
Adam Marrs and Rahul Sathe, August 14th 2018

ADAPTIVE TEMPORAL ANTIALIASING

Booth #801, West Hall

nvidia.com/siggraph2018

2

The State of (Anti)aliasing in Real Time

Games limited to a low fixed sample counts (~1spp) at modest resolutions (< 4K)

Result: primary surfaces are undersampled and have unbounded error when material,
geometric, or shading features exist between samples

Aliasing due to undersampling manifests as jagged edges, spatial noise, and flickering

Problem Space

3

The State of (Anti)aliasing in Real Time

Supersampling (SSAA): cost linearly proportional to the number of samples while only
improving quality with the square root

Multisampling: MSAA, CSAA, SBAA [Salvi and Vidimce 2012], SRAA [Chajdas et al. 2011]

Aggregation: DCAA [Wang et al. 2015], AGAA [Crassin et al. 2016]

Spatial: MLAA [Reshetov 2009], FXAA [Lottes 2009]

Time: SMAA [Jimenez et al. 2012], TAA [Yang el al] [Karis 2014]

Current Best Practice: employ many strategies simultaneously, hand tune by artists [Pettineo
2015, Pedersen 2016], rely on TAA for the best !/$ solution

TAA All Day

4Deus Ex: Mankind Divided © Eidos Montreal, Square Enix

5

6Deus Ex: Mankind Divided © Eidos Montreal, Square Enix

7

Finding A Practical Hybrid Algorithm

Offline ray tracers use highly adaptive sample counts to resolve aliasing and bound error

Previous hybrid ray and raster algorithms were impractical due to HW architectures & APIs

NVIDIA Turing Architecture, RTX, and Microsoft DXR enable full interoperability between
ray and raster rendering on the GPU for the first time

Redefining AA

8

Finding A Practical Hybrid Algorithm

Goal: find the pixels that will benefit most from supersampling

Goal: leverage Turing’s RTCores to accelerate ray tracing and adaptively improve results

Goal: harness strengths of TAA while addressing its failures simply and unequivocally

Goal: work within the constraints of conventional game engines

Redefining AA

9

Adaptive Temporal Antialiasing

We efficiently combine ray and raster, leverage adaptive sampling in the context of TAA

Step 1: Run TAA

Step 2: Compute a segmentation mask of where TAA fails, and why

Step 3: Replace complex post-failure TAA heuristics with robust alternatives: ray tracing

Step 4: Use segmentation mask to guide ray tracing adaptivity

Step 5: Enjoy!

Core Idea

10No AA

11

12

13

14

Adaptive Temporal Antialiasing

Unreal Engine 4 extended with DXR API support, running on NVIDIA RTX

TAA fullscreen post-process extended to compute and output segmentation mask

Sparse ray tracing in DXR Ray Generation shaders, dispatched as separate fullscreen post-
process pass before tonemapping

Each primary ray casts a single shadow ray to the sun’s directional light source (hard shadows)

Implementation Details

15

16

Adaptive Temporal Antialiasing

TAA failure detection (segmentation) is a combination of criteria:

• Motion Vectors

• Segmentation History, single frame look-back (was this pixel marked as ATAA?)

• Luminance, temporal change within a pixel neighborhood

• Depth, 3x3 edge-detecting Sobel filter

Frames are almost always dominated by TAA-classified (blue) pixels

Implementation Details

17TAA

18ATAA

19

20

21

22

23

24

25

26

27

28

29

30

Variant Rays Titan V (Volta) GPU Time (ms)

ATAA 8x 1,693,280 16.85

ATAA 4x 846,640 8.55

ATAA 2x 423,320 4.28

Performance
Titan V

1920x1080 resolution, 107,881 pixels selected for RT, 5.2% of total image resolution

Trace, Material Evaluation, Dynamic Lighting, Reflection Probe, 1 Shadow Ray

Performance figures reported in milliseconds (ms)

31

Variant Rays Titan V (Volta) Quadro RTX 6000 (Turing) Speedup

ATAA 8x 1,693,280 16.85 5.58 3x

ATAA 4x 846,640 8.55 2.83 3x

ATAA 2x 423,320 4.28 1.45 3x

1920x1080 resolution, 107,881 pixels selected for RT, 5.2% of total image resolution

Trace, Material Evaluation, Dynamic Lighting, Reflection Probe, 1 Shadow Ray

Performance
Quadro RTX 6000 vs. Titan V

UE4 Total Frame Time (with ATAA 8x) : 9.8ms

32

Conclusions

Demonstrated a practical hybrid AA solution in a production game engine for the first time

The adaptive hybrid strategy injects the advantages of best-quality offline AA strategies while
avoiding the limitations of existing best performance real-time methods

Incredible performance speedup from Turing’s RTCores

Game-Ready: with costs as low as 1.45ms on Turing in UE4, ATAA on Turing is poised to
reinvent AA

33

Adaptive Temporal Antialiasing

Texture LoD: no forward-difference derivatives in DXR, how to evaluate texture mipmap
levels in arbitrary material graphs is an open problem

Improve Sampling & Filtering: casting rays in static 8x, 4x, or 2x MSAA n-rooks patterns

Segmentation: limited by the 1spp raster input. Conservative raster to the rescue?

Improved Adaptivity: enforcing fixed per frame ray budgets and per-pixel ray adaptivity

Future Work

34

Acknowledgements

Coauthors: Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire

Ignacio llamas, Edward Liu, and the entire NVIDIA ray tracing team

Epic Games

35

@acmarrs

36

ADAPTIVE AA WITH CONSERVATIVE RASTERIZATION

Use conservative rasterization to identify “interesting” pixels

37

ADAPTIVE AA WITH CONSERVATIVE RASTERIZATION

Use conservative rasterization to identify “interesting” pixels

• Introduced in D3D11.3 for feature level 12 hardware

38

ADAPTIVE AA WITH CONSERVATIVE RASTERIZATION

Use conservative rasterization to identify “interesting” pixels

• Introduced in D3D11.3 for feature level 12 hardware

• Rasterizes pixels where the fragment intersects with the pixel extents

• Not just covers the sample(s)

39

ADAPTIVE AA WITH CONSERVATIVE RASTERIZATION

Use conservative rasterization to identify “interesting” pixels

• Introduced in D3D11.3 for feature level 12 hardware

• Rasterizes pixels where the fragment intersects with the pixel extents

• Not just covers the sample(s)

• Tier 3 allows identifying pixels that are fully and/or partially covered

• SV_InnerCoverage

40

CONSERVATIVE RASTERIZATION

41

THE ALGORITHM

GS (Fast GS on NVIDIA)

• Calculates depth plane equation coefficients, e.g. z = Ax + By + C

• Calculates min/max depths of the primitive

• All calculations are done in the clip-space to avoid clipping issues

42

THE ALGORITHM

GS (Fast GS on NVIDIA)

• Calculates depth plane equation coefficients, e.g. z = Ax + By + C

• Calculates min/max depths of the primitive

• All calculations are done in the clip-space to avoid clipping issues

PS classifies the pixel as “interesting” based on SV_InnerCoverage

• Partially covered  Output 0x1 indicating “interesting”

• Fully covered  Output 0x0 indicating “not so interesting”

43

THE ALGORITHM

PS also generates the depths using the plane equation, such that

• No potentially visible (partially covered) fragment is occluded

• Output the closest depth

• A fully covered fragment occludes as many fragments as possible conservatively

• Output the farthest depth

PS clamps the min/max depths to the primitive depths calculated in the GS

44

THE ALGORITHM

Outputting conservative depths from the PS
“interesting” pixels output Zmin and full covered output Zmax

Zmax

Zmin

Zmax

Zmin

void main(
in float4 i_position : SV_Position,
in uint m_InnerCov : SV_InnerCoverage;
in nointerpolation float3 planeCoeff : PLANE_COEFF;
in nointerpolation float2 primDepth : PRIM_DEPTH_MIN_MAX;
out uint o_color : SV_Target0,
out float o_depth : SV_Depth)

{
// Set the defautl min and max values.
float zMin = MAX_VAL, zMax = MIN_VAL;

// Calculate Z at the four corners and calculate min/max of those.
// Depth is a monotonic function, so evaluating at corner suffices,
// unless primitive is entirely contained within a pixel OR contains
// one of the vertices.
CalculateZminZmax(zMin, zMax, planeCoeff, i_position);

if (i_vtx.m_InnerCov & 0x1) {
o_color = 0x0; // Fully covered pixel
o_depth = zMax; // Output the farthest depth

} else {
o_color = 0x1; // Partially covered (“interesting”) pixel
o_depth = zMin; // Output the nearest pixel

}

Pseudo-code
Pixel Classification Shader

45

DXR BASED VISIBILITY

DXR distributes the samples over the “interesting” pixels

Sample positions and number are completely programmer controlled

Rays are generated from the camera towards these samples

Ray Trace those rays against the BVH

46

NON-DXR BASED RAY TRACING

Pass the vertex positions from GS to PS

For “interesting” pixels

• Generate up to N rays from the eye

• Calculate the ray triangle intersection

• Output the depth/color while keeping track of the nearest depth

Resolve the final color

47

MORE DETAILS…

Book chapter in upcoming GPU Zen 2 book.

49

Adaptive Temporal Antialiasing

Lighting and shading methods between ray and raster must match!

Shadow Rays vs. Shadow Maps, Reflection Cubemaps vs. Reflection Rays

Be aware of pre-AA screen-space algorithms (DoF, Lens Flare, SSAO)

Denoising of area light contributions can make your life tricky

Nota Bene!

