Acceleratmg Computatlonal Biology by
100x Using CUDA

John Stone
Theoretical and Computational Biophysics Group, University of Illinois
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GPU Computing

« Commodity devices, omnipresent in modern
computers

« Massively parallel hardware, hundreds of
processing units, throughput oriented design

1+ Support all standard integer and floating point
. 4| types
W'. Programming tools allow software to be

written in dialects of familiar C/C++ and
integrated into legacy software

: » GPU algorithms are often multicore-friendly
due to attention paid to data locality and work
decomposition (e.g. MCUDA)
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What Speedups Can GPUs Achieve?

Single-GPU speedups of 8x to 30x vs. CPU
core are quite common

Best speedups (100x!) are attained on codes
that are skewed towards floating point
arithmetic, esp. CPU-unfriendly operations
that prevent effective use of SSE or other
vectorization

Amdahl’s Law can prevent legacy codes from
achieving peak speedups with only shallow
GPU acceleration efforts
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Computational Biology’s Insatiable

Demand for Processing Power

Simulations still fall short
of biological timescales

Large simulations
extremely difficult to
prepare, analyze

Order of magnitude
increase in performance
would allow use of more
sophisticated models

<A NVIDIA.



Fluorescence Microscopy

2-D reaction-diffusion
simulation used to predict
results of fluorescence
microphotolysis experiments

Simulate 1-10 second
microscopy experiments, 0.1ms
integration timesteps

Goal: <=1 min per simulation
on commodity PC hardware

Project home page:

http://www.ks.uiuc.edu/Research/microscope/
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Fluorescence Microscopy (2)
* Challenges for CPU:

— Efficient handling of boundary conditions

— Large number of floating point operations per
timestep

- Challenges for GPU w/ CUDA:

— Hiding global memory latency, improving
memory access patterns, controlling register use

— Few arithmetic operations per memory
reference (for a GPU...)

nvision 08
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Fluorescence Microscopy (3)

« Simulation runtime, software development
time:

— Original research code (CPU): 80 min
— Optimized algorithm (CPU): 27 min
* 40 hours of work

— SSE-vectorized (CPU): 8 min

e 20 hours of work

— CUDA w/ 8800GTX: 38 sec, 12 times faster than SSE!

* 12 hours of work, possible to improve further, but already
“fast enough” for real use

« CUDA code was more similar to the original than to the SSE
vectorized version - arithmetic is almost “free” on the GPU

nVvision 08
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* Calculating Electrostatic Potential Maps

« Used in molecular
structure building,
analysis, visualization,
simulation

« Electrostatic potentials
.| evaluated on a uniformly
spaced 3-D lattice

« Each lattice point contains
sum of electrostatic
contributions of all atoms

THE WORLD OF Visl
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Direct Coulomb Summation

» At each lattice point, sum potential
contributions for all atoms in the
simulated structure:

potential[j] += chargel[i] / Rij

Rij: distance
from lattice[j]
to Atom[i]

L

] Lattice point j
.| being evaluated
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Direct Coulomb Summation on the GPU

« GPU outruns a CPU core by 44x

« Work is decomposed into tens of thousands of independent
threads, multiplexed onto hundreds of GPU processor cores

 Single-precision FP arithmetic is adequate for intended
| application

 Numerical accuracy can be further improved by
compensated summation, spatially ordered summation
| groupings, or accumulation of potential in double-precision

| + Starting point for more sophisticated algorithms
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Direct Coulomb Summation on the GPU
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Direct Coulomb Summation Runtime

: LOWCT Performance vs. Size
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Accelerating molecular modeling applications with graphics processors.

J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J.
Comp. Chem., 28:2618-2640, 2007.
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Optimizing for the GPU

Increase arithmetic intensity, reuse in-register data by
“unrolling” lattice point computation into inner atom loop

Each atom contributes to several lattice points, distances
only differ in the X component:

potentialA += charge[i] / (distanceA to atom[i])
potentialB += chargeli] / (distanceB to atom[i]) ...

\ A Distances to
Atom[i]

NVIDIA.



CUDA Block/Grid Decomposition

Unrolling increases
computational tile size

Thread blocks: | 1t
64-256 threads 0,0 0,1

- N 1

N

EL.& A \\\ // \ 1,0 1,1

\ 1 N \ L

Threads compute \

up to 8 potentials. ...
Skipping by half-warps

optimizes global mem. perf.

Grid of thread blocks:

/[
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Direct Coulomb Summation Performance

Performance vs. Lattice Size
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fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

J CUDA-Simple:
NN
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Side length of 2-D potential map slice

800

14.8x faster,
33% of fastest

GPU kernel

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.
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Multi-GPU Direct Coulomb Summation

« Effective memory
bandwidth scales with
the number of GPUs
utilized

PCle bus bandwidth not a
bottleneck for this
algorithm

117 billion evals/sec

863 GFLOPS

131x speedup vs. CPU
core

Power: 700 watts during
benchmark

Quad -core Intel QX67OO v
Three NVIDIA GeForce 8800GTX

<A NVIDIA.




J Multi-GPU Direct Coulomb Summation

[+ 4-GPU @ Quacrople) | | B |
Opteron node at NCSA | =" " 4

157 billion evals/sec
e 1.16 TFLOPS

« 176x speedup vs.
Intel QX6700 CPU core

w/ SSE (N =
e 4-GPU (GTZOO) NCSA GPU Cluster

o http://www.ncsa.uiuc.edu/Projects/GPUcluster/
« 241 billion evals/sec

« 1.78 TFLOPS

« 271x speedup vs.
Intel QX6700 CPU core
w/ SSE <ANVIDIA.
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Cutoff Summation

« At each lattice point, sum potential
contributions for atoms within cutoff radius:

if (distance to atom[i] < cutoff)
potential += (chargeli] / r) * s(r)
« Smoothing function s(r) is algorithm dependent

3

ﬁq‘ Cutoft radius /d r: distance to
‘-\\ . .
5 Atom|1]
— 11
Lattice point being —1 Atom[i]
evaluated | .
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Infinite vs. Cutoff Potentials

* Infinite range potential:
— All atoms contribute to all lattice points
— Summation algorithm has quadratic complexity

« Cutoff (range-limited) potential:

— Atoms contribute within cutoff distance to lattice
points

— Summation algorithm has linear time complexity

— Has many applications in molecular modeling:
* Replace electrostatic potential with shifted form

« Short-range part for fast methods of approximating full
electrostatics

» Used for fast decaying interactions (e.g. Lennard-Jones,
Buckingham)
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Cutoff Summation on the GPU

Atoms spatially hashed into fixed-
size “bins” in global memory

eeeeeeeeeeeeeeeeeeeeeee

Constant memory

od in the neig|

\

R
Atoms ‘ Bin-Region  Fr+ /7
neighborlist [T
Global memory S
Potential
map
regions

Process atom bins
for current potential
map region

Shared memory

Atom bin I

NVIDIA.



Using the CPU to Improve
GPU Performance

* GPU performs best when the work evenly
divides into the number of
threads/processing units

.. |+ Optimization strategy:
| — Use the CPU to “regularize” the GPU workload

— Handle exceptional or irregular work units on
the CPU while the GPU processes the bulk of
the work

— On average, the GPU is kept highly occupied,
attaining a much higher fraction of peak
performance

(L]
=
=
-
o
=
8
-l
5
w
>
T8
[=]
[=]
=
3
w
=
=

S
e
O
L
=
" am

<A NVIDIA.



Cutoff Summation Runtime

Speedup vs. Lattice Volume GPU cutoff with
30 T T T T .
SmallBin-OverlapNew - -&-- CPU overlap.
SmallBin-Overlap ----o--- 17x-21x faster than
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GPU acceleration of cutoff pair potentials for molecular modeling applications.
- C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008
Conference On Computing Frontiers, pp. 273-282, 2008.
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NAMD Parallel Molecular Dynamics

Kale et al., J. Comp. Phys. 151:283-312, 1999.

 Uses the Charm++ idea:

« Designed from the beginning as a parallel program

— Decompose the computation into a large number of objects

— Have an Intelligent Run-time system (of Charm++) assign objects to
processors for dynamic load balancing with minimal communication

= L 3
Fy |

- Hybrid of spatial and force decomposition:

*Spatial decomposition of atoms into cubes
(called patches)

*For every pair of interacting patches, create one
object for calculating electrostatic interactions

*Recent: Blue Matter, Desmond, etc. use
this 1dea in some form

N
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NAMD Overlapping Execution

Phillips et al., SC2002.

Patches : Integration
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Nonbonded Forces on G800 GPU

« Start with most expensive calculation: direct nonbonded interactions.
« Decompose work into pairs of patches, identical to NAMD structure.
« GPU hardware assigns patch-pairs to multiprocessors dynamically.

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

ot s
"

Texture Unit
Force Table
Interpolation

32-way SIMD Multiprocessor
32-256 multiplexed threads

THE WORLD OF VIsI
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texture<float4> force table;

__constant__ unsigned int exclusions[]; Nonb Onde d F OrC e S

__shared  atom jatom][];
atom 1atom;  // per-thread atom, stored in registers C C d
float4 iforce; // per-thread force, stored in registers UDA O e
for (int j =0; j < jatom_count; ++j ) {
float dx = jatom[j].x - 1atom.x; float dy = jatom[j].y - iatom.y; float dz = jatom][j].z - 1atom.z;

float r2 = dx*dx + dy*dy + dz*dz;
if (12 < cutoff2 ) {

float4 ft = texfetch(force table, 1.f/sqrt(r2)); Force Interpolation

bool excluded = false;
int indexdiff = 1atom.index - jatom([j].index;

Exclusion
if (abs(indexdiff) <= (int) jatom[j].excl maxdiff ) { CHSIons
indexdiff += jatom[j].excl index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
j
float f = 1atom.half sigma + jatom[j].half sigma; // sigma
f*=f*f; // sigma”3 Parameters

f*=1; // sigma”6

f*=(f*ftx +fty); //sigma™12 * fi.x - sigma”6 * fi.y
f *=1atom.sqrt_epsilon * jatom[j].sqrt_epsilon;

float qq = 1atom.charge * jatom[j].charge;

if (excluded ) { f=qq * ft.w; } // PME correction

else { f+=qgg * ft.z: ! // Coulomb

Y Stone et al., J. Comp. Chem. 28:2618-2640, 2007. MWVIDIA.



NAMD Overlapping Execution with
Asynchronous CUDA kernels

GPU iRemote Force ; Local Force

U{,Jﬁ

CPU |Remote |Local Local

Other Nodes/Processes

One Timestep

GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.
Forces needed by remote nodes are explicitly scheduled to
be computed ASAP to improve overall performance.
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Molecular Simulations: Virology

Simulations lead to better
understanding of the mechanics
of viral infections

Better understanding of infection
mechanics at the molecular level
may result in more effective
treatments for diseases

Since viruses are large, their
computational “viewing”
requires tremendous resources,
in particular large parallel
computers

GPUs can significantly accelerate
the simulation, analyses, and
visualization of such structures

<A NVIDIA.




i NAMD Performance on
NCSA GPU Cluster, April 2008

CPU Cores & GPUs 4 8 16 32 60

GPU-accelerated performance

Local blocks/GPU 13186 5798 2564 1174 BT7
Remote blocks/GPU | 1644 1617 1144 680 411

GPU s/step 0.544 0.274 0.139 0.071 0.040
Total s/step 0.960 0.483 0.261 0.154 0.085
Unaccelerated performance

Total s/step 6.76 3.33  1.737 0.980 0.4T71
Speedup from GPU acceleration

Factor 7.0 6.9 6.7 6.4 5.D

STMYV benchmark, 1M atoms,12A cutoff,
PME every 4 steps, running on
2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NVIDIA.
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NAMD Performance on
NCSA GPU Cluster, April 2008

5.5-7x overall application
speedup w/ G80-based GPUs

* STMV virus (1M atoms)

« Overlap with CPU

« |+ Off-node results done first
* Infiniband scales well

| * Plans for better performance

— Tune or port remaining work
— Balance GPU load

THE WORLD OF VISUAL COM
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STMYV Performance
25.7 13.8 7.8
5 _
M CPU only

- 4 - H with GPU
2 B GPU
5 37
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o
2 !

1 _
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1 2 4 8 16 32 48
2.4 GHz Opteron + Quadro FX 5600
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NAMD Performance on
GT200 GPU Cluster, August 2008

« 8 GT200s, 240 SPs @ 1.3GHz:

— 72x faster than a single CPU core

— 9x overall application speedup
vs. 8 CPU cores

— 32% faster overall than 8 nodes
of G80 cluster

— GT200 CUDA kernel is 54% faster
— ~8% variation in GPU load

» Cost of double-precision for
force accumulation is
minimal: only 8% slower than
single-precision
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\N

GPU Kernel Performance, May 2008

GeForce 8800GTX w/ CUDA 1.1, Driver 169.09
http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm

Algorithm class

Speedup vs. Intel
QX6700 CPU core

non-bonded force calc.

calculations

Fluorescence lterative matrix / 12x
microphotolysis stencil
| Pairlist calculation Particle pair distance 10-11x
= test
Fj Pairlist update Particle pair distance 5-15x
test
Molecular dynamics N-body cutoff force 10x

20x (w/ pairlist)

Cutoff electron density sum | Particle-grid w/ cutoff |15-23x
MSM short-range Particle-grid w/ cutoff |24x
MSM long-range Grid-grid w/ cutoff 22X
Direct Coulomb summation | Particle-grid 44x




Lessons Learned

* GPU algorithms need fine-grained
parallelism and sufficient work to fully
utilize the hardware

1+ Fine-grained GPU work decompositions
compose well with the comparatively coarse-
grained decompositions used for multicore or
distributed memory programing

* Much of GPU algorithm optimization revolves
around efficient use of multiple memory
systems and latency hiding

FAAMDIITIRE
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Lessons Learned (2)

* The host CPU can potentially be used
to “regularize” the computation for
the GPU, yielding better overall
performance

 Amdahl’s Law can prevent applications
from achieving peak speedup with
shallow GPU acceleration efforts

* Overlapping CPU work with GPU can
hide some communication and
unaccelerated computation
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Ongoing and Future Work

 Visualization of multi-million atom
biomolecular complexes

— Migrate structural geometry and volumetric
computations to the GPU

— GPU accelerated ray tracing, ambient occlusion
| lighting, ...

* GPU acceleration of long running molecular
dynamics trajectory analyses

* More opportunities available than time to
pursue them!

TAL FALDIITIRE
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Publications
http://www.ks.uiuc.edu/Research/gpu/

« Adapting a message-driven parallel application to GPU-
accelerated clusters. J. Phillips, J. Stone, K. Schulten.
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, (in press)

* GPU acceleration of cutoff pair potentials for molecular
modeling applications. C. Rodrigues, D. Hardy, J. Stone, K.
Schulten, W. Hwu. Proceedings of the 2008 Conference On
Computing Frontiers, pp. 273-282, 2008.

 GPU computing. J. Owens, M. Houston, D. Luebke, S. Green,
J. Stone, J. Phillips. Proceedings of the IEEE, 96:879-899,
2008.

» Accelerating molecular modeling applications with graphics
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L.
Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

« Continuous fluorescence microphotolysis and correlation
spectroscopy. A. Arkhipov, J. Huve, M. Kahms, R. Peters, K.
Schulten. Biophysical Journal, 93:4006-4017, 2007.
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