CATEGORY: ALGORITHMS / NUMERICAL TECHNIQUES - 10

POSTER

P22219

CONTACT NAME

HYBRID OPTION PRICING THROUGH Al AND GPU-POWERED SDES SOLVERS

I Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland, INVIDIA Poland, Warsaw

Introduction

Financial derivatives pricing is an important field that requires
both high precision and substantial computational power. The
classical approach relies on Monte Carlo simulations and numeri-
cal methods for underlying stochastic differential equations. An-
other emerging approach, not used in production systems yet, is
employing machine learning for this task.

The proposed solution is the hybrid model combining appropri-
ate methodology for performing fast Monte Carlo simulations on
GPUs with application of DNNs to approximating prices. The
comprehensive discussion of the problem, including SOTA, ac-
curacy and performance analysis, will be presented in the next
sections.

Problem and approach

The intuition is as follows: some derivatives, e.g. an Asian op-
tion, depend on the future trajectory of the real financial process
(e.g. stock price for a chosen company). It is assumed that the
financial process belongs to a class of stochastic processes that
can be represented by a stochastic differential equation (SDE).
Assuming that and having the historical values of the real finan-
cial process, one is able to estimate the coefficients of the SDE,
which in turn allows to simulate the process’ future values by
application of some numerical scheme. Since the future values ot
the derivative are random, a single simulation would result in a
different number at each repetition. Hence,the future values are
approximated through generating many trajectories by some nu-
merical scheme. Finally, based on the generated approximations,
the derivative’s (e.g. Asian option’s) price can be estimated, as
well as its empirical distribution.

Fig. 1: Illustration of the main phases of option pricing.

Summarizing, the problem of option pricing can be divided into
the following phases (cf. Fig. 1):

A) Modelling the underlying stochastic process (e.g. stock
price), i.e. deriving a stochastic differential equation whose
solution will be a good approximation of the real process.

B) Estimating the parameters of the model.

C) Simulating multiple trajectories of the SDE’s solution (this
step includes choosing a proper numerical scheme for ap-
proximating SDE’s solution).

D) Estimating the price of the derivative, together with its
probability distribution.

For the phase A the most popular models would be Black Sc-
holes, Heston, Merton or their variations with jumps or including
stochastic volatility, cf. [1]. It turns out that the most computa-
tionally demanding are phases B, C, and D. Fortunately, each of
them can be considerably accelerated by using GPUs. The phase
D is commonly realized as the standard Monte Carlo simulation.

Pawel Przybytowicz: pprzybyl@agh.edu.pl

Tomasz Bochacikf, Natalia Czyzewskat, Andrze] Katuzai, Dawid Majchrowskif,
Pawel Morkiszt: ¥, Pawel Przybytowiczf, Marcelina Studzinska-Wronat

New numerical methods and
their GPU implementation

Deep Learning models

application

The theoretical analysis of Euler and Milstein methods has been
performed for various precision levels, both in a classical formu-
lation and in the jump-diffusion case, c¢f. [2, 3, 4, 5, 6]. The
eficient GPU package based on these results is under devel-
opment. The current progress is documented under the link:
http://home.agh.edu.pl/"akaluza/cuSTOCH/. The ini-
tial results show that NVIDIA Titan V allows to obtain
about 14x speed-up in relation to Intel Broadwell for
simple implementations. This is due to both acceleration of
random numbers generators and ease of paralleling
computations for multiple trajectories. Currently, sev-
eral well known schemes for solving SDEs (also with jumps) have
been implemented, i.e. Euler and Randomized Euler schemes,
Milstein scheme and its derivative-free and Adaptive Step Size
Control versions, cf. [3].

Numerical experiments

The GPU implementation of Milstein derivative free method
was used for the following test problem (called the Merton’s
model):

dX(t) = (r — coA) X (t)dt + o X (£)dW (t) + co X (t—)dN(t),
t e |0,7T],
X (0) = 100,

where W is the Wiener process, while IV is the Poisson pro-
cess. Processes with jumps are commonly used to model finan-
cial time series, see e.g. [1]. Speed-up was estimated through
several tests using different numbers of trajectories. The re-
sults displayed in the Fig. 2 confirm the advantage of GPU
implementation over the CPU in terms of time efficiency. The
speed-up is even more spectacular when the process is modelled
in a higher-dimensional space, i.e. when a single drift coefficient
is replaced by a vector of drift coefficients and (in general) the
diffusion coefficients form a matrix.

11.5

10.5

Speed up
ca Lo
n

=
n

—a- MAXIMLUM
——MEAN
& MINIMUM

o
n

N
un

10 000 20000 30 000 40 D00 50 000 60 000 70000 80000 90 000 100 000
Number of trajectories

Fig. 2: GPU vs CPU speedup - Titan V vs Intel Broadwell.

Approximation with various precisions

Following the increasing popularity of computations with low
precision for significant speedup, a suitable analytic noise model
is proposed. It corresponds to standard noisy information about
a, b, X and W (in SDEs with jumps also about ¢ and N). This
allows to estimate upiront the needed precision and mesh size
to obtain predefined approximation error level. A perturbed
processes Y € { X, W, N} can be represented as

~

Y(t,w)=Y(t,w)+d-py(t,Y(t,w)).

This model of noise assumes analytical structure of the per-
turbed processes. As far as we know the articles [2, 1, 5] were
first to investigate the problem of Monte Carlo simulations,
based on perturbed data about the driving stochastic processes
or coeflicients of the underlying equation.

There is a work in progress on application of various time-series-
based deep learning models to financial processes, specifically to
forecasting their future behavior from the historical data. The
general procedure is to train the model on multiple historical
points of the trajectory with the sliding window approach. That
is, based on past and current values of the process, possibly
together with estimated parameters such as the current drift
and diffusion coeflicients, the model is forecasting just one next
value. This approach guarantees sufficiently rigid training data
set as in financial applications the most common are time series
with long history.

Tests were conducted using Tensorflow Keras. The network A
architecture was just two layers of LSTM (first with 128 output
units, second with 32 output units) and a single dense layer with
an output being the forecast entry. Overall, network A depends
on about 88k parameters.

1.2
+-real value

-+train set prediction
1.1

Ay
\

validation set prediction

-e-test set prediction

i |
ALY Y N w
}\f\j‘} Q(\\A/vf V ’V\\f g A

0.

o

value

AT |
i A

\) | v

0.8
0.7

0.6
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 186
time

Fig. 3: Forecasting example for a model SDE solution.

The Fig. 3 shows that the model has a high predictive power
We observe proper forecasting behavior of the algorithm, even
though the model is random to some extent.

Additionally, the following architectures were chosen for further
testing:

B) CNN. The smallest analyzed architecture consisting of the
convolution layer with 64 output filters followed by max
pooling layer with the size of the pool window equal 2
(about 1k parameters).

C) Combination of CNN and RNN. The first layer is the same
convolution as in the network B, then at the top there is one
stacked layer of the LSTM with 128 hidden units (about
100k parameters).

D) Sequence-to-sequence RNN based on the encoder-decoder
architecture. The encoder part of the network (one layer
LSTM with 128 hidden units) is used to calculate an en-
coder vector, which in turn is used as an initial hidden state
of the decoder part, which has the same structure as the
encoder in this case (about 200k parameters).

E) Dual-Stage Attention-Based RNN. Roughly speaking, the
encoder-decoder architecture with the attention mecha-

nism for both parts, which once again consist of one layer
LSTM with 128 hidden units (about 200k parameters).

Average RMSE [

0.0

5] Average training time
140
‘ 120
5 100
00n mA) LSTM
’ ‘ 8C mE] CNN
0.025 | . §
m C) CNNELSTM
. 60
0.02 ‘ m) SEQZSEC-RNN
0.015 ‘ An ‘ mE) DA-RNN
0.01 ‘
20 |
0.005 |
i | 0 | |
Method Method

Fig. 4. Models comparison.

o

S

NVIDIA

AGH

DNN models summary

The Root Mean Squared Error (RMSE) has been chosen as an
error metric. In Fig. 4 errors for 50 epochs training and for
112 different trajectories are summed up. The conclusion is
that all the tested models perform very well in terms of both
predictive power and level errors. The tested networks did not
allow to precisely determine the impact of architecture and size
of a model on the error.

Hybrid models

Adding an extra Al layer on a top of the results obtained from
the classic Monte Carlo simulations and from the Deep Learning
engine enables to perform fast training of the model when the
initially considered financial instrument is replaced by another
one. Precisely, the underlying methodology for the SDE’s solu-
tion approximation as well as the Deep Learning engine might
remain unchanged, whereas the new derivative or the new finan-
cial process to be analyzed can be input and the calibration of
the entire model can be performed efficiently. For this purpose it
is planned to intertwine GANs with efficient SDESs solvers. Ac-
cording to the authors’ best knowledge, such models have been,
thus far, neither a subject of scientific research nor a basis for
derivative pricing in production.

Future research

Firstly, it is planned to include the computational model of
floating point arithmetic for the considered numerical schemes.
Secondly, the further development of the cuSTOCH package is
planned. In particular, the aim is to optimize the code and
to provide more general API. At the same time possibility of
applying new DNNs architectures for time series will be investi-
cgated. Finally, the hybrid models will be constructed and tested
In practice.

Acknowledgements

This research was supported by the Polish Ministry of Higher
Education through grant "Najlepsi z najlepszych! 4.0” and was

realized as a part of joint research project between AGH and
NVIDIA.

References

1] Monique Jeanblanc, Marc Yor, and Marc Chesney. “Mathematical
Methods for Financial Markets”. In: Springer (2009).

2] Andrzej Katuza, Pawet M. Morkisz, and Pawel Przybytowicz. “Optimal
approximation of stochastic integrals in analytic noise model”. In: Applied
Mathematics and Computation 356 (2019), pp. 74-91.

3] Andrzej Kaluza and Pawet Przybylowicz. “Optimal global approxima-
tion of jump-diffusion SDEs via path-independent step-size control”. In:
Applied Numerical Mathematics 128 (2018), pp. 24-42.

4] Pawel M. Morkisz and Pawel Przybylowicz. “Optimal pointwise approx-
imation of SDE’s from inexact information”. In: Journal of Computa-
tional and Applied Mathematics 324 (2017), pp. 85-100.

5] Pawet M. Morkisz and Pawel Przybytowicz. “Randomized derivative-
free Milstein algorithm for efficient approximation of solutions of SDEs
under noisy information”. In: (2019). arXiv: https://arxiv.org/abs/
1912.06865.

6] Pawel Przybytowicz. “Efficient approximate solution of jump-diffusion

SDEs via path-dependent adaptive step-size control”. In: Journal of Com-
putational and Applied Mathematics 350 (2019), pp. 396-411.

