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My Goals

Primary:  Write spatial streaming tool 

to process billions of points by applying 

operators to local neighborhoods.

Survey:  Compare & contrast kd-Tree, 

Quad-Tree, and Morton Z-order nearest 

neighbor search algorithms for GPUs.

Current:  GPU kd-Tree NN search

Result:  15 million 2D queries per second



NN Search Definitions

Definitions:

d is the number of dimensions

S is a search set containing  „n‟ points

Q is a query set containing „m‟ points

dist(a,b) is a distance metric between two points

Vocabulary:
NN - Nearest Neighbor

kNN – „k‟ nearest neighbors
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NN Search Types (part 1)

QNN: Query Nearest Neighbor

Find the closest point in S for each point in Q by dist(p,q).

Input: S, Q

Output: List of m indices of closest points in S.

kNN: ‘k’ Nearest Neighbors

Find the k closest points in S for each point in Q by dist(p,q).

Input: S, Q

Output: List of km indices of closest points in S.



NN Search Types (part 2)

All-NN:  All Nearest Neighbor

Find the closest point in S for each point in S by dist(p,q).

Input: S  (Q ↔ S)

Output: List of n indices in S.

Note: Exclude zero distance results

All-kNN:  All ‘k’ Nearest Neighbors

Find the k closest points in S for each point in S by dist(p,q).

Input: S (Q ↔ S)

Output: List of km indices in S.

Note: Exclude zero distance results

ANN:  Approximate Nearest NeighborRNN:  Range Query



NN search Solutions

Linear Search: 

Brute force solution, 

compare each query 

point to all search points

O(mn)

Spatial Partitioning Data 

Structures:  Divide space into smaller 

spatial cells. Use “branch and bound” to 

focus on productive cells.

Examples:  kd-tree, Quad-tree, Grid, 

Voronoi Diagram, …

Spatial Partitioning:  

subdivide space

Data Partitioning:  

subdivide data into sets



NN Searches on GPU

 Purcell 2003

◦ Multi-pass using uniform grid

◦ Approximate

 Bustos 2006

◦ Trick video card into finding 

Manhattan distance by texture 

operations

 Rozen 2008

◦ Bucket points into 3D cells then 

brute force search on 3x3x3 

neighborhoods

 Garcia 2008

◦ Brute force algorithm

Search time: 100x faster vs. MATLAB

 Zhou 2008

 Breadth first search kd-tree

 VoxelVolume split heuristic

Build time: 9-13x faster vs. CPU

Search time: 7-10x faster vs. CPU

 Qiu 2008

 Depth first search kd-tree

 Median split heuristic

 Approximate results

Registration time: 100x faster vs. CPU



Invented by J.L. Bentley, 1975

Data Types Points (more complicated objects)

Hierarchical Corresponds to a binary tree

Axis aligned spatial cells • Each cell ↔ node of the binary tree

•The root cell contains the original bounds and all points

Recursively defined • Divide each cell into left and right child cells starting 

from the root.

•The points associated with each cell are also partitioned 

into the left and right child cells

Splitting Heuristics

Data Partitioning

Space Partitioning

Form a cutting plane (pick split axis & split value)

Median Split

Empty space maximization

Surface Area,Voxel volume, etc.

kd-tree



Building a kd-tree

Add root cell to build queue

While build queue not empty

 grab current cell from build queue

 Pick a cutting plane (via median split)

 Subdivide current cell

 Termination “Do nothing” < m points in cell

 Split parent bounds into left & right cells

 Partition parent points into left & right cells

Add left & right cells to build queue

Storage:        O(dn)

Build Time:   O(dn log n)



More Build details

 Build kd-tree on CPU, transfer nodes to GPU

 Splitting heuristic
 Use quickmedian selection algorithm for partitioning 

points in current range [start,end] on current axis 

<x,y,z,…>.  Root range = [1,n]

 Use LBM median instead of true median

 Convert to Left-balanced median array layout
 Move node at median array position to targeted position 

in Left-balanced median array

 Also create remapping array during build
 Convert kd-node indices back into original point indices



Left Balanced Median (LBM) 

Nearly complete binary tree
Case 1:  Last row is below half-way point

Case 2:  Last row is above half-way point



More Information

Left Balanced Tree

Links:  Given node @ i

Parent = i/2

Left = 2i

Right = 2i+1

Tests:   isRoot (i==1)

isInvalid (i > n)

isLeaf (2i > n)

& ((2i+1)>n)

Left Balanced Median (LBM)

h = log2(n+1)

half = 2h-2

lastRow = n – (2•half) + 1

LBM = half  + min(half,lastRow)

n LBM
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Searching a kd-tree
Push root node onto stack

Recursively search children**

 Pop current search node off stack

 Trim Test current node, if offside

 currDist = dist(qp, currNode.point), 

 Update Best distance, if currDist is closer

 Map left/right nodes onto onside/offside

 Trim Test & Push offside node onto stack

 Push onside node → Point Location

NN = Best distance (Best index)

Search Times

Best:

Expected:
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Trim Test Optimization

Onside Offside

Trim Test (fail)

Onside = child cell containing query point

Offside = leftover child cell (without query point)

No 1D overlap → safe to discard the entire sub-tree.

Onside

Trim Test (pass)

Left Right Left Right

Offside



More Search Details
 Cyclic 

 start at root with x-axis

 nextAxis = (currAxis + 1) % d;  prevAxis = (currAxis – 1) % d;

 Backtracking via DFS stack, not BFS queue
 Less storage → shared memory: O(log n) stack vs.  O(n) queue

 Better trim behavior: 40-80 iterations per query point using stack vs. 200-500 
iterations using queue

 12 GPU kernels 
 NN types (QNN, All-NN, kNN, All-kNN) * (2D,3D,4D) = 12 kernels 

 Could be rewritten to one kernel using templating

 One thread per query point
 I/O Latency overcome through thread scheduling

 Thread block must wait on slowest thread to finish

 Avoid slow I/O operations (RAM)
 1 I/O (load point) per search loop

 extra trim test → continue loop before doing unnecessary I/O

 Remap once from node index to point index at end of search

 kNN search
 Closest heap data structure

 Acts like array (k-1 inserts) then acts like max-heap

 Trim distance kept equal to point at top of max-heap



GTX 285 Architecture

Double

Shared 

Memory

GPU 

Core

GPU 

Device

SIMD

Thread 

Processor

Device Resources
• 30 GPU Cores

• 240 total thread processors

• 1 GB on-board RAM

• 32 KB constant memory

GPU Core
• 8 physical thread processers per core

• 1 double precision unit per core

• 16 KB shared memory

• 8,192 shared 32-bit registers

Thread Processor
• Shares resources (memory, registers) in same GPU core



Execution Model

GPU 

Core

Grid

Thread 

Block

Thread
Thread

Processor

GPU Device

Hardware Software

Threads are executed 

by thread processors

Threads blocks executed on GPU 

cores

Supports syncing of threads within

A block

A kernel is launched as a 1D or 2D

Grid of thread blocks

Only one kernel can execute

on a GPU device at a time.

Syncing across blocks not supported*

Notes



Execution Model

GPU 

Core

Grid

Thread 

Block

Thread
Thread

Processor

GPU Device

Hardware Software

Threads are executed 

by thread processors

Threads blocks executed on GPU 

cores

Supports syncing of threads within

A block

A kernel is launched as a 1D or 2D

Grid of thread blocks

Only one kernel can execute

on a GPU device at a time.

Syncing across blocks not supported*

Notes

•Thread blocks start & stay with initial core

•Thread block finishes when all threads finish

•Multiple blocks get mapped to each core

•One GPU core can execute several blocks 

concurrently depending on resources

•Maximum of 512 threads per thread block



GPU Hardware Limits 

and Design Choices, part 1

 Memory
 Aligned data (4,8,16 bytes) 

→ better performance

 limited capacity → use 

minimal data structures

 Memory Hierarchy
registers » shared » constant » 

RAM

 Local variables → registers

 stacks/arrays → shared

 Floats (IEEE 754 
compliant)
 Focus on singles (32-bit)

 Doubles (64-bit) are 8x 
slower on GTX 285

 Thread Block Size
 4-16 threads per block is 

optimal based on testing

 1 thread per query point



GPU Hardware Limits 

and Design Choices, part 2

 Latency
 Waiting on I/Os impacts 

performance

 Hide I/O latency by 

massive scheduling of 

threads

 1 thread per query point

 Divergence
 Divergent branching 

degrades performance

 Minimize branching

 Coalesence
GPU can coalesce aligned 

sequential I/O requests

Unfortunately, kd-tree searches 

do not lend themselves to 

aligned I/O requests

Good = 1 I/O op Bad = 16 I/O ops

Aligned, 

Sequential



kd-tree Design Choices

Final kd-tree Design:

• Static

• Balanced

• Median Split

• Minimal (Inplace)

• Cyclic

Storage: 

• one point per node

• left balanced array

i/2, 2i, 2i+1

Bound kd-tree Height
Bound height to ceil[log2n]

Build a balanced static kd-tree

Store as left-balanced binary array

Minimal Foot-print
Store one point per node O(dn)

Eliminate fields

No pointers (parent, child) → Compute directly

No cell min/max bounds

Single split plane per cell is sufficient

Split plane (value, axis) is implicit

Cyclic kd-tree axis access → track via stack

kd-tree → inplace reorder of search points



Timings (in ms)

n 2D 3D 4D

1,000 0.07        (0.10) 0.18 0.41

10,000 0.42      (12.46) 1.02 2.12

100,000 4.17     (156.20) 10.10 23.10

1,000,000 45.62  (2,001.20) 111.34 247.47

10,000,000 668.07 (26,971.21) 1,614.34 3,840.73

QNN search on GPU (CPU)

n 2D 3D 4D

1,000 1.01         (0.10) 1.64 2.64

10,000 5.88        (12.46) 12.57 28.73

100,000 57.04      (156.20) 123.74 291.26

1,000,000 579.57  (10,127.02) 1,270.45 2,9991.02

All-kNN search on GPU (CPU),  k = 31

(85.54 s)

Uniform Random data

On range [0,1] for each axis



Optimal Thread Block Size
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Increasing n,m;  Increasing k
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n ≤ 100, use CPU
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Results
GPU: GTX 285 using CUDA 2.3

CPU:  Intel I7-920 @ 2.4 Ghz

 2D Results:  NN up to 36 million points

kNN up to 1 million, k=31

GPU runs 8-44x faster

 3D Results: NN up to 22 million points 

kNN 1 million, k=31

3D: Runs 7-29x faster

4D: Runs 6-22x faster



Limitations, part 1

 Under utilization of GPU
 Scan,  13 Billion 32-bit elements per second

 Radix Sort, 480 Million 32-bit key/value pairs per second

 Kd-tree NN Search, 15 Million queries (2D points) per second against a 
15 million element kd-tree.

 Solution: Use another approach that maps onto GPU better

 Low Occupancy
 Lots of shared memory for per thread stacks

 QNN 2D Kernel  (Max Occupancy = 32, 
 10 threads per block,  12 registers, 2,136 bytes shared memory

 19% occupancy

 Divergence
 almost guaranteed → serialized code access

 More threads → more opportunities for divergence

 Entire thread block doesn’t finish until slowest thread finishes

 Bank conflicts
 Haven‟t done any analysis yet…



Limitations, part 2

 No coalescence
 Access pattern of each search is effectively random

 Up to a 10x improvement in performance if we could 

leverage this feature somehow …

 Possible Solution:  Spatially pre-sort search keys

 Shared memory constraints
 Lots of shared memory pressure  from per thread stacks

 →  Few threads per thread block

 Solution #1: More shared memory → better overall 

performance

 Solution #2: Reduce stack size (1 32-bit word instead of 

2)

 Solution #3: Move all or part of stack into registers



Future Directions
 Streaming Neighborhood Tool 

 Apply operators on local neighborhoods (billions of points)

 Build on GPU
 Attempted works but is slower than CPU solution

 Use coalescence,  Increase # of threads

 Need different approaches for startup, middle, and wind-
down phases to get enough parallelism

 Compare & contrast against other NN 
solutions
 CGAL,  GPU Quadtree,  GPU Morton Z-order sort

 Improve Search performance
 Store top 5-10 levels of tree in constant memory

 All-NN, All-kNN rewrite search to be bottom-up

 Improve code
 Use „Templates‟ to reduce total amount of code



Build
 Radix sort the search points using their Morton ID‟s as keys

 Fixed depth (4096 bins implies depth 2D = 6, 3D = 4, & 4D = 3)

 Accumulate results from leafs back up to root

 Recursively split and partition any cell with more than „m‟ points 
(m = 64, 256, 1024)

Search
 Lookup start cell corresponding to query point‟s Morton ID from 

search bounds at same fixed depth.

 Traverse down (or up) search stack from start cell until current 
cell contains fewer than „m‟ points.  

 Brute force compare the „m‟ points in current cell to query point to get 
initial „k‟ closest points list. 

 Traverse back up search stack…  

 Branch and bound using overlap trim test.

 Update list of „k‟ closest points as closer points are found.

 Should be possible to compress stack into just 2-4 32-bit integers

Quadtree
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Thank You

The paper, more detailed results, & the source 

code are stored at …

http://cs.unc.edu/~shawndb/

http://cs.unc.edu/~shawndb/


GPU TIPS & Tricks

 Develop methodically

 Minimize I/O‟s

 Tweak kernels for better performance

 Use aligned data structures (4,8,16)

 Use Locked Memory I/O

 Compress Data Structures

 Structure of Arrays (SOA) vs. Array of 

Structures (AOS)



More Information:

CPU Host Scaffolding
 Computes Thread Block Grid Layout 

 Pads n,m to block grid layout

 Allocates memory resources

 Initializes search, query lists

 Builds kd-tree

 Transfers inputs onto GPU
 kd-tree, search, query data

 Invokes GPU Kernel

 Transfers NN results back onto CPU

 Validates GPU results against CPU search, 
 if requested

 Cleanup memory resources



More Information

Develop Methodically
 Plan out resource usage (shared, registers)

◦ 16K / 32 threads = 512 bytes per thread

 Get the GPU kernel working correctly first

◦ Write working function(s) on CPU first
 Use these function(s) as check on the GPU Kernel(s)

◦ Get the GPU Kernel(s) working first on a 1x1 thread block  and 
1x1 grid and then improve to an mxn thread block and then to a 
pxq grid.

 Then focus on improving GPU performance

◦ Look for algorithmic improvements

◦ Look to minimize memory I/Os 

◦ Add profiling code (or use a GPU profiler)

◦ Find optimal mxn thread block size for best performance

◦ Tweak GPU Kernel (see next slide deck)

 If you improve the GPU code algorithmically, then update the 
matching CPU algorithm as well for a fair comparison.



More Information 

Tweak GPU Kernel
 Is there a better overall algorithm?

 Can I reduce the number of memory I/Os?

◦ Combine multiple kernel(s) that can work on data 
simultaneously 

 Can I reduce the size of objects/structures?

◦ Combine fields in less space

 Can I re-order the code to be more efficient?

◦ More calculations for fewer I/O‟s

◦ Avoid waits, Insert non-dependent calculations after I/Os

 Can I reduce register usage 

◦ by reducing or reusing temporary variables?



typedef struct __align__(16)
{

float pos[2];
unsigned int Left;
unsigned int Right;

} KDTreeNode2D_GPU;

More Information 

Align Data Structures

 CUDA compiler is capable of moving 4, 8, 16 byte 
chunks around in a single atomic operation

 More efficient to align to one of these boundaries

 May result in some wasted space

Results
~Aligned Aligned

Time (ms) Time (ms) Speedup
259.039 189.075 1.370



More Information 

Locked Memory I/O

Paged Pinned
Copy Bytes Time (ms) Time (ms) Speedup

Onto 52 MB 22.938 16.073 1.427

From 8 MB 5.919 3.668 1.614
BW (GB/s) BW(GB/s)

2.267 3.235
1.352 2.181

• Use locked memory instead of paged memory for CPU 

↔ GPU transfers

• See CUDA API sample called “BandwidthTest”



More Information 

Try simple Data Structures

 Consider the lowly Stack

◦ 16K of __shared__ memory

◦ 16K/32 = 512 bytes per 
thread

◦ 32 * 8 bytes = 256 bytes 

◦ We have just enough room for 
a simple 32 element stack with 
two 32-bit fields per stack 
object on each thread

◦ This is enough to handle a 
binary tree of 2^32 = 4 gig 
elements

Thread 1 Thread 2 …
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More Information 

Compress DATA Structures

typedef struct __align__(16)

{

unsigned int nodeIdx;

unsigned int splitAxis; 

unsigned int InOut;

float splitValue;

} KDSearch_CPU;

typedef struct __align__(8)

{

unsigned int nodeFlags;

// Node Idx (29 bits)

//  split Axis (2 bits)

// InOut (1 bit)

float splitValue;

} KDSearch_GPU;

•Memory accesses are slow 

•Local calculations are fast

•Paying the cost of compression/decompression calculations

to reduce memory I/O can increase performance.



More Information 

Break Apart Data Structures

 Structure of Arrays vs. Array of Structures
◦ Try both and use which ever gives you better performance

 8 field (64 byte) KDNode structure

 Managed to compress it to 5 fields (40 bytes) but 
couldn‟t compress further.

 Broke it into 2 data structures 
◦ KDNode: 4 fields __align 16___ (pos[x,y], left, right)

◦ IDNode: 1 field __align 4__ (ID)

 Surprising Result:

◦ The algorithm had a 3x-5x speed increase as a 
result of this one change alone



More Information 

Other Possibilities

 Take advantage of different memory models

◦ Use __shared__ memory 
 Read/Write, 16K, shared by all threads on GPU core

◦ Use __constant__ memory
 Read only, 64K, 8K cache, watch out for serialized access

◦ Use Texture Memory
 Read only, 8K cache, optimized for 2D, addressing modes

 Use table lookup instead of conditionals

 Use fast math operations 

◦ FMAD, __mul24, __fdividef( x, y), etc.

◦ Avoid division, modulus for integers

◦ Floating Point arithmetic is actually faster than integer


