NVIDIA Virtual GPU Positioning
Selecting the Right GPU for Your Virtualized Workload

Technical Brief
Table of Contents

Intent of this Technical Brief ... 1
Executive Summary.. 2
Introduction .. 3
 Selecting the Right Virtual GPU Software.. 3
NVIDIA GPUs Recommended for Virtualization .. 6
 Selecting the Right GPU... 8
 Professional Graphics... 10
 Rendering.. 11
 AI Deep Learning Training ... 13
 AI Deep Learning Inference .. 13
 High Performance Computing... 15
 Knowledge Workers... 16
NVIDIA vGPU vs. Bare Metal .. 18
Impact of GPU Sharing.. 19
NVIDIA vGPU Aggregation.. 21
Conclusion ... 22
Resources Links.. 23
The flexibility of the NVIDIA vGPU solution sometimes leads to the question, “How do I select the right software license and GPU combination to best meet the needs of my workloads?”

In this technical brief, you’ll find guidance on how to select the best virtual GPU software license and graphics processing unit (GPU) combination, based on your workload. This guidance is based on variables such as performance and performance per dollar\(^1\). Other factors that should be considered include things like which NVIDIA vGPU certified OEM server you’ve selected, which NVIDIA GPUs are supported in that platform, as well as any power and cooling constraints.

Note:

\(^1\)Performance per dollar assumes estimated GPU street price plus NVIDIA virtual GPU software license cost with 3-year subscription divided by the number of users.
Executive Summary

It is recommended that you test your unique workloads to determine the best NVIDIA virtual GPU solution to meet your needs. However, this technical brief provides general guidance based on performance and price performance, for virtualized workloads using NVIDIA virtual GPU software.

Table 1 summarizes the recommended GPU for running a specific virtualized workload, based only on performance. For this testing, we selected a representative benchmark for each workload, described in Table 5. For the specific benchmarks run with NVIDIA virtual GPU software, NVIDIA® Quadro RTX™ 6000 and Quadro RTX 8000 GPUs provided the best performance for professional graphics and rendering workloads, while the V100S provided the best performance for artificial intelligence (AI) and high-performance computing (HPC).

In many cases, raw performance is not the only factor considered when selecting the right virtual GPU solution for your workload. Cost is often also considered. Table 2 summarizes the recommended GPU if only performance per dollar is considered. If the infrastructure will support only a knowledge worker VDI workload, the M10 GPU provides the best performance per dollar, while also providing great user density. The T4 GPU is flexible enough to run knowledge worker VDI and professional graphics workloads, and it also provides the best performance per dollar for professional graphics applications. Because the NVIDIA RTX™ platform was designed to accelerate photorealistic rendering, it’s no surprise that it provides the best performance per dollar for rendering workloads. For high performance computing, the NVIDIA Volta™ architecture of the V100S has hardware to accelerate double precision (FP64) workloads, giving it the best performance and performance per dollar. It is important to note, for AI training workloads, time-to-solution is extremely important, and for that reason, costs outside of just infrastructure should be considered. As such, V100S would be recommended for this workload when considering these other cost factors.

Table 1. Best Performance GPU per Workload

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>Quadro RTX 6000 / Quadro RTX 8000</td>
<td>Quadro RTX 6000 / Quadro RTX 8000</td>
<td>V100S</td>
<td>V100S</td>
<td>V100S</td>
<td>All GPUs perform the same</td>
</tr>
</tbody>
</table>

Table 2. Best Performance per Dollar GPU per Workload

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>T4</td>
<td>Quadro RTX 6000</td>
<td>-</td>
<td>Quadro RTX 6000</td>
<td>V100S</td>
<td>M10</td>
</tr>
</tbody>
</table>
Introduction

The NVIDIA virtual GPU (vGPU) solution provides a flexible way to accelerate virtualized workloads – from AI to VDI. The solution includes NVIDIA virtual GPU software and NVIDIA data center GPUs. There are three unique NVIDIA virtual GPU software licenses, each priced and designed to address a specific use case:

- **NVIDIA GRID Virtual PC/Virtual Applications (NVIDIA GRID)** – accelerates office productivity applications, streaming video, Windows 10, RDSH, multiple and high-resolution monitors and 2D electric design automation (EDA).
- **NVIDIA Quadro Virtual Data Center Workstation (Quadro vDWS)** – accelerates professional design and visualization applications including Autodesk Revit, Maya, Dassault Systèmes CATIA, Solidworks, Esri ArcGIS Pro, Petrel, and more.
- **NVIDIA Virtual Compute Server (vComputeServer)** – accelerates artificial intelligence (AI), deep learning (DL), data science and high-performance computing (HPC) workloads run in a virtualized environment.

Decoupling the GPU hardware and virtual GPU software options enables customers to benefit from innovative features delivered in the software at a regular cadence, without a dependency on purchasing new GPU hardware. It also provides the flexibility for IT to architect the optimal solution to meet the specific needs of users in their environment.

Selecting the Right Virtual GPU Software

Select your NVIDIA virtual GPU software license based on the workload[s] your users are running. Table 3 shows the feature differences between the NVIDIA vGPU software license options. NVIDIA GRID® vPC software is selected for knowledge worker VDI to run office productivity applications. NVIDIA® Quadro® vDWS is selected to virtualize professional visualization applications which benefit from the Quadro platform drivers and ISV certifications, support for NVIDIA® CUDA® and OpenCL, higher resolution displays, and larger profile sizes. For server virtualization to run compute workloads such as AI, data science and HPC, the NVIDIA vComputeServer license, which includes a driver that has been tested to run these compute workloads, would be selected. Customers should evaluate whether they require any of the Quadro platform graphics and visualization features. If these are not required, the vComputeServer license could be leveraged.
Table 3. NVIDIA Virtual GPU Software Features

<table>
<thead>
<tr>
<th>Configuration and Deployment</th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows OS Support</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Linux OS Support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NVIDIA Graphics Driver</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVIDIA Quadro Driver</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NVIDIA Compute Driver</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Multi-vGPU/NVLink</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>ECC Reporting and Handling</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Page Retirement</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Display</th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Hardware Rendered Display</td>
<td>Four 5K, Two 8K</td>
<td>Four QHD, Two 4K, One 5K</td>
<td>One 4K</td>
</tr>
<tr>
<td>Maximum Resolution</td>
<td>7680x4302</td>
<td>5120x2880</td>
<td>4096x2160</td>
</tr>
<tr>
<td>Maximum Pixel Count</td>
<td>66,355,200</td>
<td>17,694,720</td>
<td>8,847,360</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced Professional Features</th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISV Certifications</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NVIDIA CUDA/OpenCL</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graphics Features and APIs</th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVENC</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>OpenGL Extensions (WebGL)</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Insitu Graphics/GL Support

<table>
<thead>
<tr>
<th></th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro Optimizations</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DirectX</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Vulkan Support</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Profiles

<table>
<thead>
<tr>
<th>Max Frame Buffer Supported</th>
<th>Quadro vDWS</th>
<th>NVIDIA GRID vPC</th>
<th>vCompute Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>48GB</td>
<td>2GB</td>
<td>48GB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Available Profiles</th>
<th>0Q, 1Q, 2Q, 3Q, 4Q, 6Q, 8Q, 12Q, 16Q, 24Q, 32Q, 48Q</th>
<th>0B, 1B, 2B</th>
<th>4C, 6C, 8C, 12C, 16C, 24C, 32C, 48C</th>
</tr>
</thead>
</table>
NVIDIA GPUs Recommended for Virtualization

Table 4 shows the NVIDIA GPUs recommended for virtualization workloads. The GPUs in this table are tested and supported with NVIDIA virtual GPU software. Refer to the NVIDIA virtual GPU product documentation for the full support matrix details.

Table 4. NVIDIA GPUs Recommended for Virtualization

<table>
<thead>
<tr>
<th>GPU Type</th>
<th>V100S/V100 NVLink</th>
<th>Quadro RTX 8000</th>
<th>Quadro RTX 6000</th>
<th>T4</th>
<th>M10</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPUs/Board (Architecture)</td>
<td>1 (Volta)</td>
<td>1 (Turing)</td>
<td>1 (Turing)</td>
<td>1 (Turing)</td>
<td>4 (Maxwell)</td>
<td>1 (Pascal)</td>
</tr>
<tr>
<td>CUDA Cores</td>
<td>5,120</td>
<td>4,608</td>
<td>4,608</td>
<td>2,560</td>
<td>2,560 (640 per GPU)</td>
<td>2,048</td>
</tr>
<tr>
<td>Tensor Cores</td>
<td>640</td>
<td>576</td>
<td>576</td>
<td>320</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RT Cores</td>
<td>--</td>
<td>72</td>
<td>72</td>
<td>40</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Memory Size</td>
<td>32GB/16GB HBM2</td>
<td>48GB GDDR6</td>
<td>24GB GDDR6</td>
<td>16GB GDDR6</td>
<td>32GB GDDR5 (8GB per GPU)</td>
<td>16GB GDDR5</td>
</tr>
<tr>
<td>vGPU Profiles</td>
<td>1GB, 2GB, 4GB, 8GB, 16GB, 32GB</td>
<td>1GB, 2GB, 3GB, 4GB, 6GB, 8GB, 12GB, 16GB, 24GB, 48GB</td>
<td>1GB, 2GB, 3GB, 4GB, 6GB, 8GB, 12GB, 24GB</td>
<td>1GB, 2GB, 4GB, 8GB, 16GB</td>
<td>0.5GB, 1GB, 2GB, 4GB, 8GB</td>
<td>1GB, 2GB, 4GB, 8GB, 16GB</td>
</tr>
<tr>
<td>Form Factor</td>
<td>PCIe 3.0 Dual Slot and SXM2</td>
<td>PCIe 3.0 Dual Slot</td>
<td>PCIe 3.0 Dual Slot</td>
<td>PCIe 3.0 Single Slot</td>
<td>PCIe 3.0 Dual Slot</td>
<td>MXM (blade servers)</td>
</tr>
</tbody>
</table>
The NVIDIA GPUs recommended for virtualization are divided into three categories:

- **Performance Optimized GPUs** are typically recommended for high-end virtual workstations running professional visualization applications, artificial intelligence, deep learning, data science or HPC workloads.

- **Density Optimized GPUs** are typically recommended for knowledge worker virtual desktop infrastructure (VDI) to run office productivity applications, streaming video and Windows 10. They are designed to maximize the number of VDI users supported in a server.

- **Blade Optimized GPUs** are designed to fit in the compact, blade server form factor and leverage a Mobile PCI Express Module (MXM) interconnect instead of the standard PCIe interconnect used for rack servers. Currently, NVIDIA offers just one MXM form factor GPU for blade servers, the P6. The P6 GPU should be selected to run any workload where a blade server form factor is preferred.

The **NVIDIA T4** GPU is a compact, single slot card that consumes just 70W of power. By comparison, the NVIDIA V100S and V100, Quadro RTX 6000, Quadro RTX 8000, and M10 GPUs are dual slot PCIe cards, which consume twice as much space (two PCIe slots) inside the server and more than three times the power. This means that you can fit two NVIDIA T4 GPUs in the same space that you’d fit a single V100S or V100, Quadro RTX 6000, Quadro RTX 8000, or M10 GPU.
Built on the innovative NVIDIA RTX platform, the Quadro RTX 6000 and Quadro RTX 8000 GPUs are uniquely positioned to power the most demanding professional visualization workloads. They are an integral part of the NVIDIA RTX Server solution, which can run various workloads including powerful virtual workstations. You’ll find that the performance of the Quadro RTX 6000 and Quadro RTX 8000 GPUs is very comparable, and the key differences between these two cards are the memory size and price. The Quadro RTX 8000 GPU should be selected over the Quadro RTX 6000 GPU if there is a requirement for larger memory to power virtual workstations that support very large animations, files, or models.

The NVIDIA V100S is the most advanced data center GPU ever built to accelerate AI, high performance computing, and data science. Customers who train or use neural networks, use computationally intensive applications, or run simulations requiring double precision accuracy (FP64 performance) should be using the V100S, which provides the best time-to-solution. V100 is available in two form factors, PCIe and SXM module. The SXM module is available with servers that support NVIDIA® NVLink®, provide the best performance and strong-scaling for hyperscale and HPC data centers running applications that scale to multiple GPUs, such as deep learning.

Selecting the Right GPU

While many organizations seek the highest performing GPU or the GPU that provides the best performance per dollar, there are other factors like performance per watt or form-factor that can be taken into consideration.

Workloads have been executed on an industry standard dual socket server with VMware vSphere 6.7 U3 and NVIDIA vGPU 10.0 using vGPU 1:1 profile unless otherwise stated. 1:1 vGPU profiles correspond to the full GPU allocated to a single virtual machine. This was chosen as the impact of scaling doesn’t differ between GPUs¹. See “Impact of GPU Sharing” section for more details.

Note that the comparisons should be used as general guidance when choosing GPUs based on performance or performance per dollar. All recommendations are based on the workloads listed in Table 5 which could differ from the applications being used in production.

¹Assumption is that enough frame buffer is available on all vGPUs across all GPUs.
<table>
<thead>
<tr>
<th>Workload</th>
<th>Description</th>
<th>vGPU Software Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>SPECviewperf 13 (1920x1080)
The SPECviewperf 13 is a standard benchmark for measuring graphics performance based on professional applications. The benchmark measures the 3D graphics performance of systems running under the OpenGL and Direct X application programming interfaces.</td>
<td>Quadro vDWS</td>
</tr>
<tr>
<td>Rendering</td>
<td>Autodesk Arnold 6.0.1.0 (SOL Dataset)
Alden is an advanced Monte Carlo ray tracing renderer built for the demands of feature-length animation and visual effects. Arnold is used by several prominent organizations in film, television, and animation.</td>
<td>Quadro vDWS</td>
</tr>
<tr>
<td>High Performance</td>
<td>LAMMPS Atomic Fluid (Lennard Jones Dataset)
LAMMPS is a classical molecular dynamics code with a focus on materials modeling. It’s an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator.</td>
<td>vComputeServer</td>
</tr>
<tr>
<td>Computing</td>
<td>NVIDIA nVector Digital Worker Workload
NVIDIA’s nVector benchmarking tool that simulates the end user workflow and measures key aspects of the user experience, including end-user latency, framerate, image quality and resource utilization.</td>
<td>NVIDIA GRID vPC</td>
</tr>
<tr>
<td>Knowledge Worker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Professional Graphics

The Quadro RTX 6000 and Quadro RTX 8000 GPUs are based on the NVIDIA Turing™ architecture, which enables major advances in efficiency and performance and is well suited for professional graphics workloads. The significantly higher power budget of the Quadro RTX 6000 and Quadro RTX 8000 cards enable them to provide higher performance than the T4. However, for those that don’t require the highest performance, the T4 provides the best performance per dollar for professional graphics workloads.

Figure 1 represents SPECviewperf13 results tested on a server with Intel Xeon Gold 6154 (18C, 3.0GHz), Quadro vDWS software, VMware ESXi 6.7.0 U3, host/guest driver 440.44/441.66, VM config, Windows 10, 8 vCPU, 16GB memory.

Figure 1. Quadro vDWS SPECviewperf13 Performance
Figure 2 assumes estimated GPU street price plus NVIDIA Quadro vDWS software cost with 3-year subscription.

Figure 2. Quadro vDWS SPECviewperf13 Performance per Dollar

![SPECviewperf13 Performance per Dollar](image)

Rendering

Quadro RTX 6000 and Quadro RTX 8000 GPUs have RT Cores, accelerator units that are dedicated to performing ray tracing operations with extraordinary efficiency, making them the optimal choice for providing the highest rendering performance. The Quadro RTX 6000 and Quadro RTX 8000 GPUs also have a significantly higher power budget versus the T4, resulting in higher performance. The Quadro RTX 8000 would be selected over Quadro RTX 6000 if there is a requirement to support larger models or scenes. Because the scenes used in our tests didn’t require the additional frame buffer of the Quadro RTX 8000, you will see that the performance results between Quadro RTX 6000 and Quadro RTX 8000 were comparable for this test. However, the attractive price point of the Quadro RTX 6000 makes it ideal for those who wish to achieve the best performance per dollar.

Figure 3 represents testing on a server with Intel Xeon Gold 6154 (18C, 3.0GHz), Quadro vDWS, VMware ESXi 6.7.0 U3, host/guest driver 440.44/441.66, VM config, Windows 10, 8 vCPU, 16GB.
Figure 3.
Quadro vDWS Autodesk Arnold Rendering Performance

Figure 4 assumes estimated GPU street price plus NVIDIA Quadro vDWS software cost with 3-year subscription.

Figure 4.
Quadro vDWS Arnold Rendering Performance per Dollar

RTX 6000 for Best Rendering Performance per Dollar
(Higher is Better)
AI Deep Learning Training

V100S, based on the NVIDIA Volta architecture, is designed to bring AI to every industry. The V100S is built to accelerate AI, and it’s no surprise that it provides the highest performance for deep learning training workloads. It is important to note, for deep learning training workloads, time-to-solution is extremely important. For example, the cost of having highly paid data scientists wait for results could outweigh the benefits of a slightly lower cost solution, so V100S would be recommended when considering these other cost factors.

Figure 5 represents Resnet-50 V1.5 | TensorFlow = 19.10_py3 | Batch Size: 256 | Precision: Mixed. Tested on a server with Intel Xeon Gold Skylake 6140, ESXi 6.7.0, 72 vGPU, 384 GB memory.

Figure 5. vComputeServer Deep Learning Training Performance

AI Deep Learning Inference

For deep learning inference workloads, cost is often an important consideration. Therefore, the NVIDIA T4 and Quadro RTX 6000 are typically the preferred solutions. In environments where cost is the most important factor, T4 is an ideal solution. Environments which require more performance but are still looking for great performance per dollar would select Quadro RTX 6000. Environments that prioritize performance as the most important consideration would select the V100S.

Figure 6 represents Resnet-50 V1.5 | TensorRT 6.0.1 | Batch Size = 128 | 19.12-py3 | Precision: Mixed. Tested on a server with Intel Xeon Gold Skylake 6140, ESXi 6.7.0, 72 vGPU, 384 GB.
Figure 6. **vComputeServer Deep Learning Inference Performance**

![Figure 6: vComputeServer Deep Learning Inference Performance](image)

Figure 7 assumes estimated GPU street price plus NVIDIA vComputeServer software cost.

Figure 7. **vComputeServer DL Inference Performance per Dollar**

![Figure 7: vComputeServer DL Inference Performance per Dollar](image)
High Performance Computing

V100S is the best choice for scientific computing centers and higher education and research institutions running HPC workloads. The V100S provides the best performance, best performance per dollar and is optimized for double precision (FP64) workloads.

Figure 8 represents Atomic Fluid Lennard Jones. Tested on a server with Intel Xeon Gold Skylake 6140, VMware ESXi 6.7.0, 16 vCPU, 64GB memory.

Figure 8. vComputeServer HPC Performance
Figure 9 assumes estimated GPU street price plus NVIDIA vComputeServer software cost.

Figure 9. vComputeServer HPC Performance per Dollar

NVIDIA GPUs Recommended for Virtualization

Knowledge Workers

As more knowledge worker users are added on a server, the server runs out of CPU resources. Adding an NVIDIA GPU for this workload offloads constraints on the CPU resulting in improved user experience and performance for end users. The NVIDIA nVector knowledge worker VDI workload was used to test user experience and performance with NVIDIA GPUs. NVIDIA M10, T4, Quadro RTX 6000, Quadro RTX 8000 and V100S achieve similar performance for this workload.

Customers are realizing the benefits of increased resource utilization by leveraging common virtualized GPU accelerated server resources to run virtual desktops and workstations but leveraging these same resources to run compute when users are logged off. Customers who want to be able to run compute workloads on the same infrastructure that they run VDI, might leverage a V100S to do so. Learn more about Using NVIDIA Virtual GPUs to Power Mixed Workloads in our whitepaper.

Despite having 48GB of frame buffer, the Quadro RTX 8000 supports a maximum of only 32 users due to reaching the context switching limit per GPU. Refer to Table 6 to see how many VDI users can be supported for each GPU (with 1GB profile size).
Table 6. Maximum Number of Supported NVIDIA GRID vPC Knowledge Workers (with 1GB Profile Size)

<table>
<thead>
<tr>
<th>GPU</th>
<th>M10</th>
<th>T4</th>
<th>Quadro RTX 6000</th>
<th>Quadro RTX 8000</th>
<th>V100S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Users</td>
<td>32</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Figure 10 assumes estimated GPU street price plus NVIDIA GRID software cost with 3-year subscription divided by number of users.

Figure 10. NVIDIA GRID VDI Cost per User
NVIDIA vGPU vs. Bare Metal

Organizations chose to virtualize servers and applications for various reasons (manageability, flexibility, and security to name a few) and are often willing to sacrifice performance. When allocating a full GPU to a workload in a virtualized environment, there is a performance difference. However, the performance difference of using NVIDIA vGPU is negligible and will depend on the workload, as well as various other configuration variables. The following example illustrates 4% lower performance with NVIDIA vGPU in comparison to a bare metal server running an AI Inference benchmark in a 1:1 configuration.

Figure 11 represents Resnet-50 V1.5 | TensorRT 6.0.1 | Batch Size = 128 | 19.12-py3 | Precision: Mixed.

Figure 11. Inference Benchmark
Impact of GPU Sharing

Improving overall utilization through sharing a GPU across multiple virtual machines with NVIDIA vGPU software is implemented by scheduling the time which each virtual machine can use the GPU. NVIDIA vGPU software provides multiple GPU scheduling options to accommodate a variety of Quality of Service (QoS) levels for sharing the GPU. View the NVIDIA vGPU product documentation for more information about GPU scheduling options.

In general, the performance per virtual machine when sharing a GPU with n virtual machines will be 1/n of the total performance of the GPU. Therefore, two virtual machines sharing a GPU will result in approximately 50 percent of the overall performance per virtual machine and four virtual machines will result in approximately 25 percent of the overall performance per virtual machine.

Figure 12 is an illustration of multiple virtual machines with an overall throughput increase of 16%.

Figure 12 represents SPECviewperf13 results tested on a server with Intel Xeon Gold (18C, 3.0GHz), Quadro vDWS with RTX 8000 with Equal Share scheduler, VMware ESXi 6.7.0 U3, host/guest driver 440.44/441.66, VM config, Windows 10, 8 vCPU, 16GB memory.

Figure 12. Virtual GPU Sharing
However, when workloads across virtual machines aren’t executed at the same time, or aren’t always GPU bound, the performance can exceed the expected performance. The default GPU scheduling policy, “Best Effort,” will be selected for this to happen as it leverages unused GPU time of other virtual machines. See Figure 13 for a simplified view of how the “Best Effort” GPU scheduler works.

Figure 13. Best Effort GPU Scheduler
NVIDIA vGPU Aggregation

The scaling factor of virtual machines with vGPU aggregation is like the scaling factor using non-virtualized configurations. NVIDIA virtual GPU technology supports aggregating vGPUs for highest performance within a virtual machine via NVLink and traditional PCIe-based solutions. NVLink enables a high-speed, direct GPU-to-GPU interconnect that provides higher bandwidth for multi GPU system configurations than traditional PCIe-based solutions.

Figure 14 represents Server Config: 2x Intel Xeon Gold (6140, 3.2GHz), VMware ESXi 6.7 U3, NVIDIA vComputeServer 9.1 RC, NVIDIA V100 (32C profile), Driver 430.18, TensorFlow Resnet-50 V1, NGC 19.01, FP16 BS: 256.

Figure 14. NVIDIA vGPU Aggregation Performance
Conclusion

While this technical brief provides general guidance on how to select the right NVIDIA GPU for your workload, actual results may vary depending on the specific application being virtualized. The most successful deployments are those that balance virtual machine density (scalability) with required performance. This is achieved when a proof of concept (POC) with production workloads is conducted while analyzing the utilization of all resources of a system and gathering subjective feedback from all stakeholders. Consistently analyzing resource utilization and gathering subjective feedback allows for optimizing the configuration to meet the performance requirements while optimizing the configuration for best scale.
Resources Links

NVIDIA GRID Resources:
- NVIDIA GRID Windows 10 Profile Sizing Guidance
- Quantifying the Impact of NVIDIA Virtual GPUs
- NVIDIA GRID Solution Overview
- NVIDIA GRID webpage

NVIDIA Quadro Virtual Workstation Resources:
- NVIDIA Quadro Virtual Workstation Application Sizing Guide for Dassault Systèmes CATIA
- NVIDIA Quadro Virtual Workstation Application Sizing Guide for Esri ArcGIS Pro
- NVIDIA Quadro Virtual Workstation Application Sizing Guide for Siemens NX
- NVIDIA Quadro vDWS Solution Overview
- NVIDIA Quadro vDWS webpage

NVIDIA vComputeServer Resources:
- NVIDIA Virtual Compute Server webpage
- NVIDIA vComputeServer Solution Overview
- Webinar: Introducing the Modern Data Center Powered by NVIDIA Virtual Compute Server

Other Resources:
- Try NVIDIA vGPU for free
- Using NVIDIA Virtual GPUs to Power Mixed Workloads
- NVIDIA Virtual GPU Software Documentation
- NVIDIA vGPU Certified Servers
Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, NVIDIA GRID, NVIDIA RTX, NVIDIA Turing, NVIDIA Volta, NVLink, Quadro, and Quadro RTX are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.