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First Generation - Wireframe

 Vertex:           transform, clip, and project

 Rasterization: lines only

 Pixel:               no pixels!  calligraphic display

 Dates:             prior to 1987



Storage Tube Terminals

 CRTs with analog charge ―persistence‖

 Accumulate a detailed static image by writing points or 

line segments

 Erase the stored image to start a new one



Early Framebuffers

 By the mid-1970’s one could afford framebuffers with a 

few bits per pixel at modest resolution

— ―A Random Access Video Frame Buffer‖, 

Kajiya, Sutherland, Cheadle, 1975

 Vector displays were still better for fine position detail

 Framebuffers were used to emulate storage tube vector 

terminals on a raster display



Second Generation – Shaded Solids

 Vertex:             lighting

 Rasterization: filled polygons

 Pixel:               depth buffer, color blending

 Dates:             1987 - 1992



Third Generation – Texture Mapping

 Vertex:            more, faster

 Rasterization: more, faster

 Pixel:               texture filtering, antialiasing

 Dates: 1992 - 2001



IRIS 3000 Graphics Cards

Geometry Engines & Rasterizer 4 bit / pixel Framebuffer

(2 instances)



1990’s

 Desktop 3D workstations   under $5000

— Single-board, multi-chip graphics subsystems

 Rise of 3D on the PC

— 40 company free-for-all until intense competition knocked out all but a 

few players

— Many were ―decelerators‖, and easy to beat

— Single-chip GPUs

— Interesting hardware experimentation

— PCs would take over the workstation business

 Interesting consoles

— 3DO, Nintendo, Sega, Sony



Before Programmable Shading

 Computing though image processing  circa.1995

— GL_ARB_imaging
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Moving toward programmability



Programmable Shaders: GeForceFX (2002)

 Vertex and fragment operations specified in small (macro) 

assembly language

 User-specified mapping of input data to operations

 Limited ability to use intermediate computed values to 

index input data (textures and vertex uniforms)

Input 2
Input 1Input 0

OP

Temp 2
Temp 1Temp 0

ADDR R0.xyz, eyePosition.xyzx, -f[TEX0].xyzx;

DP3R R0.w, R0.xyzx, R0.xyzx;

RSQR R0.w, R0.w;

MULR R0.xyz, R0.w, R0.xyzx;

ADDR R1.xyz, lightPosition.xyzx, -f[TEX0].xyzx;

DP3R R0.w, R1.xyzx, R1.xyzx;

RSQR R0.w, R0.w;

MADR R0.xyz, R0.w, R1.xyzx, R0.xyzx;

MULR R1.xyz, R0.w, R1.xyzx;

DP3R R0.w, R1.xyzx, f[TEX1].xyzx;

MAXR R0.w, R0.w, {0}.x;



Copyright © NVIDIA Corporation 2006
Unreal © Epic

Per-Vertex LightingNo Lighting Per-Pixel Lighting
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Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC.  All rights reserved.  © 2006 THQ Inc. All rights reserved.
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GPU history

Product Process Trans MHz
GFLOPS
(MUL)

Aug-02 GeForce FX5800 0.13 121M 500 8

Jan-03 GeForce FX5900 0.13 130M 475 20

Dec-03 GeForce 6800 0.13 222M 400 53

NVIDIA historicals

translating transistors into performance

– 1.8x increase of transistors

– 20% decrease in clock rate

– 6.6x GFLOP speedup 



Early GPGPU (2002)

Early Raytracing

www.gpgpu.org

•Ray Tracing on Programmable Graphics Hardware

Purcell et al.

•PDEs in Graphics Hardware

Strzodka,,Rumpf

•Fast Matrix Multiplies using Graphics Hardware

Larsen, McAllister

•Using Modern Graphics Architectures for 

General-Purpose Computing: A Framework and Analysis.

Thompson et al.



Programming model challenge

• Demonstrate GPU performace

• PHD computer graphics to do this

• Financial companies hiring game programmers

• ―GPU as a processor‖



Brook (2003)

C with streams

• streams

– collection of records requiring similar computation

• particle positions, voxels, FEM cell, …

Ray r<200>;

float3 velocityfield<100,100,100>;

– similar to arrays, but…

• index operations disallowed:  position[i]

• read/write stream operators:

streamRead (positions, p_ptr);

streamWrite (velocityfield, v_ptr);



kernels

• functions applied to streams

– similar to for_all construct

kernel void add (float a<>, float b<>,

out float result<>) {

result = a + b;

}

float a<100>;

float b<100>;

float c<100>;

add(a,b,c);

for (i=0; i<100; i++)

c[i] = a[i]+b[i];



Challenges

Hardware

 Addressing modes

— Limited texture size/dimension

 Shader capabilities

— Limited outputs

 Instruction sets

— Integer & bit ops

 Communication limited

— Between pixels

— Scatter  a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers

Software

• Building the GPU Computing 

Ecosystem



GeForce 7800 Pixel

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers



Thread Programs

Thread Program

Output Registers

Constants

Texture

Registers

Thread Number Features
• Millions of instructions

• Full Integer and Bit instructions

• No limits on branching, looping

• 1D, 2D, or 3D thread ID 

allocation



Global Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number Features

• Fully general load/store to GPU 

memory: Scatter/Gather

• Programmer flexibility on how  

memory is accessed

• Untyped, not limited to fixed 

texture types

• Pointer support



Shared Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number Features

• Dedicated on-chip memory

• Shared between threads for 

inter-thread communication

• Explicitly managed

• As fast as registers

Shared



Managing Communication with Shared
CPU GPGPU GPU Computing
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Single thread 
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Next step: Expose the GPU as massively parallel processors

GeForce 8800 GPU Computing 

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors



Building GPU Computing Ecosystem

 Convince the world to program an entirely new kind of 

processor

 Tradeoffs between functional vs. performance requirements

 Deliver HPC feature parity

 Seed larger ecosystem with foundational components



CUDA: C on the GPU

 A simple, explicit programming language solution

 Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

 Explicit GPU memory allocation

— cudaMalloc(), cudaFree()

 Memory copy from host to device, etc. 

— cudaMemcpy(), cudaMemcpy2D(), ...



CUDA: Threading in Data Parallel

 Threading in a data parallel world

— Operations drive execution, not data

 Users simply given thread id

— They decide what thread access which data element

— One thread = single data element or block or variable or nothing….

— No need for accessors, views, or built-ins 

 Flexibility

— Not requiring the data layout to force the algorithm

— Blocking computation for the memory hierarchy (shared)

— Think about the algorithm, not the data



Divergence in Parallel Computing

 Removing divergence pain from parallel programming

 SIMD Pain

— User required to SIMD-ify

— User suffers when computation goes divergent

 GPUs: Decouple execution width from programming model

— Threads can diverge freely

— Inefficiency only when granularity exceeds native machine width

— Hardware managed

— Managing divergence becomes performance optimization

— Scalable



Foundations

 Baseline HPC solution

 Ubiquity: CUDA Everywhere

 Software

— C99 Math.h

— BLAS & FFT

— GPU co-processor

 Hardware

— IEEE math (G80)

— Double Precision  (GT200)

— ECC  (Fermi)



Customizing Solutions
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Domain specific lang

Domain Libraries

Ported Applications

PTX

HW

Driver API
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PTX Virtual Machine and ISA

PTX Virtual Machine

Programming model

Execution resources and state

Abstract and unify target details

PTX ISA – Instruction Set Architecture

Variable declarations

Data initialization

Instructions and operands

PTX Translator (OCG)

Translate PTX code to Target code

At program build time

At program install time

Or JIT at program run time

Driver implements PTX VM runtime

Coupled with Translator

C/C++

Compiler

C/C++

Application

PTX to Target

Translator

Tesla

SM 1.0

Tesla

SM 1.3

Fermi

SM 2.0

DSL

Fortran

Online CodeGen

Target code

PTX Code PTX Code



GPU Computing Applications

GPU Computing Software Libraries 
and Engines

CUDA Compute Architecture

Application Acceleration Engines (AXEs)
SceniX, CompleX,Optix, PhysX

Foundation Libraries
CUBLAS, CUFFT, CULA, NVCUVID/VENC, NVPP, Magma

Development Environment
C, C++, Fortran, Python, Java, OpenCL, Direct Compute, …



Directions

 Hardware and Software are one

Within the Node

— OS integration: Scheduling, Preemption, Virtual Memory

— Results: Programming model simplification

 Expanding the cluster

— Cluster wide communication and synchronization

 GPU on-load

— Enhance the programming model to keep more of the computation 

(less cpu interaction) and more of the data (less host side 

shadowing).



Thank You!

Thank you!

Additional slide credits: John Montrym & David Kirk


