
Ian Buck| Sr. Director GPU Computing Software

San Jose Convention Center, CA | September 20–23, 2010

The Evolution of GPUs for General
Purpose Computing

Talk Outline

 History of early graphics hardware

 First GPU Computing

When GPUs became programmable

 Creating GPU Computing

 Future Trends and directions

First Generation - Wireframe

 Vertex: transform, clip, and project

 Rasterization: lines only

 Pixel: no pixels! calligraphic display

 Dates: prior to 1987

Storage Tube Terminals

 CRTs with analog charge ―persistence‖

 Accumulate a detailed static image by writing points or

line segments

 Erase the stored image to start a new one

Early Framebuffers

 By the mid-1970’s one could afford framebuffers with a

few bits per pixel at modest resolution

— ―A Random Access Video Frame Buffer‖,

Kajiya, Sutherland, Cheadle, 1975

 Vector displays were still better for fine position detail

 Framebuffers were used to emulate storage tube vector

terminals on a raster display

Second Generation – Shaded Solids

 Vertex: lighting

 Rasterization: filled polygons

 Pixel: depth buffer, color blending

 Dates: 1987 - 1992

Third Generation – Texture Mapping

 Vertex: more, faster

 Rasterization: more, faster

 Pixel: texture filtering, antialiasing

 Dates: 1992 - 2001

IRIS 3000 Graphics Cards

Geometry Engines & Rasterizer 4 bit / pixel Framebuffer

(2 instances)

1990’s

 Desktop 3D workstations under $5000

— Single-board, multi-chip graphics subsystems

 Rise of 3D on the PC

— 40 company free-for-all until intense competition knocked out all but a

few players

— Many were ―decelerators‖, and easy to beat

— Single-chip GPUs

— Interesting hardware experimentation

— PCs would take over the workstation business

 Interesting consoles

— 3DO, Nintendo, Sega, Sony

Before Programmable Shading

 Computing though image processing circa.1995

— GL_ARB_imaging

1998 1999 2000 2001 2002 2003 2004

DirectX 6

Multitexturing

Riva TNT

DirectX 8

SM 1.x

GeForce 3 Cg

DirectX 9

SM 2.0

GeForceFX

DirectX 9.0c

SM 3.0

GeForce 6

DirectX 5

Riva 128

DirectX 7

T&L TextureStageState

GeForce 256

Quake 3 Giants Halo Far Cry UE3Half-Life

All images © their respective owners

Moving toward programmability

Programmable Shaders: GeForceFX (2002)

 Vertex and fragment operations specified in small (macro)

assembly language

 User-specified mapping of input data to operations

 Limited ability to use intermediate computed values to

index input data (textures and vertex uniforms)

Input 2
Input 1Input 0

OP

Temp 2
Temp 1Temp 0

ADDR R0.xyz, eyePosition.xyzx, -f[TEX0].xyzx;

DP3R R0.w, R0.xyzx, R0.xyzx;

RSQR R0.w, R0.w;

MULR R0.xyz, R0.w, R0.xyzx;

ADDR R1.xyz, lightPosition.xyzx, -f[TEX0].xyzx;

DP3R R0.w, R1.xyzx, R1.xyzx;

RSQR R0.w, R0.w;

MADR R0.xyz, R0.w, R1.xyzx, R0.xyzx;

MULR R1.xyz, R0.w, R1.xyzx;

DP3R R0.w, R1.xyzx, f[TEX1].xyzx;

MAXR R0.w, R0.w, {0}.x;

Copyright © NVIDIA Corporation 2006
Unreal © Epic

Per-Vertex LightingNo Lighting Per-Pixel Lighting

Copyright © NVIDIA Corporation 2006

Lush, Rich WorldsStunning Graphics Realism

Core of the Definitive Gaming PlatformIncredible Physics Effects

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc.

Crysis © 2006 Crytek / Electronic Arts

Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ Inc. All rights reserved.

recent trends
G

F
L
O

P
S

multiplies per second
(observed peak)

NVIDIA NV30, 35, 40

ATI R300, 360, 420

Pentium 4

July 01 Jan 02 July 02 Jan 03 July 03 Jan 04

GPU history

Product Process Trans MHz
GFLOPS
(MUL)

Aug-02 GeForce FX5800 0.13 121M 500 8

Jan-03 GeForce FX5900 0.13 130M 475 20

Dec-03 GeForce 6800 0.13 222M 400 53

NVIDIA historicals

translating transistors into performance

– 1.8x increase of transistors

– 20% decrease in clock rate

– 6.6x GFLOP speedup

Early GPGPU (2002)

Early Raytracing

www.gpgpu.org

•Ray Tracing on Programmable Graphics Hardware

Purcell et al.

•PDEs in Graphics Hardware

Strzodka,,Rumpf

•Fast Matrix Multiplies using Graphics Hardware

Larsen, McAllister

•Using Modern Graphics Architectures for

General-Purpose Computing: A Framework and Analysis.

Thompson et al.

Programming model challenge

• Demonstrate GPU performace

• PHD computer graphics to do this

• Financial companies hiring game programmers

• ―GPU as a processor‖

Brook (2003)

C with streams

• streams

– collection of records requiring similar computation

• particle positions, voxels, FEM cell, …

Ray r<200>;

float3 velocityfield<100,100,100>;

– similar to arrays, but…

• index operations disallowed: position[i]

• read/write stream operators:

streamRead (positions, p_ptr);

streamWrite (velocityfield, v_ptr);

kernels

• functions applied to streams

– similar to for_all construct

kernel void add (float a<>, float b<>,

out float result<>) {

result = a + b;

}

float a<100>;

float b<100>;

float c<100>;

add(a,b,c);

for (i=0; i<100; i++)

c[i] = a[i]+b[i];

Challenges

Hardware

 Addressing modes

— Limited texture size/dimension

 Shader capabilities

— Limited outputs

 Instruction sets

— Integer & bit ops

 Communication limited

— Between pixels

— Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers

Software

• Building the GPU Computing

Ecosystem

GeForce 7800 Pixel

Input Registers

Fragment Program

Output Registers

Constants

Texture

Registers

Thread Programs

Thread Program

Output Registers

Constants

Texture

Registers

Thread Number Features
• Millions of instructions

• Full Integer and Bit instructions

• No limits on branching, looping

• 1D, 2D, or 3D thread ID

allocation

Global Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number Features

• Fully general load/store to GPU

memory: Scatter/Gather

• Programmer flexibility on how

memory is accessed

• Untyped, not limited to fixed

texture types

• Pointer support

Shared Memory

Thread Program

Global Memory

Constants

Texture

Registers

Thread Number Features

• Dedicated on-chip memory

• Shared between threads for

inter-thread communication

• Explicitly managed

• As fast as registers

Shared

Managing Communication with Shared
CPU GPGPU GPU Computing

Multiple passes through

video memory

Single thread

out of cache

Program/Control

Data/Computation

Control

ALU

Cache DRAM

P1

P2

P3

P4

Pn’=P1+P2+P3+P4

ALU

Video

Memory

Control

ALU

Control

ALU

Control

ALU
P1,P2

P3,P4

P1,P2

P3,P4

P1,P2

P3,P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Thread
Execution
Manager

ALU

Control

ALU

Control

ALU

Control

ALU

DRAM

P1

P2

P3

P4

P5

Shared

Data

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

Pn’=P1+P2+P3+P4

© NVIDIA Corporation 2007

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

GeForce 8800
Build the architecture around the processor

© NVIDIA Corporation 2007

Next step: Expose the GPU as massively parallel processors

GeForce 8800 GPU Computing

Global Memory

Thread Execution Manager

Input Assembler

Host

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store

Thread Processors Thread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread ProcessorsThread Processors

Building GPU Computing Ecosystem

 Convince the world to program an entirely new kind of

processor

 Tradeoffs between functional vs. performance requirements

 Deliver HPC feature parity

 Seed larger ecosystem with foundational components

CUDA: C on the GPU

 A simple, explicit programming language solution

 Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

 Explicit GPU memory allocation

— cudaMalloc(), cudaFree()

 Memory copy from host to device, etc.

— cudaMemcpy(), cudaMemcpy2D(), ...

CUDA: Threading in Data Parallel

 Threading in a data parallel world

— Operations drive execution, not data

 Users simply given thread id

— They decide what thread access which data element

— One thread = single data element or block or variable or nothing….

— No need for accessors, views, or built-ins

 Flexibility

— Not requiring the data layout to force the algorithm

— Blocking computation for the memory hierarchy (shared)

— Think about the algorithm, not the data

Divergence in Parallel Computing

 Removing divergence pain from parallel programming

 SIMD Pain

— User required to SIMD-ify

— User suffers when computation goes divergent

 GPUs: Decouple execution width from programming model

— Threads can diverge freely

— Inefficiency only when granularity exceeds native machine width

— Hardware managed

— Managing divergence becomes performance optimization

— Scalable

Foundations

 Baseline HPC solution

 Ubiquity: CUDA Everywhere

 Software

— C99 Math.h

— BLAS & FFT

— GPU co-processor

 Hardware

— IEEE math (G80)

— Double Precision (GT200)

— ECC (Fermi)

Customizing Solutions
E

a
s
e
 o

f
A

d
o
p
ti
o
n

Generality

C

Domain specific lang

Domain Libraries

Ported Applications

PTX

HW

Driver API

NVIDIA Confidential

PTX Virtual Machine and ISA

PTX Virtual Machine

Programming model

Execution resources and state

Abstract and unify target details

PTX ISA – Instruction Set Architecture

Variable declarations

Data initialization

Instructions and operands

PTX Translator (OCG)

Translate PTX code to Target code

At program build time

At program install time

Or JIT at program run time

Driver implements PTX VM runtime

Coupled with Translator

C/C++

Compiler

C/C++

Application

PTX to Target

Translator

Tesla

SM 1.0

Tesla

SM 1.3

Fermi

SM 2.0

DSL

Fortran

Online CodeGen

Target code

PTX Code PTX Code

GPU Computing Applications

GPU Computing Software Libraries
and Engines

CUDA Compute Architecture

Application Acceleration Engines (AXEs)
SceniX, CompleX,Optix, PhysX

Foundation Libraries
CUBLAS, CUFFT, CULA, NVCUVID/VENC, NVPP, Magma

Development Environment
C, C++, Fortran, Python, Java, OpenCL, Direct Compute, …

Directions

 Hardware and Software are one

Within the Node

— OS integration: Scheduling, Preemption, Virtual Memory

— Results: Programming model simplification

 Expanding the cluster

— Cluster wide communication and synchronization

 GPU on-load

— Enhance the programming model to keep more of the computation

(less cpu interaction) and more of the data (less host side

shadowing).

Thank You!

Thank you!

Additional slide credits: John Montrym & David Kirk

