
CUDA for Real‐Time Multigrid
Finite Element Simulation of
Soft Tissue DeformationsSoft Tissue Deformations

Christian Dick

Computer Graphics and Visualization GroupComputer Graphics and Visualization Group

Technische Universität München, Germany

computer graphics & visualization

Motivation
R l ti h i b d i l ti f d f bl bj t• Real‐time physics‐based simulation of deformable objects
– Various applications in medical surgery training and planning

• Finite element method (FEM) in combination with a geometric multigrid solver() g g
– Physics‐based material constants

– Mathematically sound

Easy handling of boundaries– Easy handling of boundaries

– Linear‐time complexity of the solver in the number of unknowns

• Goal: Exploit the GPU’s massive computing power and memory bandwidth to
significantly increase simulation update rates / increase FE resolution

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Take‐Away
Fi t f ll GPU b d t i lti id l f l ti FEM i l ti• First fully GPU‐based geometric multigrid solver for real‐time FEM simulation
of deformable objects (linear elasticity, co‐rotated strain)
– Matrix‐free FEM and multigrid formulation suited for the GPU

– Highly efficient CUDA implementation

• Data structures, memory layout, parallelization

– Detailed performance analysisDetailed performance analysis

• Up to 27x faster than 1 CPU core / 4x faster than 8 CPU cores

• Up to 56 GFLOPS (single) / 34 GFLOPS (double precision) (sustained performance)

• Up to 88 GB/s memory throughput (sustained performance)

• Simulation rates:

– 120 time steps/sec for 12,000 hexahedral elements

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

p / ,

– 11 time steps/sec for 269,000 hexahedral elements

Deformable Objects on the GPU
A hit t f th NVIDIA F i GPU• Architecture of the NVIDIA Fermi GPU
– 15 multiprocessors, each with 32 CUDA cores (ALUs) for integer‐ and floating‐point

arithmetic operations

– GPU executes thousands of threads in parallel

• Requirements for an algorithm to run efficiently on the GPU
– Restructure algorithm to expose fine‐grained parallelismRestructure algorithm to expose fine grained parallelism

(one thread per data element)

– Avoid execution divergence of threads in the same warp

Ch l t hi h bl l i f d i– Choose memory layouts which enable coalescing of device memory accesses

– Only threads in the same thread block can communicate and be synchronized
efficiently (global synchronization only via separate kernel calls)

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

– Very limited resources (registers, shared memory) per thread

Our Approach
H h d l (t i li) fi it l t• Hexahedral (tri‐linear) finite elements
on a uniform Cartesian grid

• Linear elasticity, co‐rotated strain

• Geometric multigrid solver

• CUDA API to flexibly access
all reso rces on the graphics cardall resources on the graphics card

• Advantages:
– Numerical stencil of regular shape enablesg p

efficient GPU implementation

– FE model and multigrid hierarchy
generation is easy and fast

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

g y

– Only one pre‐computed element stiffness matrix
(greatly reduces memory requirements)

Elasticity & FEM
D f ti f bj t i d ib d b di l t fi ld 3Ω• Deformation of an object is described by a displacement field 3:Ω→u

()Ω ()u xx
()x u x+

Undeformed configuration Deformed configuration

• u is determined by minimizing the functional (potential energy)

Undeformed configuration Deformed configuration

St i

() 1
min

2
T TE u dx f u dx

Ω Ω

= − →∫ ∫ε σ
: Strain

: Stress

: External forcesf

ε
σ

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Elasticity & FEM
F th i l l ti d f di ti d b• For the numerical solution, u and f are discretized by
– a finite element decomposition of the object’s domain (regular hexahedra) and

– a nodal basis formed by the elements’ shape functions (tri‐linear interpolation)

() ()i iu x u x= ϕ∑
: Displacement at Node

B i f ti f N d
iu i

i

• For a single element the functional is minimized by solving a linear system

() ()
Nodes

i i
i

∑ : Basis function for Node i iϕ

For a single element, the functional is minimized by solving a linear system

() () ()1
min

2

T Te e e T e e eE u u B DBu dx f u dx
Ω Ω

= − →∫ ∫ : Linearized

: Linearized

e
i

e
i

u u

f f

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

T e eB DB u f⇔ = : Strain matrix

: Material law

B

DK e : Element stiffness matrix

Elasticity & FEM
Th l b l t f ti i bl d f th i di id l l t b• The global system of equations is assembled from the individual elements by
considering sharing of vertices

P l t

if
iu

e e eK u f=
Per element

f

Sharing of
ui and fi

Ku f=
if

iu

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

• For more details: [Bathe, 2002]

Finite Element Discretization
H h d l fi it l t di ti ti if C t i id• Hexahedral finite element discretization on a uniform Cartesian grid
– Easily obtained from a surface triangle mesh by voxelization

• A voxel is classified as “inside” iff the voxel’s center is inside the object

• The “inside” voxels correspond to the finite elements

0 0 0 0 0 0
0 1 1 1 0 0
1 1 1 1 0 1
0 1 1 1 0 0

0 0 0
0 0 0
1 0 1
1 0 0

Target voxel
grid

0 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 0 0
0 0 0
0 0 0

k‐Buffer k‐BufferDepth

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

k‐Buffer
capturing
fragments

k‐BufferDepth

Per‐Element Equations (static)
P l t ti f f• Per‐element equations

8

1

, 1,...,8
=

= =∑ ij j i
j

K u f i

3 3,u f 4 4,u f

: Displacements

: Forces
i

i

u

f1j

1 1,u f 2 2,u f

K : Element stiffness matrix consisting of 8x8 3x3‐matrix coefficients

e is now omitted

if

g

13K 14K 23K 24K 33K 34K 43K 44K

K K K K K K K K

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

1i =
11K 12K

2i =
21K 22K

3i =
31K 32K

4i =
41K 42K

Per‐Element Equations (co‐rotated, static)
C t t d t i Rotate forces from initial into current configuration• Co‐rotated strain

()()
8

0 0 , 1,...,8T
ij j j j iRK R p u p f i+ − = =∑ : Element rotationR

Rotate displacements back into initial configuration

Rotate forces from initial into current configuration

0: Undeformed vertex positionsp
()

()
1

8 8
0 0

1 1ˆ

j

T T
ij j i ij j j

j j
A

RK R u f RK R p p

=

= =

= − −∑ ∑

: Undeformed vertex positionsjp

• R is obtained by polar decomposition of the element’s average deformation

ˆ
ij

i

A
b

Linear strain Linear, co‐rotated strain
y p p g

gradient (5 iterations)
8

0 3

1 1 1 1
, ,

4
⎛ ⎞= + ± ± ±⎜ ⎟
⎝ ⎠

∑ old
iR I u

a b c
(),− + (),+ +

, , : Edge lengths of hexahedral element

Signs :

a b c

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

()()
1

1
1

4
1
2

=

−
+

⎝ ⎠

= +

i

T

n n n

a b c

R R R (),− − (),+ −x

y

Per‐Element Equations (co‐rotated, dynamic)
D i• Dynamics

()
8

1

ˆˆ , 1,...,8
=

+ + = =∑ ij j ij j ij j i
j

M u C u A u b i
: Mass matrix

: Damping matrix

M

C

• Newmark time integration
1j

() ()2

2 4
,= − − = − − −old old old old old

i i i i i i i i iu u u u u u u u dt u
dt dt

: Time step lengthdt() ()
dt dt

()
8 8

2 2
1 1

4 2 4 2ˆˆ
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + = + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑ old old old old old

ij ij ij j i ij j j j ij j j
j j

M C A u b M u u dt u C u u
dt dt dt dt

• Mass proportional damping:

l

1 1= =⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
ij i

j j

A b

= αij ijC M

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

• Mass lumping: 3 , 0 for = = ≠ii i ijM m I M i j

mass of vertex i (1/8 element mass)

Per‐Vertex Equations
P t ti Add t il ffi i t f h d ti• Per‐vertex equations: Add stencil coefficients of shared vertices

• Stencil on a 33 domain of adjacent vertices: 27 3x3‐matrix coefficientsStencil on a 3 domain of adjacent vertices: 27 3x3 matrix coefficients

()

()1,1,1

1, 1, 1

T

T

A u b+
= − − −

=∑ x
i x i x

i

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

• Dirichlet boundary conditions: Replace equation by and in the other
equations set the respective coefficient Ai corresponding to this vertex to 0

()

3 0=I ux

Geometric Multigrid
S l t i t l tih h hA b h• Solve , current approximate solution=h h hA u b hv

Relax h h hA v b≈
Residual h h h hr b A v= − Correct h h hv v e← +

hΩ

Solve h h hA e r=

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Geometric Multigrid
S l t i t l tih h hA b h• Solve , current approximate solution=h h hA u b hv

Relax h h hA v b≈
Residual h h h hr b A v= −

Relax h h hA v b≈
Correct h h hv v e← +

hΩ Pre‐smoothing Post‐smoothing

Coarse grid

2 2

Restrict
h h h

hr R r= 2
2

Interpolate
h h h

he I e=2hΩ

correction

h 2hΩ
2 2 2Solve h h hA e r=

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Geometric Multigrid
S l t i t l tih h hA b h• Solve , current approximate solution=h h hA u b hv

Relax h h hA v b≈
Residual h h h hr b A v= −

Relax h h hA v b≈
Correct h h hv v e← +

hΩ Pre‐smoothing Post‐smoothing

Coarse grid

2 2

Restrict
h h h

hr R r= 2
2

Interpolate
h h h

he I e=Multigrid2hΩ

correction

h 2h
V‐Cycle

Linear time
complexity

Ω

complexity
in the number
of unknowns4hΩ

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Coarsest Grid Solver

Variational Properties of Multigrid
S l ti f t f t d id t• Selection of transfer operators and coarse grid operators:

()
2

2

: Tri‐linear interpolationh
h

Th h

I

R I Restriction is transpose of interpolation()2

2 2
2

h h

h h h h
h h

R I

A R A I

=

=

Restriction is transpose of interpolation

Galerkin‐based coarsening

1D Example:

1
1/2 1/2

1
1/2 1/2

1
Fine Grid

C G id

1
1/2 1/2

1
1/2 1/2

1

1D Example:

• In the finite element context, these choices naturally arise from the variational

Coarse Grid
Interpolation Restriction

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

principle
– Coarse grid correction minimizes the functional

Multigrid Hierarchy
Th C t i id bl t ffi i tl t t t d lti id hi h• The Cartesian grid enables to efficiently construct a nested multigrid hierarchy
– Grids are successively built from fine to coarse levels

– With each coarser level the cell size is doubled

– A cell is created if it covers at least one cell on the previous finer level

Level 0 Level 1 Level 2

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Matrix‐Free Multigrid Formulation
R t i ti d I t l ti• Restriction and Interpolation
– Weights are implicitly determined by the location of the vertices

1/2 1/2

1/21/4 1/4 1 1/2 1/2 1/4 1/4

1/2 1/2

1

Restriction Interpolation
Fine grid vertices

1/21/4 1/4 1/4 1/4

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Fine grid vertices

Coarse grid vertices

Matrix‐Free Multigrid Formulation
C t ti f id ti• Construction of coarse grid equations
– Restriction: Linear combination of 33 fine grid equations leads to a 53 stencil

– Interpolation: Substitution of fine grid unknowns reduces the stencil to a 33 domain

1/4 1/4
1/2

1/2 1/21 1/2 1/2
1

1/4 1/4

1/4 1/4

1/4 1/4

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

1/2
1/4 1/4

Data Structures – FE Model Topology
I d b d t ti f FE d l d lti id hi h• Index‐based representation of FE model and multigrid hierarchy
– Finite elements and vertices are enumerated and accessed via indices

– Typically requires significantly less memory than an index‐free representation
using a rectangular domain with implicit neighborhood relationships

– Indices are represented by 32‐bit integers

– A special index value of ‐1 indicates “void” elements/verticesA special index value of 1 indicates void elements/vertices

We store:
• For each finite element: • For each simulation level vertex:

8 indices of
incident vertices

8 indices of
incident elements

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Data Structures – FE Model Topology
• For each vertex (all multigrid levels):• For each vertex (all multigrid levels):

27 indices of
neighbor vertices

27 indices of vertices
which restrict to theneighbor vertices

(on the same level),
i.e. the 33 domain of
the numerical stencil

which restrict to the
considered vertex
(on the next finer level)

Up to 8 indices of vertices
which the considered
vertex interpolates from
(on the next coarser level)

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Data Structures – Simulation
• For each finite element:• For each finite element:

– Elastic modulus E

– Element rotation R
D it– Density ρ

• For each simulation level vertex:
– Vertex position p0 in undeformed state

– Is the vertex fixed?

– Force vector f

– Displacement vector of previous time step and its first and second derivatives ,old oldu uoldu

• For each vertex (all multigrid levels):
– 27 3x3 matrix coefficients Ai

– Right hand side vector b

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

g

– Displacement vector u

– Residual vector r

GPU‐friendly Memory Layout
C l i f d i• Coalescing of device memory accesses
– Fermi GPU fetches contiguous blocks of 128 bytes aligned at 128‐byte boundaries

– Threads in a warp should access successive memory addresses

• General parallelization strategy: One CUDA thread per vertex/finite element
Arrays with multiple scalar components (up to 243) per data element (v0i, v1i, v2i, …)

Memory Transaction Memory Transaction

v00 v10 v20 v01 v11 v21 v02 v12 v22 v03 v13 v23 v04 v14 v24 v05 v15 v25… … … … … …v00 v10 v20 v01 v11 v21 v02 v12 v22 v03 v13 v23 v04 v14 v24 v05 v15 v25… … … … … ………

Memory Transaction

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

• Store arrays such that their scalar components are grouped into
separate memory blocks

CUDA Kernels (1)
I h ti tIn each time step:

• (1) Re‐assemble system of equations to consider current element rotations

Computation of element rotations

Assembly of simulation level equations (1)

Assembly of simulation level equations (2)

Assembly of coarse grid equations

(Forces and dynamics)

• (2) Solve system of equations by performing multigrid V‐cycles (next slide)

Assembly of coarse grid equations

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

() y q y p g g y ()

CUDA Kernels (2)
(2) S l t f ti b f i lti id V l• (2) Solve system of equations by performing multigrid V‐cycles
for (int c = 0; c < numVCycles; c++) // Perform numVCycles V‐cycles per time step
{

for (int = 0; < numLevels‐1; ++) // Going down in the V‐cycle from fine to coarse grids (level 0 is the finest)
{

for (int i = 0; i < numPreSmoothSteps; i++) { }Gauss‐Seidel relaxation on level

Computation of residual on level

}
Restriction of residual from level to level +1

CG solver for coarsest level (i e level numLevels‐1)
for (int = numLevels‐2; >= 0; ‐‐) // Going up in the V‐cycle from coarse to fine grids
{

CG solver for coarsest level (i.e., level numLevels‐1)

Interpolation of error from level +1 to level and coarse grid correction

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

for (int i = 0; i < numPostSmoothSteps; i++) { }
}

}

p g

Gauss‐Seidel relaxation on level

Computation of Element Rotations
1 CUDA th d fi it l t• 1 CUDA thread per finite element

• Algorithm:
– Fetch indices of element’s vertices

– Fetch displacement vectors u at these vertices

– Compute deformation gradient

Compute element rotation R by iterative polar decomposition– Compute element rotation R by iterative polar decomposition

– Store element rotation R

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Assembly of Simulation Level Equations (1)
1 CUDA th d i l ti l l t• 1 CUDA thread per simulation level vertex

• A single generic element stiffness matrix K0 is stored in constant memory
– A specific element stiffness matrix K is obtained by scaling with the element’s p y g

elastic modulus E:

• Algorithm:
Host: Initialize global memory with 0

0K EK=

– Host: Initialize global memory with 0

– If vertex is fixed: Store equation

– Else: Iterate over the incident elements of the vertex
3 0I u =

• Fetch element index

• Fetch element rotation R and elastic modulus E

• Iterate over element’s vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Iterate over element s vertices

– Accumulate the per‐vertex equation in global memory;
Skip LHS part of a vertex’s contribution if the vertex is fixed

Assembly of Simulation Level Equations (2)
1 CUDA th d i l ti l l t• 1 CUDA thread per simulation level vertex

• Algorithm:
– If the vertex is not fixed:

• Fetch

• Update and store in global memory

• Fetch force vector f

, , ,old old oldu u u u

, ,old old oldu u u
• Fetch force vector f

• Fetch indices of incident elements
• Fetch densities ρ of incident elements and compute vertex mass

• Add the contributions of the external force and of the dynamics to the
equation in global memory

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Assembly of Coarse Grid Equations
9 CUDA th d t (h th d t f th i• 9 CUDA threads per vertex (each thread computes one of the nine
components of all 3x3 matrix coefficients of the stencil)

• Stencil is accumulated in 27 registers
and finally written to global memory

• Algorithm:
Iterate over 53 domain– Iterate over 53 domain

• Accumulate contributions of the 27 stencils
at current position (restriction)

3• Distribute result to 33 stencil (interpolation)

• Code had to be manually unrolled
to achieve optimal performance

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

p p

Gauss‐Seidel Relaxation
M lti l G S id l l ti b titi i th ti i t 8 b t• Multi‐color Gauss‐Seidel relaxation by partitioning the vertices into 8 subsets
– Vertices in each subset can be relaxed in parallel, but subsets must be processed

sequentially: The kernel is called once for each subset

• 1 CUDA thread per vertex of the respective subset

• Algorithm:
Fetch RHS vector b– Fetch RHS vector b

– Iterate over the 33 domain of neighbor vertices

– Fetch index of neighbor vertex

– Fetch displacement vector u at this vertex

– Fetch 3x3 matrix coefficient Ai

– Accumulate contributions

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Accumulate contributions

• Relax equation and store new displacement vector u
in global memory

Computation of Residual
1 CUDA th d t• 1 CUDA thread per vertex

• Similar to Gauss‐Seidel relaxation, however now all vertices can be processed
in parallel with a single kernel call

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Restriction of Residual
1 CUDA th d t• 1 CUDA thread per vertex

• Algorithm:
– Iterate over the 27 vertices which restrict to this vertex 1/21/4 1/4

• Fetch index of vertex

• Fetch residual r at this vertex

• Accumulate weighted residual
1/2 1/2

1/21/4 1/4

• Accumulate weighted residual

– Store accumulated residual as right hand side vector b
in global memory

1/21/4 1/4

1

– Initialize displacement vector u with 0 1/21/4 1/4

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Interpolation of Error and Coarse Grid Corr.
1 CUDA th d t• 1 CUDA thread per vertex

• Algorithm:
– Iterate over the up to 8 vertices which this vertex

1

p
interpolates from

• Fetch index of vertex

• Fetch displacement vector u at this vertex

1/2 1/2

Fetch displacement vector u at this vertex

• Accumulate weighted displacement vector

– Add accumulated displacement vector to the
di l t t i l b l

1/4 1/4

displacement vector u in global memory
(coarse grid correction)

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

1/4 1/4

Solver for the Coarsest Level
C j t di t (CG) l ith J bi diti (i di l)• Conjugate gradient (CG) solver with Jacobi pre‐conditioner (inverse diagonal)

• Runs on a single multiprocessor (using a single thread block) to avoid global
synchronization via separate kernel calls

• 1 CUDA thread per vertex

• Number of unknowns is limited by the maximum number of threads per block
and by the size of the shared memoryand by the size of the shared memory
– Number of multigrid levels is chosen such that the number of vertices

on the coarsest grid is ≤ 512

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Rendering
Hi h l ti d f• High resolution render surfaces
– Each vertex is bound to nearest finite element

– Deformed vertex positions are determined by
tri‐linear interpolation/extrapolation

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Test System
2 I t l X X5560 2 8 GH (3 2 GH) RAM RAM• 2x Intel Xeon X5560 2.8 GHz (3.2 GHz)
– 4 cores per CPU

• 48 GB DDR3 1333 MHz, triple channel

CPU CPURAM RAM

, p
– NUMA architecture*

– Theoretical memory bandwidth:
29 7 GB/s (per CPU)

QPI
11.9 GB/s
(each dir)

29.7 GB/s 29.7 GB/s

GPU
29.7 GB/s (per CPU)

– Theoretical QPI bandwidth:
11.9 GB/s (each direction)

NVIDIA GTX 480 (“F i”) 1 5 GB VRAM Chipset

PCIe 2.0

165 GB/

8 GB/s
(each dir)

… … …

…

• NVIDIA GTX 480 (“Fermi”), 1.5 GB VRAM
– 15 multiprocessors, 480 CUDA cores

– Theoretical memory bandwidth: 165 GB/s

Chipset

VRAM

165 GB/s

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

…*For the parallelized CPU implementation, the coefficients of each
per‐vertex equation are stored in the respective CPU’s localmemory

Performance – Test Model
St f d B

12,000 Elements
15 000 Vertices• Stanford Bunny 15,000 Vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Test Model
St f d B

33,000 Elements
39 000 Vertices• Stanford Bunny 39,000 Vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Test Model
St f d B

94,000 Elements
105 000 Vertices• Stanford Bunny 105,000 Vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Test Model
St f d B

269,000 Elements
291 000 Vertices• Stanford Bunny 291,000 Vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Test Model
St f d B

269,000 Elements
291 000 Vertices• Stanford Bunny 291,000 Vertices

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

Performance – Solver Convergence

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

6 5 310 , 0.3, 10 / , 50 , hexahedra edge length 2.8 and 1.4E Pa kg m dt ms mm mm= ν = ρ = = =
Timings were obtained on the CPU using 1 core

Performance – Solver Convergence

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

6 5 310 , 0.3, 10 / , 50 , hexahedra edge length 2.8 and 1.4E Pa kg m dt ms mm mm= ν = ρ = = =
Timings were obtained on the CPU using 1 core

Performance – Simulation Time Steps/sec
140 70 30 12

100

120

140

50

60

70

25

30

10

12

60

80

100

m
e
St
ep

s/
se
c

30

40

50

15

20

6

8

GPU

1 Core

2 Cores

20

40

Ti
m

10

20

5

10

2

4

2 Cores

4 Cores

8 Cores

0

Single Double

12K

0

Single Double

33K

0

Single Double

94K

0

Single Double

269K

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

12K 33K 94K 269K
Model Size (Number of Finite Elements) and FP Precision

Each time step includes the re‐assembly of the per‐vertex equations (simulation level + coarse grids) for the
co‐rotational strain formulation and 2 multigrid V‐cycles, each with 2 pre‐ and 1 post‐smoothing Gauss‐Seidel steps

Performance – Speed‐up

25

30

25

30

15

20

15

20

up
 (w

rt
 1
 C
or
e)

GPU

1 Core

5

10

5

10

Sp
ee
d‐
u 1 Core

2 Cores

4 Cores

8 Cores

00

Single Double Single Double Single Double Single Double

12K 33K 94K 269K

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision

Performance – Costs per Finite Element
A ti d t fi it l t ti t• Amortized costs per finite element per time step (Bunny 269K elements)

Kernel FLOPs % Bytes R/W % GPU Timings %

Single Double Single Double2 V(2,1)‐cycles per time step g g

Computation of element rotations 470 2 160 300 1 0 1

Assembly of simulation level equations (1) 10000 51 6600 13000 23 33 30

A bl f i l ti l l ti (2) 32 0 140 270 0 0 0Assembly of simulation level equations (2) 32 0 140 270 0 0 0

Assembly of coarse grid equations 3200 17 5100 10000 18 24 21

Gauss‐Seidel relaxation 6 x 660 20 6 x 1800 6 x 3500 39 27 33

Computation of residual 2 x 620 6 2 x 1800 2 x 3500 13 11 12

Restriction of residual 2 x 210 2 2 x 580 2 x 1000 4 1 1

Interpolation of error and coarse grid corr. 2 x 39 0 2 x 200 2 x 350 1 2 1

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

CG solver on coarsest level 2 x 3 0 2 x 1 2 x 1 0 1 1

Total (per finite element per time step) 19000 28000 54000

Performance – GFLOPS (sustained)

50

60

50

60

30

40

30

40

G
FL
O
PS GPU

1 Core

10

20

10

20

G 1 Core

2 Cores

4 Cores

8 Cores

00

Single Double Single Double Single Double Single Double

12K 33K 94K 269K

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision

Performance – Memory Throughput (sustained)

80

90

100

80

90

100

50

60

70

50

60

70

G
B/
s GPU

1 Core

20

30

40

20

30

40
1 Core

2 Cores

4 Cores

8 Cores

0

10

0

10

Single Double Single Double Single Double Single Double

12K 33K 94K 269K

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision

Conclusion and Future Work
R l ti FEM i l ti f d f bl bj t bl d b• Real‐time FEM simulation of deformable objects enabled by a
fully GPU‐based geometric multigrid solver
– Hexahedral finite elements on a uniform Cartesian grid, co‐rotational strain

– Regular shape of stencil enables GPU‐friendly parallelization and memory accesses

– Performance is boosted by the GPU’s compute power and memory bandwidth

• Up to 27x faster than 1 CPU core / 4x faster than 8 CPU coresUp to 27x faster than 1 CPU core / 4x faster than 8 CPU cores

• Up to 56 GFLOPS (single) / 34 GFLOPS (double precision) (sustained performance)

• Up to 88 GB/s memory throughput (sustained performance)

• Real‐time/interactive simulation rates:
120 time steps/sec for 12,000 elements, 11 time steps/sec for 269,000 elements

• Future work

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

– GPU‐based collision detection

– Parallelization on multiple GPUs

Thanks for your attention!
htt // i t d /R h/P bli ti /C M h i• http://wwwcg.in.tum.de/Research/Publications/CompMechanics

C. Dick, J. Georgii, R. Westermann. A Real‐Time Multigrid Finite Hexahedra
M h d f El i i Si l i i CUDA T h i l R J l 2010Method for Elasticity Simulation using CUDA. Technical Report, July 2010.

Demo Executables

computer graphics & visualizationGTC 2010 Christian Dick, dick@tum.de

