

Core

Streaming
Multiprocessor

Core

NUMA Node

RAM
Memory

Compute
Cluster

Compute Node

I/O
Disk

GPU

GPU

Disk

Non-Volatile Storage

Energy source

CPU CPU

CPU

Core Core Core

L2 Cache L2 Cache L2 Cache L2 Cache

L3 Cache

Control
Unit

ALU

L1 Cache

ALU ALU

ALU

ALU

GPGPU Control
Unit

RAM
Memory

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

L2 Cache

Core
Control

Unit

Core Core Core

Core Core Core Core

L1 Cache

Super Function Unit

Super Function Unit

Control
Unit ALU

Energy Consumption

HPC architectures: their power costs almost
reach the purchase price over a life time.
Careful application-specific tuning can help
to reduce energy consumption without
sacrificing an application's performance.

Interprocess Communication

is significantly influenced by the amount
and the speed of communication required.
Reducing the communication volume and
exploiting the physical network topology
can lead to great performance boosts.

Load Balancing
Implicit/explicit process synchronization and
uneven distribution of work may leave a
process idle waiting for others to finish.
The computing power within all parallel
processes must be exploited to the fullest,
otherwise program scalability may be limited.

Data Locality
Frequent accesses to shared or distant data
creates a considerable overhead.

resources and ensuring data locality can
yield significant performance improvements.

Memory Access
Even the best arithmetically-optimized
codes can stall a processor core due to
latency in memory access.
Careful optimization of memory access
patterns can make the most of CPU

Single Core Performance
To achieve good overall performance each
core's compute capabilities need to be
optimally exploited.
By providing access to the implementation
details of a targetted platform, application
optimizations can be specialized accordingly.

The Challenge of Programming Parallel Architectures

Core

The shift to multi- and many-core architectures made it more complex to develop
hardware-optimized applications. A number of performance analysis tools exist to support the
application tuning process, but none of them provide recommendations about how to tune the code.

Tuning
Strategy

Plugin
Strategy

Analysis
Strategy

Static Analysis and
Instrumentation

(source code preprocessing)

Start of Analysis and Tuning
via Periscope Front-End

Selection of Optimization

Hypothesis Selection

Performance Experiment

Performance Analysis

Transformation and/or
Parameter (Set) Selection

Optional Application Restart

Verification Experiment(s)

Generate Tuning Report
(remaining properties

and tuning actions)

AutoTune will develop the Periscope Tuning Framework (PTF)
extending Periscope. It will follow Periscope's main principles,

i.e. the use of formalized expert knowledge in form of properties
and strategies, automatic execution, online search based on

program phases, and distributed processing. Periscope will be
extended by a number of online and semi-online tuning plugins

responsible for searching for a tuned code version.

PTF Tuning Control Flow

Renato Miceli1, Gilles Civario1, François Bodin2
1 Irish Centre for High-End Computing, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin 2, Ireland

2 CAPS Entreprise, Immeuble CAP Nord, Bât A, 4 Allée Marie Berhaut, 35000 Rennes, France
renato.miceli@ichec.ie, gilles.civario@ichec.ie, francois.bodin@caps-entreprise.com

1. Abstract
Performance analysis and tuning is an important step in programming multicore and
manycore architectures. There are several tools to help developers analyze application
performance; still, no tool provides recommendations about how to tune the code. 
AutoTune will extend Periscope, an automatic online and distributed performance
analysis tool developed by Technische Universität München, with plugins for performance
and energy efficiency tuning. The resulting Periscope Tuning Framework will be able to
tune serial and parallel codes with and without GPU kernels; in addition, it will return
tuning recommendations that can be integrated into the production version of the code.
The whole tuning process, consisting of both automatic performance analysis and
automatic tuning, will be executed online, i.e. during a single run of the application."

Funding by European Union
FP7 Project no. 288038

Start date: October 15th, 2011
Duration: 36 months (2011-2014)

Total Cost: € 3.1 million
Contact: Michael Gerndt

<gerndt@in.tum.de>

7. AutoTune Project Work Plan

2. Motivation

4. Periscope: the basis for AutoTune

5. AutoTune’s Tuning Framework 3. Project Goals
The AutoTune Projectʼs goal is to close the gap in the application tuning process and 
simplify the development of efficient parallel programs. It focuses on automatic tuning 
for multicore- and manycore-based parallel systems, ranging from desktop systems 
with and without GPGPUs to petascale and future exascale HPC architectures. 
To achieve this objective, AutoTune aims at developing the Periscope Tuning 
Framework (PTF), the first framework to combine and automate both analysis 
and tuning into a single tool. AutoTuneʼs PTF will…"
•  Identify tuning alternatives based on codified expert knowledge."
•  Evaluate the alternatives online (i.e. within the same application execution), 

reducing the overall search time for a tuned version."
•  Produce a report on how to improve the code, which can be manually or automatically applied."

a. Which Tuning Plugins?!
"
•  GPU programming with HMPP and OpenCL"
•  Single-core performance tuning"
•  MPI tuning"
•  Energy efficiency tuning!
!
b. How they will be implemented?!
!
•  Master Agent: responsible for implementing

the overall tuning strategy"
•  Analysis Agents: may implement portions

of the tuning plugins"
•  MRI Monitor: measures energy consumed

and monitors the GPU infrastructure; may
implement region-specific tuning actions
(e.g. changing the clock frequency for a
specific program region)"

•  C/C++ and Fortran instrumenter:
extended for parallel pattern support and
HMPP and OpenCL codes"

c. Using which techniques?!
"
•  Expert knowledge"
•  Iterative search"
•  Machine learning"
•  Model-guided empirical optimization"

6. Goal Validation
Achievement of the goals will be measured and evaluated at the projectʼs end:"
1.  Applications that can benefit from the tuning techniques will be selected and manually

tuned during the course of the project."
2.  At the end of the project PTF will be run over the same applications."
The improvements achieved and the required effort for both the manual and the
automatic tuning will be compared. It is expected that:"
•  PTF will obtain at least 50% of manual improvements, or even surpass them (>100%);"
•  PTF will require only a single or a few application runs, compared to effort timed in

months for manual tuning."

Optimize

Test

Measure

Analyze

AutoTune Project

• Specification of the tuning model
• Results of the manual tuning of selected applications

demonstrating the potential of the tuning techniques
• Detailed technical specification for all work packages
• Extended version of Periscope's monitor for the tuning plugins
• PTF Demonstrator demonstrating the integration of PA and

tuning plugins

Month
12

Month
24

• Prototype versions of the tuning plugins
• Single plugin tuning strategies
• PA strategies for HMPP/OpenCL and energy efficiency
• PTF Integrated Prototype demonstrating single plugin

tuning for the selected applications

 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Month
32

Month
36

• Final tuning plugins and combined plugin tuning
strategies

• PTF Release

• Documentation of PTF
• Detailed evaluation
• Demonstration of the promised automatic

improvements for the selected applications

Common performance analyzers only hint at where to tune.�
AutoTune’s PTF will also tune the code for you!�

PTF will take a program written in 
MPI/OpenMP with/without kernels for GPGPUs 
in HMPP or OpenCL and will automatically tune it with 
respect to performance and energy usage. 
PTF will generate a tuning report such that a developer 
can integrate the tuning recommendations for production runs."

Project
Consortium

Associate
Partner

Funding

ML03
poster contacts:

martin.peniak@plymouth.ac.uk
jb@jb.org
lisasmith@pge.comDL01 poster contacts:

Renato Miceli: renato.miceli@ichec.ie
Gilles Civario: gilles.civario@ichec.ie

