CUDA for Real-Time Multigrid
Finite Element Simulation of
Soft Tissue Deformations
Christian Dick

Computer Graphics and Visualization Group
Technische Universitat Miinchen, Germany

tUNzp

computer graphics & visualization

Motivation

* Real-time physics-based simulation of deformable objects
— Various applications in medical surgery training and planning
* Finite element method (FEM) in combination with a geometric multigrid solver
— Physics-based material constants
— Mathematically sound
— Easy handling of boundaries
— Linear-time complexity of the solver in the number of unknowns

* Goal: Exploit the GPU’s massive computing power and memory bandwidth to
significantly increase simulation update rates / increase FE resolution

tUN3zp

computer graphics & visualization

GTC 2010 Christian Dick, dick@tum.de

Take-Away

e First fully GPU-based geometric multigrid solver for real-time FEM simulation
of deformable objects (linear elasticity, co-rotated strain)

— Matrix-free FEM and multigrid formulation suited for the GPU
— Highly efficient CUDA implementation
» Data structures, memory layout, parallelization
— Detailed performance analysis
* Up to 27x faster than 1 CPU core / 4x faster than 8 CPU cores
* Up to 56 GFLOPS (single) / 34 GFLOPS (double precision) (sustained performance)
* Up to 88 GB/s memory throughput (sustained performance)
* Simulation rates:
— 120 time steps/sec for 12,000 hexahedral elements

— 11 time steps/sec for 269,000 hexahedral elements th3D

GTC 2010 Christian DiCk, dick@tum.de computer graphics & visualization

Deformable Objects on the GPU

 Architecture of the NVIDIA Fermi GPU

— 15 multiprocessors, each with 32 CUDA cores (ALUs) for integer- and floating-point
arithmetic operations

— GPU executes thousands of threads in parallel

* Requirements for an algorithm to run efficiently on the GPU

— Restructure algorithm to expose fine-grained parallelism
(one thread per data element)

— Avoid execution divergence of threads in the same warp
— Choose memory iayouts which enable coalescing of device memory accesses

— Only threads in the same thread block can communicate and be synchronized
efficiently (global synchronization only via separate kernel calls)

— Very limited resources (registers, shared memory) per thread th

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Our Approach

* Hexahedral (tri-linear) finite elements
on a uniform Cartesian grid

* Linear elasticity, co-rotated strain
e Geometric multigrid solver

e CUDA API to flexibly access
all resources on the graphics card

 Advantages:

— Numerical stencil of regular shape enables
efficient GPU implementation

— FE model and multigrid hierarchy
generation is easy and fast

— Only one pre-computed element stiffness matrix

(greatly reduces memory requirements)
GTC 2010 Christian Dick, dick@tum.de

Elasticity & FEM

e Deformation of an object is described by a displacement field u:Q — R’

u(x)
Undeformed configuration Deformed configuration

 yisdetermined by minimizing the functional (potential energy)
€ : Strain
_ 1 T T . .
E(u)-;j O'dX—If u dx —>min G : Stress
Q

Q f . External forces

tUN3zp

GTC 2010 Christian DiCk, dick@tum.de computer graphics & visualization

Elasticity & FEM

* For the numerical solution, u and f are discretized by
— afinite element decomposition of the object’s domain (regular hexahedra) and
— a nodal basis formed by the elements’ shape functions (tri-linear interpolation)

u. . Displacement at Node i

u()= Y uolx)

Nodes i ¢,: Basis function for Node i

* For asingle element, the functional is minimized by solving a linear system

e

Ee(ue):lj(ue)T B'DBu* dx—j(fe)r u® dx —min u": Linearized ,

25 Q f¢: Linearized f

T e __ re . . .
<:>[B DB u —f] B : Strain matrix
K¢ : Element stiffness matrix D : Material law

GTC 2010 Christian Dick, dick@tum.de

Elasticity & FEM

The global system of equations is assembled from the individual elements by
considering sharing of vertices

For more details: [Bathe, 2002]

GTC 2010

Christian Dick, dick@tum.de

Per element
Keue :fe

Ku

Sharing of
u;and f;

/

f

tUN3zp

computer graphics & visualization

Finite Element Discretization

 Hexahedral finite element discretization on a uniform Cartesian grid

— Easily obtained from a surface triangle mesh by voxelization
» A voxel is classified as “inside” iff the voxel’s center is inside the object
* The “inside” voxels correspond to the finite elements

»

k-Buffer Depth k-Buffer

capturing tlm
fragments .3D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

1
|
1

PEEaN

ollelle] (o]
@)} 3 (e
@)} 3 (e
elle) L (e
oO0|I0|I00|0
olle)e] e}
ellel T Tl (e](e)
oO0|I0|I00|0O
ollelle] (o]

|V|V|V:V:V|V|

Per-Element Equations (static)

* Per-element equations u,,f; @ e U
8 u.: Displacements
dKu=f|, i=1,..8 ' P
= f. : Forces
e is now omitted Ul,f1 ©® °® Uz,f2
K : Element stiffness matrix consisting of 8x8 3x3-matrix coefficients
K13 K14 K 23 K24 K33 -I<.34 I<.4?: K44
S A N S A
i ’ N i i N VN
i R4 AN f N i
f P \ i I S ’ i
R S B N 4 ;
(e 0 O » o ®» @ O
Kll K12 K21 K22 K31 K32 41 K42
=1 j=2 j=3 i=4 t‘.m?)D
GTC 2010 Christian Dick, dick@tum.de computer graphics 8.(visua|ization

Per-Element Equations (co-rotated, static)

e Co-rotated strain /— Rotate forces from initial into current configuration
8
T(.0 0\l
ZRKU[(R (b} +u,)-p)]_f,.

, =
Jj=1
8 8

T T .0
> RK,R"u;=f,—> RK,(R"p; —py)
AT e

Rotate displacements back into initial configuration

— R : Element rotation
9: Undeformed vertex positions

8

4
. . Linear strain Linear, co-rotated strain
 Ris obtained by polar decomposition of the element’s average deformation
gradient (5 iterations) a, b, c: Edge lengths of hexahedral element
8 H . —
R, =1, +lzul?’d (il,il,ilj Signs ('+) (+'+)
4= a b ¢ v
e (7)) ! tym
R .=—|R +(R
n+1 2(n (n) (—,—) 7 (+,—) 03D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Per-Element Equations (co-rotated, dynamic)

* Dynamics

8 R M: Mass matrix

Y (Myii, +Cyi + A) =b, , i=1,..,8

=1

7 C : Damping matrix

dt: Time step length

* Mass proportional damping: C, =aM,

* Mass lumping: M,=ml, , M,=0fori#j
\— mass of vertex i (1/8 element mass) ttm3D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Per-Vertex Equations

* Per-vertex equations: Add stencil coefficients of shared vertices

‘;: """" i JEE ';;’ e ® ® , / 'r /
\ ’ SN " \\Q’ / 4
S ’ N i Re \\ /‘ 9
of--- &L-f@ e ha\\) 5
-9 @ --0 IV N ¢ *— e
» A N o \\1
’ N VAN TN N\
’ N ’ N &/ 9
/’ AN ’ : > 7 6\\\.
Y ¢ 6 o y o\
» Stencil on a 33 domain of adjacent vertices: 27 3x3-matrix coefficients
(1,1,1)
Aixux+i = bx
i=(-1,-1,-1)

* Dirichlet boundary conditions: Replace equation by /,u =0 and in the other
equations set the respective coefficient A; corresponding to this vertex to O

GTC 2010 Christian Dick, dick@tum.de

Geometric Multigrid

* Solve A"u" =b" current approximate solution v"

QF Relax A"v" ~ b"

Residual r" =p" — A"V"

GTC 2010

Solve A"e" = r"

Christian Dick, dick@tum.de

Correct v" «v" +e"

tUN3zp

computer graphics & visualization

Geometric Multigrid

Solve A"u" =b" current approximate solution v"

Residual r" =p" — A"V"

Restrict

QZh R2h h

Qh Relax Ahvh ~ bh Pre-smoothing Relax Ahvh ~ bh Post-smoothing

Correct v" «v" +e"

Interpolate

h _ th 2h
e =1,e

GTC 2010

- @
2h

Solve A*"e?" =

Coarse grid
correction

tUNzp

Christian Dick, dick@tum.de computer graphics & visualization

Geometric Multigrid

* Solve A"u" =b" current approximate solution v"

Pre-smoothing

QF Relax A"v" ~ b"

Residual r" =p" — A"V"

Restrict

P2 =Ry Multigrid

QZh
’ V-Cycle ‘

\ /

o O\ /Q

—@

Coarsest Grid Solver

GTC 2010 Christian Dick, dick@tum.de

Relax A"v" ~ b"
Correct v" «v" +e"

‘ correction

Post-smoothing

Coarse grid

Interpolate

h _ th 2h
e =1,e

Linear time
complexity

in the number
of unknowns

tUN3zp

computer graphics & visualization

Variational Properties of Multigrid

» Selection of transfer operators and coarse grid operators:

I, : Tri-linear interpolation

.
R;h = (/;h> <€—— Restriction is transpose of interpolation

AY = R;hAhlgh <€ Galerkin-based coarsening

1D Example:
Fine Grid

Coarse Grid

Interpolation

Restriction

* |In the finite element context, these choices naturally arise from the variational

principle

— Coarse grid correction minimizes the functional
GTC 2010 Christian Dick, dick@tum.de

tUN3zp

computer graphics & visualization

Multigrid Hierarchy

 The Cartesian grid enables to efficiently construct a nested multigrid hierarchy
— Grids are successively built from fine to coarse levels
— With each coarser level the cell size is doubled
— Acellis created if it covers at least one cell on the previous finer level

ILengO | | | Levgll | Level 2

——————————————————————————————————————

———————————————————————————————————————

tUN3zp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Matrix-Free Multigrid Formulation

e Restriction and Interpolation
— Weights are implicitly determined by the location of the vertices

Restriction Interpolation
® Fine grid vertices

. Coarse grid vertices tlm?)D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Matrix-Free Multigrid Formulation

* Construction of coarse grid equations A*" =R A"},

— Restriction: Linear combination of 33 fine grid equations leads to a 53 stencil

—. Interpolation: Substitution of fine grid unknowns reduces the stencil to a 3

| N : ’
5 : NN P
R s s
\ BN A RN A NG
x | o> 1 R o x
1728471 a0 g” T 500\

5 e’

/’l < 2

\/'\

GTC 2010

o---0- "8

Christian Dick, dick@tum.de

3 domain

Data Structures — FE Model Topology

* |Index-based representation of FE model and multigrid hierarchy
— Finite elements and vertices are enumerated and accessed via indices

— Typically requires significantly less memory than an index-free representation
using a rectangular domain with implicit neighborhood relationships

— Indices are represented by 32-bit integers
— A special index value of -1 indicates “void” elements/vertices

We store:
* For each finite element: * For each simulation level vertex:

8 indices of
incident elements

tUN3zp

computer graphics & visualization

8 indices of
incident vertices

GTC 2010 Christian Dick, dick@tum.de

Data Structures — FE Model Topology

* For each vertex (all multigrid levels):

27 indices of
. neighbor vertices
- (on the same level),
. i.e.the 33 domain of
. the numerical stencil

GTC 2010

o

: Chrjstian D:ick, dick@tum.de

~ 27 indices of vertices

which restrict to the

~ considered vertex
»-- (on the next finer level)

-~ Up to 8 indices of vertices

which the considered
vertex interpolates from
(on the next coarser level)

tUN3zp

computer graphics & visualization

Data Structures — Simulation

e For each finite element:
— Elastic modulus E
— Element rotation R
— Density p
* For each simulation level vertex:
— Vertex position p® in undeformed state
— Is the vertex fixed?
— Force vector f

— Displacement vector u°“ of previous time step and its first and second derivatives 4, i

* For each vertex (all multigrid levels):
— 27 3x3 matrix coefficients A;
— Right hand side vector b

— Displacement vector u
— Residual vector r tlm3D

GTC 2010 Christian DiCk, dick@tum.de computer graphics & visualization

GPU-friendly Memory Layout

* Coalescing of device memory accesses

— Fermi GPU fetches contiguous blocks of 128 bytes aligned at 128-byte boundaries
— Threads in a warp should access successive memory addresses

* General parallelization strategy: One CUDA thread per vertex/finite element
Arrays with multiple scalar components (up to 243) per data element (v, v, v, ...)

Memory TransactiO
/ 5 5 5
Mver Vi vy |-

Memory Transactiga

1| 1
\VO)/1

Memory Transaction

— -y -y -y -y -y
E' XURTTR TR TR TN

0 1
V2 .e V2 .e

P il
/] o<)
\ ol!

=
=
o
-

P e

/ 4 1 4 1 1 1 1 1
\ (\ 1 (\ U ‘\ U ‘\ U (\ U 'l
\ﬁ_’<§—’(§—’<§—,<§—’<§—,

e Store arrays such that their scalar components are grouped into
separate memory blocks tlm?)D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

CUDA Kernels (1)

In each time step:
* (1) Re-assemble system of equations to consider current element rotations

Computation of element rotations

Assembly of simulation level equations (1)

Assembly of simulation level equations (2) ‘ (Forces and dynamics)

Assembly of coarse grid equations

e (2) Solve system of equations by performing multigrid V-cycles (next slide)

tUN3p

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

CUDA Kernels (2)

* (2) Solve system of equations by performing multigrid V-cycles
for (int ¢ = 0; c < numVCycles; c++) // Perform numVCycles V-cycles per time step

{

for (int £ = 0; £ < numLevels-1; ¢++) // Going down in the V-cycle from fine to coarse grids (level 0 is the finest)

{
for (inti=0; i < numPreSmoothSteps; i++) { BEEIESe=l e [=INT=IEVE ool gk (A= NAY
Computation of residual on level ¢

Restriction of residual from level 7 to level /+1

CG solver for coarsest level (i.e., level numLevels-1)

for (int £ = numLevels-2; ¢ >= 0; ¢--) // Going up in the V-cycle from coarse to fine grids

{

Interpolation of error from level /+1 to level ¢ and coarse grid correction

for (int i = 0; i < numPostSmoothSteps; i++) { BEEIESI=I 6 <IN E)Erd ol g ol o SV AN }
}

} GTC 2010 Christian Dick, dick@tum.de

Computation of Element Rotations

1 CUDA thread per finite element
 Algorithm:

Fetch indices of element’s vertices

Fetch displacement vectors u at these vertices

Compute deformation gradient

Compute element rotation R by iterative polar decomposition

Store element rotation R

GTC 2010 Christian Dick, dick@tum.de

tUN3zp

computer graphics & visualization

Assembly of Simulation Level Equations (1)

1 CUDA thread per simulation level vertex

* Asingle generic element stiffness matrix K° is stored in constant memory

— A specific element stiffness matrix K is obtained by scaling with the element’s
elastic modulus E: K = EK®

* Algorithm: @ 1909
— Host: Initialize global memory with 0 \\ /’
— If vertex is fixed: Store equation /Lu=0 == & O
— Else: Iterate over the incident elements of the vertex 4 , A ®
* Fetch element index /' \\\
e Fetch element rotation R and elastic modulus E ¢ OO ®

* |terate over element’s vertices

— Accumulate the per-vertex equation in global memory;

Skip LHS part of a vertex’s contribution if the vertex is fixed
GTC 2010 Christian Dick, dick@tum.de

Assembly of Simulation Level Equations (2)

1 CUDA thread per simulation level vertex
 Algorithm:
— If the vertex is not fixed:

e Fetch u,u®,u%,i

°@ and store in global memory

« Update i®,u% u
* Fetch force vector f

* Fetch indices of incident elements

* Fetch densities p of incident elements and compute vertex mass

* Add the contributions of the external force and of the dynamics to the

equation in global memory

GTC 2010 Christian DiCk, dick@tum.de computer graphics & visualization

Assembly of Coarse Grid Equations

* 9 CUDA threads per vertex (each thread computes one of the nine
components of all 3x3 matrix coefficients of the stencil)

* Stencil is accumulated in 27 registers

and finally written to global memory O
* Algorithm: ORI
— Iterate over 53 domain '6'“:‘"‘
* Accumulate contributions of the 27 stencils RO A Sk S &
at current position (restriction) ‘,¢“
* Distribute result to 33 stencil (interpolation) “ l#‘
 Code had to be manually unrolled ‘__’*__"
to achieve optimal performance VA NS
LI S B S
6+ 0 o0

GTC 2010 Christian Dick, dick@tum.de

Gauss-Seidel Relaxation

 Multi-color Gauss-Seidel relaxation by partitioning the vertices into 8 subsets

— Vertices in each subset can be relaxed in parallel, but subsets must be processed
sequentially: The kernel is called once for each subset

| so oo
1 CUDA thread per vertex of the respective subset L
. -Q@--@-0@ @
 Algorithm: A R
— Fetch RHS vector b ““
— Iterate over the 33 domain of neighbor vertices 9 O 0 O
— Fetch index of neighbor vertex | | | |
: : @ ® 9
— Fetch displacement vector u at this vertex N ; e
— Fetch 3x3 matrix coefficient A; \\ : ,/
— Accumulate contributions ""',?'\ =9
VA BN
* Relax equation and store new displacement vector u JRe = N
in global memory " é \‘

GTC 2010 Christian Dick, dick@tum.de

Computation of Residual

1 CUDA thread per vertex

e Similar to Gauss-Seidel relaxation, however now all vertices can be processed
in parallel with a single kernel call

tUN3zp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Restriction of Residual

1 CUDA thread per vertex

 Algorithm:
— lterate over the 27 vertices which restrict to this vertex
* Fetch index of vertex
* Fetch residual r at this vertex
e Accumulate weighted residual

— Store accumulated residual as right hand side vector b
in global memory

— Initialize displacement vector u with O

GTC 2010 Christian Dick, dick@tum.de

tUN3zp

computer graphics & visualization

Interpolation of Error and Coarse Grid Corr.

 Algorithm:

— lterate over the up to 8 vertices which this vertex
interpolates from

i n1/2 o 12
* Fetch index of vertex o >0< o
* Fetch displacement vector u at this vertex | | |

1 CUDA thread per vertex Q
1

* Accumulate weighted displacement vector
— Add accumulated displacement vector to the
displacement vector u in giobal memory
(coarse grid correction)

GTC 2010 Christian Dick, dick@tum.de

Solver for the Coarsest Level

* Conjugate gradient (CG) solver with Jacobi pre-conditioner (inverse diagonal)

* Runs on a single multiprocessor (using a single thread block) to avoid global
synchronization via separate kernel calls

1 CUDA thread per vertex

* Number of unknowns is limited by the maximum number of threads per block
and by the size of the shared memory

— Number of multigrid levels is chosen such that the number of vertices
on the coarsest grid is < 512

tUN3zp

GTC 2010 Christian DiCk, dick@tum.de computer graphics & visualization

Rendering

* High resolution render surfaces /

— Each vertex is bound to nearest finite element o

— Deformed vertex positions are determined by
tri-linear interpolation/extrapolation

tUN3zp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Performance — Test System

 2xIntel Xeon X5560 2.8 GHz (3.2 GHz) RAM CPU CPU RAM
— 4 cores per CPU
e 48 GB DDR3 1333 MHgz, triple channel

— NUMA architecture®

— Theoretical memory bandwidth:
29.7 GB/s (per CPU)

— Theoretical QPI bandwidth:
11.9 GB/s (each direction)

* NVIDIA GTX 480 (“Fermi”), 1.5 GB VRAM
— 15 multiprocessors, 480 CUDA cores
— Theoretical memory bandwidth: 165 GB/s

*For the parallelized CPU implementation, the coefficients of each
per-vertex equation are stored in the respective CPU’s local memory t 3D
°

computer graphics & visualization

11.9 GB/s
(each dir)

GTC 2010 Christian Dick, dick@tum.de

Performance — Test Model

12,000 Elements

. Stanford Bunny - 15,000 Vertices

Performance — Test I\/Iodel

33,000 Elements

* Stanford Bunny » 39,000 Vertices

Performance — Test Model

94,000 Elements

Stanford Bunny # 105,000 Vertices

Performance — Test Model
it 269,000 Elements

Stanford Bunny P 291,000 Vertices

Performance = Test Model
269,000 Elements

Stanford Bunny 291,000 Vertices

Performance — Solver Convergence

Residual reduction liry ll,/llryl,

1e0
le-1
le-2
le-3
le-4
le-5
le-6
le-7
le-8
1e-9
le-10
le-11
le-12
le-13
le-14
le-15

Solver comparison: Bunny, 33K, Double FP Precision

Solver comparison: Bunny, 269K, Double FP Precision

MG —— |

MG —— |
1e0 CG-Jacobi

CG-Jacobi le-1
le-2
le-3
le-4
le-5
le-6
le-7
le-8
le-9
le-10
le-11
le-12
le-13 :
. le-14 B
L L . L le-15 ' ' : : L : :

Residual reduction lir ll,/liryll,

10 15 20 25 30 0 60 120 180 240 300 360 420 480
Time (s) Time (s)

Timings were obtained on the CPU using 1 core
E=10°Pa, v=0.3,p=10’kg / m*, dt =50ms, hexahedra edge length=2.8mm and 1.4mm t 3D
L)

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Performance — Solver Convergence

Residual reduction liry ll,/llryl,

1e0

le-1

le-2

le-3

le-4

le-5

Solver comparison: Bunny, 33K, Single FP Precision Solver comparison: Bunny, 269K, Single FP Precision
T T T T T T T IMG T T T T T T MG T
CG-Jacobi o CG-Jacobi
& = le0 k
=
R
1 ¢ le-l | 1
o
2
. o le2 f E
=
s,
e
. = le3 E
=
S
7]
1 v ledr 1
1 1 1 1 1 1 1 1 1 le_s 1 1 1 1] 1
1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140
Time (s) Time (s)

Timings were obtained on the CPU using 1 core
E=10°Pa, v=0.3,p=10’kg / m*, dt =50ms, hexahedra edge length=2.8mm and 1.4mm t 3D
L)

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Performance — Simulation Time Steps/sec

140

120

100

Time Steps/sec
[e)] 0]
o o

I
o

N
o

Single

12K

Double

70

60

50

40

30

20

10

30 12
25 - 10
20 - 8
u GPU
15 - 6 | 1 Core
m 2 Cores
10 - 4 M 4 Cores
m 8 Cores
5 - 2
0 - 0
Single Double
33K 94K

Model Size (Number of Finite Elements) and FP Precision

Each time step includes the re-assembly of the per-vertex equations (simulation level + coarse grids) for the
co-rotational strain formulation and 2 multigrid V-cycles, each with 2 pre- and 1 post-smoothing Gauss-Seidel steps

Performance — Speed-up

30 30
25 25
o
5 20 20
o
-
£
2 15 - 15 ®GPU
s?:. m 1 Core
?
§ 10 - 10 m 2 Cores
m 4 Cores
5 5 m 8 Cores
0 - -0
Single Double Single Double Single Double Single Double
12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision w
tUizp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Performance — Costs per Finite Element

 Amortized costs per finite element per time step (unny 269« elements)

Kernel

GPU Timings %

2 V(2,1)-cycles per time step

Computation of element rotations 470 2 160 300 1 0 1
Assembly of simulation level equations (1) 10000 51 6600 13000 23 33 30
Assembly of simulation level equations (2) 32 0 140 270 0 0 0
Assembly of coarse grid equations 3200 17 5100 10000 18 24 21
Gauss-Seidel relaxation 6x660 20 6 x 1800 6x3500 39 27 33
Computation of residual 2 x 620 6 2 x 1800 2x3500 13 11 12
Restriction of residual 2x210 2 2 x 580 2 x 1000 4 1 1
Interpolation of error and coarse grid corr. 2x39 0 2 x 200 2 x 350 1 2 1
CG solver on coarsest level 2x3 0 2x1 2x1 0 1 1
Total (per finite element per time step) 19000 28000 54000

GTC 2010 Christian Dick, dick@tum.de

Performance — GFLOPS (sustained)

60

50

40

30

GFLOPS

20

10

60
50
40
30 ®™GPU
m 1 Core
20 m 2 Cores
| 4 Cores
10 m 8 Cores
-0
Single Double Single Double Single Double Single Double
12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision w
tUizp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Performance — Memory Throughput (sustained)

100

90

80

70

60

50

GB/s

40

30

20

10

100
90
80
70
60
50 HGPU
m 1 Core
40
m 2 Cores
30 | 4 Cores
- 20 m 8 Cores
- 10
-0
Single Double Single Double Single Double Single Double
12K 33K 94K 269K

Model Size (Number of Finite Elements) and FP Precision W
tUizp

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Conclusion and Future Work

* Real-time FEM simulation of deformable objects enabled by a
fully GPU-based geometric multigrid solver

— Hexahedral finite elements on a uniform Cartesian grid, co-rotational strain
— Regular shape of stencil enables GPU-friendly parallelization and memory accesses
— Performance is boosted by the GPU’s compute power and memory bandwidth

* Up to 27x faster than 1 CPU core / 4x faster than 8 CPU cores

* Up to 56 GFLOPS (single) / 34 GFLOPS (double precision) (sustained performance)

* Up to 88 GB/s memory throughput (sustained performance)

» Real-time/interactive simulation rates:
120 time steps/sec for 12,000 elements, 11 time steps/sec for 269,000 elements

e Future work

— GPU-based collision detection Lm
— Parallelization on multiple GPUs t .3D

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

Thanks for your attention!

* http://wwwcg.in.tum.de/Research/Publications/CompMechanics

C. Dick, J. Georgii, R. Westermann. A Real-Time Multigrid Finite Hexahedra

Method for Elasticity Simulation using CUDA. Technical Report, July 2010.

Demo Executables

tUN3p

GTC 2010 Christian Dick, dick@tum.de computer graphics & visualization

