCount++;

}
printf("No of displays = %u\n",displayCount);

//Loop through each display to check if its grayscale compatible
for(unsigned int i=0; i<displayCount; i++) {

//Get the GPU that drives this display
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};
NvU32 gpuCount = 0;
nvapiStatus =
NvAPI_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount);

nvapiCheckError(nvapiStatus);

Running this enumeration code on our 3 display example (shown in Figure 8) prints out the
following.

Note that the enumeration shown in this section abstracts special hardware capabilities of
the displays such as 30-bit color capability and the display connector used (DisplayPort or
DVI). The next section addresses that.

Mixing 30-Bit Color with 24-Bit Color Displays
The previous section demonstrated how to get the general characteristics of a display such as
extents etc, but more specific properties of monitors will decide how to layout the
application. For example, user interface and launching elements can be placed on the regular
24-bit color LCD’s while the HDR images can be rendered to the 30-bit color displays.

For a display to be 30-bit color compatible, it must be connected via DisplayPort to the
graphics card and support 10-bit per component. This information is provided by the
NVIDIA NVAPI [8] – an SDK that gives low level direct access to NVIDIA GPUs and
drivers on all windows platforms. The following example enumerates the attached displays
and its associated GPU using NVAPI similar to the WinGDI example earlier. The complete
source with the error checking is found in Check30Bit.cpp in the accompanying SDK.

30-Bit Color Technology

18
 June 29, 2009| TB-04701-001_v01

//Get the GPU's name as a string
NvAPI_ShortString gpuName;
NvAPI_GPU_GetFullName (hGPU[0], gpuName);
printf("Display %d, GPU %s",i,gpuName);
nvapiCheckError(nvapiStatus);

//Get the display ID for subsequent EDID call
NvU32 id;
nvapiStatus = NvAPI_GetAssociatedDisplayOutputId(hDisplay[i],&id);
nvapiCheckError(nvapiStatus);

//Get the display port info for this display
NV_DISPLAY_PORT_INFO curDPInfo = {0};
curDPInfo.version = NV_DISPLAY_PORT_INFO_VER;
nvapiStatus = NvAPI_GetDisplayPortInfo(hDisplay[i], curDisplayId,
 &curDPInfo);
nvapiCheckError(nvapiStatus);

//if GPU & monitor both support 30-bit color AND they are connected
by display port, set the color30bit flag
if (curDPInfo.isDp &&(curDPInfo.bpc == NV_DP_BPC_10))
 displayWinList[i].color30bit = true;
else

displayWinList[i].color30bit = false;
}

Moving and Spanning Windows Across Displays
Many applications allow users to freely move windows across multiple displays. It may be
desirable for some applications to prevent spanning a 30-bit window to a 24-bit color display
so that the image quality is preserved. In the event-handling code for a window move and
resize, all the displays that the current window spans are queried to check for 30-bit color
compatibility. The following code snippet refers to the data structures populated in the
previous examples to do the runtime query.

LONG WINAPI winProc(HWND hWin, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch (uMsg) {
 case WM_SIZE:
 RECT rect;
 GetWindowRect(hWin, &rect);
 for (int i=0;i<displayCount;i++) {
 //check if the window spans this display
 if (displayWinList [i].spans(rect)) {
 //Now check this is 30-bit color display
 if (!displayWinList[i]. color30bit) {
 //do something eg prevent spanning

 printf("WM_MOVE : Window is now spanning a
 NON-30bit color display\n");

 }
 }
 //Send a draw message to all the windows
 InvalidateRect(displayWinList[i].hWin, NULL, FALSE);
 UpdateWindow(displayWinList[i].hWin);
 } //end of for
 break;
 case WM_MOVE:
 RECT rect;
 //Repeat as above for WM_SIZE

 }
}

30-Bit Color Technology

 June 29, 2009 | TB-04701-001_v01 19

References

[1] IEC sRGB official specification - IEC 61966-2-1:1999

[2] AdobeRGB (1998) specification -
http://www.adobe.com/digitalimag/pdfs/AdobeRGB1998.pdf

[3] WGL_ARB_pixelformat extension
http://www.opengl.org/registry/specs/ARB/wgl_pixel_format.txt

[4] GLUT library - http://www.opengl.org/resources/libraries/glut/

[5] OpenGL FBO extension - http://oss.sgi.com/projects/ogl-
sample/registry/EXT/framebuffer_object

[6] OpenGL Packed Pixel extension -
http://www.opengl.org/registry/specs/EXT/packed_pixels.txt

[7] Kainz, F. 2004. The OpenEXR image file format. In GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics, R. Fernando, Ed. Pearson Higher
Education, ch. 26, 425--444

[8] NVIDIA NVAPI – www.nvapi.com

[9] Ian Williams, HD is now 8MP &HDR, Slides from NVISION 2008.
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional_Visuali
zation/NVISION08-8MP_HDR.pdf

30-Bit Color Technology

20
 June 29, 2009| TB-04701-001_v01

Implementation Details

The source code is divided into 2 separate projects listed as follows. The intent is for these
components to be mixed and matched according to the user application requirements.

 30bitdemo.sln

 30bitdemo.[cpp|h] – Main test program that opens a 30-bit and 24-bit window
and allows user to cycle between different rendering methods explained in the
paper as well as onscreen and off-screen rendering.

 framebufferObject.[cpp|h] – Class that encapsulates all attributes and
operations related to a Framebuffer Object.

 Check30bit.sln

 CDisplayWin.[cpp|h] – Class CDisplayWin that encapsulates all attributes of
an attached display such name, extents, driving GPU, 30-bit compatibility etc.

 Check30Bit.cpp – Main program that enumerates all attached GPU’s and
display’s using Win GDI API and uses NVIDIA NVAPI to check the displays
that are 30-bit color compatible.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no responsibility
for the consequences of use of such information or for any infringement of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of NVIDIA
Corporation. Specifications mentioned in this publication are subject to change without notice. This publication
supersedes and replaces all information previously supplied. NVIDIA Corporation products are not authorized for use as
critical components in life support devices or systems without express written approval of NVIDIA Corporation.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and existing
authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132; 6,836,549; and
7,050,698 and other intellectual property rights. The use of Macrovision’s copy protection technology in the device must
be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise
authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited

Trademarks

NVIDIA, the NVIDIA logo and Quadro are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

