Accelerate Compute-Intensive Workloads with NVIDIA-Certified Systems

Whitepaper
Table of Contents

WP-10326-001_v01

Accelerate Compute-Intensive Workloads with NVIDIA-Certified Systems 3
 Infrastructure for Modern Applications ... 3
 Certified System Categories .. 4
 Certification Process .. 5
 Optimizing System Configuration ... 7
 High Operating Temperature .. 7
 Non-optimal BIOS and Firmware Settings .. 8
 Improper PCI Slot Configuration .. 8
 Lack of NUMA Topology Awareness .. 8
 Impact of Insufficient System Memory (RAM) .. 9
 Certified Server Configurations .. 9
 The Essential Platform for Enterprise IT ... 10
Accelerate Compute-Intensive Workloads with NVIDIA-Certified Systems

Confidently choose performance-optimized hardware solutions.

Infrastructure for Modern Applications

Accelerated workloads abound across all industries, from the use of artificial intelligence for better customer engagement, data analytics for business forecasting, and advanced visualization for quicker product innovation. With the drive towards remote and flexible workplaces, the need for virtual desktops to be as powerful as physical desktops is also growing. Scientific researchers are innovating ways to solve problems that go beyond traditional CPU-only computing.

GPUs have eclipsed their initial role of accelerating graphics-related processes such as rendering and ray tracing and are now being used to deliver revolutionary speedups to a wide range of compute algorithms in areas such as machine learning, deep learning, high-performance computing (HPC), and data analytics. In fact, GPUs are now the leading compute accelerator, and provide better performance than any other technology for both training and inference of AI algorithms.

Network traffic within the data center is also rising. The digital transformation of the modern age has dramatically increased the volume of data available for developing actionable insights. Additionally, as cameras and other remote sensors proliferate at edge locations, secure, reliable, and high-speed networking is essential for moving the large amounts of data processed by these workloads.

To run these modern applications, enterprises need an easy way to deploy accelerated infrastructure. When a particular line of business is interested in purchasing an accelerated server or workstation, they care about the factors that directly impact user productivity and immediate business needs. These factors include performance and the ability to use a large set of developer tools and frameworks.

On the other hand, the team who’s responsible for taking care of these systems cares about management, security, and how to scale out as demand grows. One of their biggest challenges is to ensure the systems are configured optimally while delivering performance. Some customers simply want to deploy an accelerated system that’s validated for performance, scalability, and security so they can get up and running quickly, without additional tuning. Other administrators want to adjust the configuration for their specific use case in a manner that’s consistent with best practices.
The NVIDIA-Certified Systems™ program was created to answer this need. Systems from leading system manufacturers are equipped with NVIDIA GPUs and network adapters and are subjected to rigorous testing. They’re stamped as NVIDIA-Certified if they meet specific criteria for the best performance and scalability as well as proper functionality for security and management capabilities. This designation enables customers to get started quickly by simply deploying a certified system with the configuration that resulted in successful certification. NVIDIA provides guidance for how to tune the configuration of these systems to perform best on specific types of workloads. With an NVIDIA-Certified System, enterprises can confidently choose performance-optimized hardware solutions to power their accelerated computing workloads—from desktop to data center to edge.

Certified System Categories

The NVIDIA-Certified Systems program encompasses several system categories across data center, edge, and workstation. Each category is designed to be optimal for specific workloads, as shown in Table 1.

Table 1. Certified System Categories

<table>
<thead>
<tr>
<th>System Class</th>
<th>System Category</th>
<th>Primary Use Case</th>
<th>Eligible NVIDIA GPUs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Center</td>
<td>Compute</td>
<td>AI Training and Inferencing, Data Analytics, HPC</td>
<td>Recommender Systems, Natural Language Processing</td>
</tr>
<tr>
<td></td>
<td>General Purpose</td>
<td>Visualization, Rendering, Deep Learning</td>
<td>Offline batch rendering, accelerating desktop rendering</td>
</tr>
<tr>
<td></td>
<td>High Density</td>
<td>Virtual Desktop, Virtual Workstation</td>
<td>Office Productivity, Remote Work, Visualization, Collaboration,</td>
</tr>
<tr>
<td></td>
<td>Virtualization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge</td>
<td>Enterprise Edge</td>
<td>Edge Inferencing in controlled environments</td>
<td>Image and video analytics, Virtual Radio Access Network (vRAN), Multi-access Edge Computing (MEC)</td>
</tr>
<tr>
<td></td>
<td>Industrial Edge</td>
<td>Edge Inferencing in industrial or rugged environments</td>
<td>Robotics, Visual inspection systems, On-vehicle systems, medical instruments, Field deployed Telco Equipment</td>
</tr>
<tr>
<td>Workstations</td>
<td>Desktop Workstation</td>
<td>Design, Content Creation, Data Science</td>
<td>Product, building design, M&E content creation</td>
</tr>
<tr>
<td></td>
<td>Mobile Workstation</td>
<td>Design, Content Creation, Data Science, Software</td>
<td>Data analytics data, feature exploration, solution development, Software design, development, build and testing</td>
</tr>
</tbody>
</table>
Server-class systems are also tested with NVIDIA networking hardware to ensure remote data access and multi-node scalability by running workloads that involve coordination and data transfer between hosts. The use of these devices provides key benefits for customers in performance, manageability, scalability, and security.

- Speeds of up to 200Gb/sec and the option to use InfiniBand provides the accelerated networking that's required to support today's advanced workloads.
- GPUDirect® technology allows efficient, zero-copy data transfer between GPUs and increased transfer capacity to storage, unlocking high-throughput, low-latency network connectivity and alleviating data bottlenecks in data center-scale computing clusters.
- Transport Layer Security (TLS) and Internet Protocol Security (IPsec) in-line cryptography are offloaded from the CPU, allowing these operations to be accelerated without impacting the high-bandwidth and low-latency communications needed for data-intensive workloads.
- Hardware root of trust enables security at the platform layer with secure boot and secure firmware updates.
- NVIDIA® ASAP2 - Accelerated Switching and Packet Processing technology (ASAP2) handles a large portion of the packet processing operations in hardware, freeing up the host's CPU and providing high-throughput connectivity. Connection tracking (CT) offload capability enables stateful connection-based filtering, allowing unmatched performance, scale, and efficiency.

The complete list of certified systems is maintained on the NVIDIA-Certified Systems documentation page. System certification status is also called out on the Qualified System Catalog.

Certification Process

The certification test suite is designed to exercise the performance and functionality of the candidate server by running a set of software that represents a wide range of real-world applications. This includes deep learning training; AI inference; end-to-end AI frameworks, including NVIDIA Riva and NVIDIA Clara™; data science, including Spark; intelligent video analytics (IVA); HPC and CUDA® functions; and rendering. Security features such as Trusted Platform Module (TPM) are also tested. Server-class systems are additionally subjected to tests of multi-node scalability by running workloads that involve coordination and data transfer between hosts using GPUDirect. Other tests cover network performance and remote management capabilities with Redfish.

Each of the tests in the suite is carefully chosen to exercise the hardware of the system in a unique and thorough manner so that as many potential configuration issues as possible can be exposed. Some of the tests focus on a single aspect of the hardware, such as the GPU decoder, while others stress multiple components, both simultaneously as well as in a multi-step workflow. It's important to realize that the test suite doesn't certify any particular
software application; the software is used only to exercise the hardware in a thorough manner. An effort is made to avoid having multiple tests that overlap in what they exercise.

Each category of the system runs a subset of the tests that are relevant to the use cases for it. For example, multi-node tests are not performed on workstations, and graphics tests are not run on compute-only GPUs. Table 2 summarizes the test coverage by category.

Table 2. Certification Process

<table>
<thead>
<tr>
<th>System Category</th>
<th>Training, Data Analytics, HPC</th>
<th>Networking and Multi-node Training</th>
<th>Inference and AI Frameworks</th>
<th>Visualization and Rendering</th>
<th>Remote Management</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>General-purpose Server</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>High Density Virtualization</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enterprise Edge</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Industrial Edge</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Desktop Workstation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

The tests for each candidate system are performed by the system manufacturer in their labs. NVIDIA provides the following to partners who are looking to certify a system:

- Software containers loaded with application software along with associated datasets for sample runs
- Scripts that can automate the partner’s entire test suite
- Various guides for setup and configuration of test systems

NVIDIA partners configure candidate systems according to the guidelines and then execute the test suite. For server certifications, two identical systems are used simultaneously so that multi-node tests can be run. These are additionally equipped with the latest networking smart network interface cards (SmartNICs) and data processing units (DPUs) from NVIDIA. Options include NVIDIA ConnectX®-6 and ConnectX-6 Dx, and NVIDIA BlueField®-2, and tests can be run with either Ethernet or InfiniBand networking. NVIDIA Spectrum™ or Quantum switches and LinkX® cables are used to create the test network so that there’s a consistent baseline by which to assess results.

The system test suite takes between one to two days to run, based on the number and type of GPUs in the configuration. NVIDIA works with the partner to resolve any issues that are
highlighted during the test process and helps them determine what configuration changes are needed to achieve the best results.

Optimizing System Configuration

Over the course of the NVIDIA-Certified Systems program, NVIDIA has studied hundreds of test results across many server models and compiled a unique database of detailed test results. NVIDIA architects use this database to determine best practices for configuring systems to maximize performance and create a baseline of performance standards.

NVIDIA-Certified Systems are designed to maximize the performance of modern applications with both compute and input/output (IO) acceleration. The design objective is a well-balanced system in which performance bottlenecks caused by any single component are minimized and which a wide variety of algorithms and workflows can be run as fast as possible for the specific hardware. The certification process identifies the best ways to configure components such as:

- RAM size
- PCI port selection
- Temperature and fan speed curve
- NUMA topology
- BIOS / firmware settings
- Network switch settings (for multi-node performance)
- Versions of OS, libraries, drivers

Misconfiguration of these components can lead to poor performance and the inability to function properly or complete tasks. Some examples of these configuration issues are listed below.

High Operating Temperature

The performance of a GPU can be affected by the operating temperature. Although NVIDIA GPUs have a maximum temperature below which their usage is supported, certification testing has shown that operating at a lower temperature can, in some cases, greatly improve performance.

A typical system has multiple fans to provide air cooling, but the amount of cooling for each device in the enclosure depends greatly on the physical layout of all the components, especially the location of GPUs with respect to fans, baffles, dividers, risers, etc. Many enterprise systems have programmable fan curves, which specify the fan speed as a function of GPU temperature for each fan. Oftentimes, the default fan curve is based on a generic base system and does not account for the presence of GPUs and similar devices that can produce a lot of heat.

In one example of a system with four GPUs, certification testing revealed that one of the GPUs was operating at a much higher temperature than the other three. This was simply due to the specific internal layout of components and airflow characteristics in that particular model. It
wasn’t something that could have been anticipated. By adjusting the fan curve, the hot spot was eliminated, and the overall performance of the system was improved.

Since systems can vary greatly in their physical design, there’s no universal fan curve profile that can be recommended. Instead, the certification process is invaluable for identifying potential performance issues due to temperature and can validate which fan curves result in the best results for each server being tested. These profiles are documented for each certified system.

Non-optimal BIOS and Firmware Settings

Both BIOS settings and firmware versions can impact performance as well as functionality. This is particularly the case for NUMA-based systems. The certification process determines the optimal BIOS settings for best performance and identifies the best values for other configurations, such as NIC PCI settings and boot grub settings. Multi-node testing has also determined the optimal settings for the network switch. In one example, a system was achieving RDMA communication close to 300Gb/s, and TCP at 120Gb/s. After the settings were properly configured, the performance for RDMA increased to 360Gb/s and TCP to 180Gb/s, which were both nearly line rate.

Improper PCI Slot Configuration

Rapid transfer of data to and from the GPU is critical to getting the best performance on accelerated workloads. In addition to the need to move large amounts of data to the GPU for both training and inferencing, as described above, movement of data between GPUs during the so-called all-reduce phase of multi-GPU training can become a bottleneck. This is also the case for the network interface since data is often loaded from remote storage, or in the case of multi-node algorithms, transferred between systems. Because GPUs and NICs are installed on a system via the PCI bus, improper placement can result in suboptimal performance.

NVIDIA GPUs use 16 PCIe lanes (referred to as x16), which enable 16 parallel data transfer channels. NVIDIA NICs can use 8, 16, or 32 lanes, depending upon the particular model. In a typical server or workstation, the PCI bus is divided into slots with differing numbers of lanes to account for the needs of different peripheral devices. In some cases, this is further affected by the use of a PCI riser card, and the number of slots can also be adjusted in the BIOS. If a GPU or NIC is installed in the motherboard without taking these factors into account, the full capacity of the device might not be used. For example, an x16 device might be installed in an x8 slot, or the slot might be limited to x8 or less by a BIOS setting. The certification process exposes these issues, and the optimal PCI slot configuration is documented when a system is certified.

Lack of NUMA Topology Awareness

NUMA (Non-Uniform Memory Architecture) is a particular design for configuring microprocessors in a multi-CPU system used by certain chip architectures. In these types of systems, devices such as GPUs and NICs have an affinity to one specific CPU because they're
connected to the bus associated with that CPU (in a so-called NUMA node). When running applications that involve communication between GPUs or between GPU and NIC, the performance can be greatly reduced if the devices are not optimally paired. In the worst-case scenario, data will need to traverse between NUMA nodes, resulting in high latency.

The certification process ensures that the design of the system is balanced, with GPUs spread evenly across CPU sockets and PCIe root ports and the NIC under the same PCIe switch or PCIe root complex as the GPUs.

Impact of Insufficient System Memory (RAM)

Lack of sufficient memory is often a source of underperformance in numerous applications, and this is especially true for machine learning, both training and inference. In training, an algorithm typically analyzes huge batches of data, and the system should be able to hold enough data in memory to keep the training algorithm running. For inferencing, the memory requirement depends upon the use case. With batch inferencing, the more data that can be held in memory, the quicker it can be processed. However, with streaming inferencing, the data is typically analyzed as it comes in, and therefore the amount of memory needed might not be as great.

As a result of analyzing the results of many certification tests, NVIDIA has been able to come up with memory-sizing guidelines based on the number of GPUs and amount of GPU memory. In one case, a system with four GPUs that had 128GB RAM installed didn’t pass the certification test. Upon increasing the RAM to 384GB, the overall performance increased by 45%, and the system was able to pass certification.

Certified Server Configurations

Once a system has passed the certification test suite, the configuration is documented as the base configuration. Customers can purchase this system and use it with this base configuration, or they can further tune it to their particular use case. It’s important to take into account not only the applications to be run on the system but also the environment in which it will be installed. A system used for large model AI training would benefit from having multiple high-performance NVIDIA A100 Tensor Core GPUs and higher-speed networking provided by NVIDIA ConnectX-6 Dx adapters. By contrast, a system to be used for inferencing in a remote data center might be limited both by form factor and power consumption, as well as network infrastructure. In this case, a system with a lower-powered GPU, such as an NVIDIA T4 Tensor Core GPU, and networking with the NVIDIA ConnectX-6 Lx adapter would be an appropriate selection.

NVIDIA provides guidance for how to configure NVIDIA-Certified Systems for various workload classifications in a manner that conforms to the best practices determined by extensive testing. For example, if a system has one GPU per CPU, then a PCIe switch is not necessary. However, with two or more GPUs per CPU, a PCIe switch is likely necessary to achieve optimal performance, except in the case of edge inferencing, where a low-cost server without a PCIe switch provides sufficient capabilities.
Note that the certification applies to the specific combination of server model and GPU model family. Certain NVIDIA GPUs can be grouped together into a model family because they differ from each other in only limited ways. A server that has been certified with one member of the family is considered certified with the other members. Here are some examples of GPU model families.

- A100 PCIe 40GB, A100 PCIe 80GB, A30
- HGX A100 4-GPU 40GB, HGX A100 4-GPU 80GB
- HGX A100 8-GPU 40GB, HGX A100 8-GPU 80GB

The Essential Platform for Enterprise IT

The NVIDIA-Certified Systems program has assembled the industry’s most complete set of accelerated workload performance tests to deliver the highest performing systems. Configurations are validated for optimum performance, reliability, and scalability for a diverse range of workloads.

With NVIDIA-Certified Systems, enterprises can confidently choose and configure performance-optimized servers and workstations to power their accelerated computing workloads, both in smaller configurations and at scale. They create the essential platform for the evolution of enterprise IT, and they provide the easiest way for customers to be successful with all their accelerated computing needs. A wide variety of system types are available, including popular data center and edge server models, as well as desktop and mobile workstations from NVIDIA’s vast ecosystem of partners.

To learn more, refer to the following resources:

- NVIDIA-Certified Systems webpage
- NVIDIA-Configuration Guide
- Qualified System Catalog