## GPU Nearest Neighbor Searches using a Minimal kd-tree

Shawn Brown Jack Snoeyink

Department of Computer Science University of North Carolina at Chapel Hill shawndb@cs.unc.edu snoeyink@cs.unc.edu

### My Goals

**Primary:** Write spatial streaming tool to process billions of points by applying operators to local neighborhoods.

**Survey:** Compare & contrast kd-Tree, Quad-Tree, and Morton Z-order nearest neighbor search algorithms for GPUs.

**Current:** GPU kd-Tree NN search

Result: 15 million 2D queries per second

### **NN Search Definitions**

### **Vocabulary:**

NN - Nearest Neighbor

**kNN** – 'k' nearest neighbors

#### **Definitions:**

d is the number of dimensions

S is a search set containing 'n' points

Q is a query set containing 'm' points dist(a,b) is a distance metric between two points

$$dist(a,b) = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_d - a_d)^2}$$

### NN Search Types (part I)

**QNN:** Query Nearest Neighbor

Find the closest point in S for each point in Q by dist(p,q).

Input: S, Q

**Output:** List of m indices of closest points in S.

kNN: 'k' Nearest Neighbors

Find the k closest points in S for each point in Q by dist(p,q).

Input: S, Q

**Output:** List of km indices of closest points in S.

### NN Search Types (part 2)

All-NN: All Nearest Neighbor

Find the closest point in S for each point in S by dist(p,q).

Input:  $S (Q \leftrightarrow S)$ 

**Output:** List of n indices in S.

Note: Exclude zero distance results

All-kNN: All 'k' Nearest Neighbors

Find the k closest points in S for each point in S by dist(p,q).

Input:  $S (Q \leftrightarrow S)$ 

**Output:** List of km indices in S.

Note: Exclude zero distance results

RNN: Range Query ANN: Approximate Nearest Neighbor

### **NN** search Solutions



#### **Linear Search:**

Brute force solution, compare each query point to all search points

O(mn)



#### **Spatial Partitioning Data**

**Structures:** Divide space into smaller spatial cells. Use "branch and bound" to focus on productive cells.

**Examples:** kd-tree, Quad-tree, Grid, Voronoi Diagram, ...



**Spatial Partitioning:** subdivide space



**Data Partitioning:** subdivide data into sets

### **NN Searches on GPU**

- Purcell 2003
  - Multi-pass using uniform grid
  - Approximate
- Bustos 2006
  - Trick video card into finding Manhattan distance by texture operations
- Rozen 2008
  - Bucket points into 3D cells then brute force search on 3x3x3 neighborhoods
- Garcia 2008
  - Brute force algorithm

Search time: I00x faster vs. MATLAB

- Zhou 2008
  - Breadth first search kd-tree
  - Voxel Volume split heuristic

Build time: 9-13x faster vs. CPU

Search time: 7-10x faster vs. CPU

- Qiu 2008
  - Depth first search kd-tree
  - Median split heuristic
  - Approximate results

Registration time: I00x faster vs. CPU

### kd-tree

### Invented by J.L. Bentley, 1975

| Data Types                              | Points (more complicated objects)                                                                                                                                                                   |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Hierarchical                            | Corresponds to a binary tree                                                                                                                                                                        |  |  |  |
| Axis aligned spatial <b>cells</b>       | <ul> <li>Each cell ↔ node of the binary tree</li> <li>The root cell contains the original bounds and all points</li> </ul>                                                                          |  |  |  |
| Recursively defined                     | <ul> <li>Divide each cell into left and right child cells starting from the root.</li> <li>The points associated with each cell are also partitioned into the left and right child cells</li> </ul> |  |  |  |
| <b>Splitting</b> Heuristics             | Form a <b>cutting plane</b> (pick split axis & split value)                                                                                                                                         |  |  |  |
| Data Partitioning<br>Space Partitioning | Median Split Empty space maximization Surface Area, Voxel volume, etc.                                                                                                                              |  |  |  |

### **Building a kd-tree**

Add root cell to build queue While build queue not empty



- grab current cell from build queue
- Pick a cutting plane (via *median split*)
- Subdivide current cell
  - **Termination** "Do nothing" < m points in cell
  - \*Split parent bounds into left & right cells
  - Partition parent points into left & right cells
  - Add left & right cells to build queue

**Storage:** O(dn)

**Build Time:**  $O(dn \log n)$ 

### **More Build details**

- Build kd-tree on CPU, transfer nodes to GPU
- Splitting heuristic
  - Use *quickmedian* selection algorithm for partitioning points in current range [start,end] on current axis  $\langle x,y,z,... \rangle$ . Root range = [1,n]
  - Use LBM median instead of true median
- Convert to Left-balanced median array layout
  - Move node at median array position to targeted position in Left-balanced median array
- Also create remapping array during build
  - Convert kd-node indices back into original point indices

### Left Balanced Median (LBM) Nearly complete binary tree

Case I: Last row is below half-way point





### **Left Balanced Tree**

#### **Left Balanced Median (LBM)**

$$h = \log_2(n+1)$$

$$half = 2^{h-2}$$

$$lastRow = n - (2 \cdot half) + 1$$

$$LBM = half + min(half, lastRow)$$



| n | LBM |
|---|-----|
| 1 | 1   |
| 2 | 2   |
| 3 | 2   |

| Root |  |
|------|--|
|------|--|

2i

2i+1

n

n+1

2h-1

Links: Given node @ i

$$Parent = i/2$$

Left 
$$= 2i$$

$$Right = 2i+1$$

**Tests:** 
$$isRoot$$
  $(i==1)$ 

is 
$$Leaf$$
  $(2i > n)$ 

$$& ((2i+1)>n)$$

### Searching a kd-tree

Push **root** node onto stack Recursively search children\*\*

- Pop current search node off stack
- Trim Test current node, if offside
- currDist = dist(qp, currNode.point),
- Update Best distance, if currDist is closer
- Map left/right nodes onto onside/offside
- Trim Test & Push offside node onto stack
- Push onside node → Point Location

NN = Best distance (Best index)

#### **Search Times**

**Best:**  $O(dm(\log n + t))$ 

**Expected:**  $O(dm(n^{1-1/d}+t))$ 



### **Trim Test Optimization**





Onside = child cell containing query point
Offside = leftover child cell (without query point)

No 1D overlap  $\rightarrow$  safe to discard the entire sub-tree.

### **More Search Details**

- Cyclic
  - start at root with x-axis
  - nextAxis = (currAxis + 1) % d; prevAxis = (currAxis 1) % d;
- Backtracking via DFS stack, not BFS queue
  - Less storage  $\rightarrow$  shared memory:  $O(\log n)$  stack vs. O(n) queue
  - **Better trim behavior:** 40-80 iterations per query point using stack vs. 200-500 iterations using queue
- 12 GPU kernels
  - NN types (QNN,All-NN, kNN,All-kNN) \* (2D,3D,4D) = 12 kernels
  - Could be rewritten to one kernel using templating
- One thread per query point
  - I/O Latency overcome through thread scheduling
  - Thread block must wait on slowest thread to finish
- Avoid slow I/O operations (RAM)
  - 1 I/O (load point) per search loop
  - extra trim test → continue loop before doing unnecessary I/O
  - Remap once from node index to point index at end of search
- kNN search
  - Closest heap data structure
  - Acts like array (k-1 inserts) then acts like max-heap
  - Trim distance kept equal to point at top of max-heap



### **GTX 285 Architecture**



GPU Device

#### **Device Resources**

- 30 GPU Cores
  - 240 total thread processors
- 1 GB on-board RAM
- 32 KB constant memory

#### **GPU** Core

- 8 physical thread processers per core
- 1 double precision unit per core
- 16 KB shared memory
- 8,192 shared 32-bit registers

#### **Thread Processor**

• Shares resources (memory, registers) in same GPU core

### **Execution Model**

**Software** Hardware **Notes Thread** Threads are executed **Thread Processor** by thread processors Threads blocks executed on GPU **GPU** Thread cores Core **Block** Supports syncing of threads within A block **GPU** Device Grid A kernel is launched as a 1D or 2D Grid of thread blocks Only one kernel can execute on a GPU device at a time. Syncing across blocks not supported\*

### **Execution**

Hardware

Thread **Processor** 



- •Thread blocks start & stay with initial core
- •Thread block finishes when all threads finish
- Multiple blocks get mapped to each core
- •One GPU core can execute several blocks concurrently depending on resources
- •Maximum of 512 threads per thread block





Thread Block Threads blocks executed on GPU cores

Supports syncing of threads within A block

#### **GPU** Device



#### Grid



A kernel is launched as a 1D or 2D Grid of thread blocks

Only one kernel can execute on a GPU device at a time.

Syncing across blocks not supported\*



## GPU Hardware Limits and Design Choices, part 1

#### Memory

- Aligned data (4,8,16 bytes)
   → better performance
- limited capacity → use minimal data structures

#### Memory Hierarchy registers » shared » constant » RAM

- Local variables → registers
- stacks/arrays → shared

### Floats (IEEE 754 compliant)

- Focus on singles (32-bit)
- Doubles (64-bit) are 8x slower on GTX 285

#### Thread Block Size

- 4-16 threads per block is optimal based on testing
- I thread per query point





## GPU Hardware Limits and Design Choices, part 2

#### Latency



- Waiting on I/Os impacts performance
- Hide I/O latency by massive scheduling of threads
- 1 thread per query point

#### Divergence

- Divergent branching degrades performance
- Minimize branching



#### Coalesence

GPU can coalesce aligned sequential I/O requests

Unfortunately, kd-tree searches do not lend themselves to aligned I/O requests



### kd-tree Design Choices

### **Bound kd-tree Height**

Bound height to ceil[log<sub>2</sub>n]
Build a balanced static kd-tree
Store as left-balanced binary array

### **Minimal Foot-print**

Store one point per node O(dn) Eliminate fields

No pointers (parent, child) → Compute directly

No cell min/max bounds

Single split plane per cell is sufficient

Split plane (value, axis) is implicit

**Cyclic** kd-tree axis access → track via stack

kd-tree → inplace reorder of search points

#### Final kd-tree Design:

- Static
- Balanced
- Median Split
- Minimal (Inplace)
- Cyclic

#### Storage:

- one point per node
- left balanced array i/2, 2i, 2i+1

(85.54 s)

### Timings (in ms)

### QNN search on GPU (CPU)

| n          |           | 2D         | 3D       | 4D       |
|------------|-----------|------------|----------|----------|
| 1,000      | 0.07      | (0.10)     | 0.18     | 0.41     |
| 10,000     | 0.42      | (12.46)    | 1.02     | 2.12     |
| 100,000    | 4.17      | (156.20)   | 10.10    | 23.10    |
| 1,000,000  | 45.62     | (2,001.20) | 111.34   | 247.47   |
| 10,000,000 | 668.07 (2 | 26,971.21) | 1,614.34 | 3,840.73 |

#### All-kNN search on GPU (CPU), k = 31

| n         |        | 2D          | 3D       | 4D        |
|-----------|--------|-------------|----------|-----------|
| 1,000     | 1.01   | (0.10)      | 1.64     | 2.64      |
| 10,000    | 5.88   | (12.46)     | 12.57    | 28.73     |
| 100,000   | 57.04  | (156.20)    | 123.74   | 291.26    |
| 1,000,000 | 579.57 | (10,127.02) | 1,270.45 | 2,9991.02 |

### **Optimal Thread Block Size**



#### QNN, All-NN

The Optimal thread block Is 10x1 for n,m=1 million points

#### kNN, All-kNN

The optimal thread block size is 4x1 for n,m=1 million points, k=31



### Increasing n,m; Increasing k



### Increasing n,m; $n \le 100$ , use CPU $n \ge 1000$ , use GPU







### Results

GPU: GTX 285 using CUDA 2.3

**CPU:** Intel I7-920 @ 2.4 Ghz

• 2D Results: NN up to 36 million points kNN up to 1 million, k=31 GPU runs 8-44x faster

• 3D Results: NN up to 22 million points

kNN 1 million, k=31

**3D:** Runs 7-29x faster

4D: Runs 6-22x faster

### Limitations, part I

- Under utilization of GPU
  - Scan, 13 Billion 32-bit elements per second
  - Radix Sort, 480 Million 32-bit key/value pairs per second
  - Kd-tree NN Search, 15 Million queries (2D points) per second against a 15 million element kd-tree.
  - Solution: Use another approach that maps onto GPU better

#### Low Occupancy

- Lots of shared memory for per thread stacks
- QNN 2D Kernel (Max Occupancy = 32,
  - 10 threads per block, 12 registers, 2,136 bytes shared memory
  - 19% occupancy

#### Divergence

- almost guaranteed → serialized code access
- More threads  $\rightarrow$  more opportunities for divergence
- Entire thread block doesn't finish until slowest thread finishes

#### Bank conflicts

Haven't done any analysis yet...

### Limitations, part 2

- No coalescence
  - Access pattern of each search is effectively random
  - Up to a 10x improvement in performance if we could leverage this feature somehow ...
  - Possible Solution: Spatially pre-sort search keys
- Shared memory constraints
  - Lots of shared memory pressure from per thread stacks
  - → Few threads per thread block
  - **Solution #1:** More shared memory → better overall performance
  - **Solution #2:** Reduce stack size (1 32-bit word instead of 2)
  - Solution #3: Move all or part of stack into registers

### **Future Directions**

- Streaming Neighborhood Tool
  - Apply operators on local neighborhoods (billions of points)
- Build on GPU
  - Attempted works but is slower than CPU solution
  - Use coalescence, Increase # of threads
  - Need different approaches for startup, middle, and winddown phases to get enough parallelism
- Compare & contrast against other NN solutions
  - CGAL, GPU Quadtree, GPU Morton Z-order sort
- Improve Search performance
  - Store top 5-10 levels of tree in constant memory
  - All-NN, All-kNN rewrite search to be bottom-up
- Improve code
  - Use 'Templates' to reduce total amount of code

### Quadtree

## Root Level 1 Level 2

#### **Build**

- Radix sort the search points using their Morton ID's as keys
  - Fixed depth (4096 bins implies depth 2D = 6, 3D = 4, & 4D = 3)
- Accumulate results from leafs back up to root
- Recursively split and partition any cell with more than 'm' points (m = 64, 256, 1024)

#### **Search**

- Lookup start cell corresponding to query point's Morton ID from search bounds at same fixed depth.
- Traverse down (or up) search stack from start cell until current cell contains fewer than 'm' points.
  - Brute force compare the 'm' points in current cell to query point to get initial 'k' closest points list.
- Traverse back up search stack…
  - Branch and bound using overlap trim test.
  - Update list of 'k' closest points as closer points are found.
- Should be possible to compress stack into just 2-4 32-bit integers

### Thank You

The paper, more detailed results, & the source code are stored at ...

http://cs.unc.edu/~shawndb/

### **GPUTIPS & Tricks**

- Develop methodically
- Minimize I/O's
- Tweak kernels for better performance
- Use aligned data structures (4,8,16)
- Use Locked Memory I/O
- Compress Data Structures
- Structure of Arrays (SOA) vs. Array of Structures (AOS)

### **CPU Host Scaffolding**

- Computes Thread Block Grid Layout
  - Pads n,m to block grid layout
- Allocates memory resources
- Initializes search, query lists
- Builds kd-tree
- Transfers inputs onto GPU
  - · kd-tree, search, query data
- Invokes GPU Kernel
- Transfers NN results back onto CPU
- Validates GPU results against CPU search,
  - if requested
- Cleanup memory resources

### **Develop Methodically**

- Plan out resource usage (shared, registers)
  - 16K / 32 threads = 512 bytes per thread
- Get the GPU kernel working correctly first
  - Write working function(s) on CPU first
    - Use these function(s) as check on the GPU Kernel(s)
  - Get the GPU Kernel(s) working first on a 1x1 thread block and 1x1 grid and then improve to an mxn thread block and then to a pxq grid.
- Then focus on improving GPU performance
  - Look for algorithmic improvements
  - Look to minimize memory I/Os
  - Add profiling code (or use a GPU profiler)
  - $\circ$  Find optimal mxn thread block size for best performance
  - Tweak GPU Kernel (see next slide deck)
- If you improve the GPU code algorithmically, then update the matching CPU algorithm as well for a fair comparison.

### Tweak GPU Kernel

- Is there a better overall algorithm?
- Can I reduce the number of memory I/Os?
  - Combine multiple kernel(s) that can work on data simultaneously
- Can I reduce the size of objects/structures?
  - Combine fields in less space
- Can I re-order the code to be more efficient?
  - More calculations for fewer I/O's
  - Avoid waits, Insert non-dependent calculations after I/Os
- Can I reduce register usage
  - by reducing or reusing temporary variables?

### **Align Data Structures**

- CUDA compiler is capable of moving 4, 8, 16 byte chunks around in a single atomic operation
- More efficient to align to one of these boundaries
- May result in some wasted space

# Results \*Aligned Aligned Time (ms) Time (ms) Speedup 259.039 189.075 1.370

### **Locked Memory I/O**

- Use locked memory instead of paged memory for CPU
- ← GPU transfers
- See CUDA API sample called "BandwidthTest"

|                    |       | Paged     | Pinned    |         |
|--------------------|-------|-----------|-----------|---------|
| Сору               | Bytes | Time (ms) | Time (ms) | Speedup |
| Onto               | 52 MB | 22.938    | 16.073    | 1.427   |
| From               | 8 MB  | 5.919     | 3.668     | 1.614   |
| BW (GB/s) BW(GB/s) |       |           |           |         |
|                    |       | 2.267     | 3.235     |         |
|                    |       | 1.352     | 2.181     |         |

### Try simple Data Structures

- Consider the lowly Stack
  - 16K of <u>shared</u> memory
  - 16K/32 = 512 bytes per thread
  - 32 \* 8 bytes = 256 bytes
  - We have just enough room for a simple 32 element stack with two 32-bit fields per stack object on each thread
  - This is enough to handle a binary tree of 2<sup>32</sup> = 4 gig elements



### **Compress DATA Structures**

- Memory accesses are slow
- Local calculations are fast
- •Paying the cost of compression/decompression calculations to reduce memory I/O can increase performance.

```
typedef struct align (16)
                                    typedef struct __align__(8)
                                      unsigned int nodeFlags;
 unsigned int nodeldx;
                                        // Node Idx (29 bits)
 unsigned int splitAxis; -
                                        // split Axis (2 bits)
 unsigned int InOut;
                                        // InOut (1 bit)
 float splitValue;
                                      float splitValue;
} KDSearch CPU;
                                    } KDSearch GPU;
```

### **Break Apart Data Structures**

- Structure of Arrays vs. Array of Structures
  - Try both and use which ever gives you better performance
- 8 field (64 byte) KDNode structure
- Managed to compress it to 5 fields (40 bytes) but couldn't compress further.
- Broke it into 2 data structures
  - KDNode: 4 fields \_\_align 16\_\_\_ (pos[x,y], left, right)
  - IDNode: I field \_\_align 4\_\_ (ID)
- Surprising Result:
  - The algorithm had a 3x-5x speed increase as a result of this one change alone

## More Information Other Possibilities

- Take advantage of different memory models
  - Use <u>\_\_shared\_\_</u> memory
    - · Read/Write, I6K, shared by all threads on GPU core
  - Use \_\_constant\_\_ memory
    - Read only, 64K, 8K cache, watch out for serialized access
  - Use Texture Memory
    - Read only, 8K cache, optimized for 2D, addressing modes
- Use table lookup instead of conditionals
- Use fast math operations
  - FMAD, \_\_mul24, \_\_fdividef(x, y), etc.
  - Avoid division, modulus for integers
  - Floating Point arithmetic is actually faster than integer