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GPU Computing

• Commodity devices, omnipresent in modern 
computers

• Massively parallel hardware, hundreds of 
processing units, throughput oriented design

• Support all standard integer and floating point 
types 

• Programming tools allow software to be 
written in dialects of familiar C/C++ and 
integrated into legacy software

• GPU algorithms are often multicore-friendly 
due to attention paid to data locality and work 
decomposition (e.g. MCUDA)
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What Speedups Can GPUs Achieve?

• Single-GPU speedups of 8x to 30x vs. CPU 
core are quite common

• Best speedups (100x!) are attained on codes 
that are skewed towards floating point 
arithmetic, esp. CPU-unfriendly operations 
that prevent effective use of SSE or other 
vectorization

• Amdahl’s Law can prevent legacy codes from 
achieving peak speedups with only shallow 
GPU acceleration efforts
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Computational Biology’s Insatiable 
Demand for Processing Power

• Simulations still fall short 
of biological timescales

• Large simulations 
extremely difficult to 
prepare, analyze

• Order of magnitude 
increase in performance 
would allow use of more 
sophisticated models
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Fluorescence Microscopy
• 2-D reaction-diffusion 

simulation used to predict 
results of fluorescence 
microphotolysis experiments

• Simulate 1-10 second 
microscopy experiments, 0.1ms 
integration timesteps

• Goal: <= 1 min per simulation 
on commodity PC hardware

• Project home page: 
http://www.ks.uiuc.edu/Research/microscope/
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Fluorescence Microscopy (2)
• Challenges for CPU:

– Efficient handling of boundary conditions

– Large number of floating point operations per 
timestep

• Challenges for GPU w/ CUDA:

– Hiding global memory latency, improving 
memory access patterns, controlling register use

– Few arithmetic operations per memory 
reference (for a GPU…)
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Fluorescence Microscopy (3)
• Simulation runtime, software development 

time:
– Original research code (CPU): 80 min

– Optimized algorithm (CPU): 27 min
• 40 hours of work 

– SSE-vectorized (CPU): 8 min
• 20 hours of work

– CUDA w/ 8800GTX: 38 sec, 12 times faster than SSE!
• 12 hours of work, possible to improve further, but already 

“fast enough” for real use

• CUDA code was more similar to the original than to the SSE 
vectorized version – arithmetic is almost “free” on the GPU
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Calculating Electrostatic Potential Maps

• Used in molecular 
structure building, 
analysis, visualization, 
simulation

• Electrostatic potentials 
evaluated on a uniformly 
spaced 3-D lattice

• Each lattice point contains 
sum of electrostatic 
contributions of all atoms
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Direct Coulomb Summation
• At each lattice point, sum potential 

contributions for all atoms in the 
simulated structure: 

potential[j] +=  charge[i] / Rij

Atom[i]

Rij: distance 
from lattice[j] 

to Atom[i]
Lattice point j 

being evaluated
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Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of independent 

threads, multiplexed onto hundreds of GPU processor cores
• Single-precision FP arithmetic is adequate for intended 

application
• Numerical accuracy can be further improved  by 

compensated summation, spatially ordered summation 
groupings, or accumulation of potential in double-precision

• Starting point for more sophisticated algorithms
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Global Memory
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Direct Coulomb Summation Runtime

GPU 
underutilized

GPU fully utilized, 
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors. 
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten.   J. 

Comp. Chem., 28:2618-2640, 2007.

Lower 
is better



© 2008 NVIDIA 
Corporation.

Optimizing for the GPU

Atom[i]

Distances to 
Atom[i]

• Increase arithmetic intensity, reuse in-register data by 
“unrolling” lattice point computation into inner atom loop

• Each atom contributes to several lattice points, distances 
only differ in the X component:
potentialA +=  charge[i] / (distanceA to atom[i]) 
potentialB +=  charge[i] / (distanceB to atom[i]) …
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Thread blocks: 
64-256 threads

CUDA Block/Grid Decomposition

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

Unrolling increases 
computational tile size

Threads compute
up to 8 potentials. 

Skipping by half-warps
optimizes global mem. perf.
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Direct Coulomb Summation Performance

CUDA-Simple: 
14.8x faster,

33% of fastest 
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU, 
291 GFLOPS on 

GeForce 8800GTX

GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, 
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU
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Multi-GPU Direct Coulomb Summation
• Effective memory 

bandwidth scales with 
the number of GPUs 
utilized

• PCIe bus bandwidth not a 
bottleneck for this 
algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU 

core
• Power: 700 watts during 

benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX 
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Multi-GPU Direct Coulomb Summation

• 4-GPU (2 Quadroplex) 
Opteron node at NCSA

• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs.         

Intel QX6700 CPU core 
w/ SSE

NCSA GPU Cluster• 4-GPU (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs.         

Intel QX6700 CPU core 
w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/
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Cutoff Summation
• At each lattice point, sum potential 

contributions for atoms within cutoff radius:
if (distance to atom[i] < cutoff)

potential += (charge[i] / r) * s(r)
• Smoothing function s(r) is algorithm dependent

Cutoff radius r: distance to 
Atom[i]

Lattice point being 
evaluated Atom[i]
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Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice 

points
– Summation algorithm has linear time complexity 
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full 

electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones, 

Buckingham)
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Process atom bins 
for current potential 

map region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region 
neighborlist

Shared memory
Atom bin

Potential 
map 

regions
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Using the CPU to Improve
GPU Performance

• GPU performs best when the work evenly 
divides into the number of 
threads/processing units

• Optimization strategy: 
– Use the CPU to “regularize” the GPU workload
– Handle exceptional or irregular work units on 

the CPU while the GPU processes the bulk of 
the work

– On average, the GPU is kept highly occupied, 
attaining a much higher fraction of peak 
performance
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GPU acceleration of cutoff pair potentials for molecular modeling applications. 
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008 

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with 

CPU overlap:
17x-21x faster than 

CPU core
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Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes 
(called patches)

•For every pair of interacting patches, create one 
object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use 
this idea in some form

NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ idea:

– Decompose the computation into a large number of objects
– Have an Intelligent Run-time system (of Charm++) assign objects to 

processors for dynamic load balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.
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847 objects 100,000

Example 
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution
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Nonbonded Forces on G80 GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
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texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom;      // per-thread atom, stored in registers
float4 iforce;   // per-thread force, stored in registers
for ( int j = 0; j < jatom_count; ++j ) {
float dx = jatom[j].x - iatom.x;   float dy = jatom[j].y - iatom.y;  float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if ( r2 < cutoff2 ) {
float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) {

indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma
f *= f*f;  // sigma^3
f *= f;  // sigma^6
f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if ( excluded ) { f = qq * ft.w; }  // PME correction
else { f += qq * ft.z; }  // Coulomb
iforce.x += dx * f;   iforce.y += dy * f;    iforce.z += dz * f;
iforce.w += 1.f;  // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
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GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.
Forces needed by remote nodes are explicitly scheduled to 

be computed ASAP to improve overall performance.

NAMD Overlapping Execution with 
Asynchronous CUDA kernels
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• Simulations lead to better 
understanding of the mechanics 
of viral infections

• Better understanding of infection 
mechanics at the molecular level 
may result in more effective 
treatments for diseases

• Since viruses are large, their 
computational “viewing” 
requires tremendous resources, 
in particular large parallel 
computers

• GPUs can significantly accelerate 
the simulation, analyses, and 
visualization of such structures

Molecular Simulations: Virology
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STMV benchmark, 1M atoms,12A cutoff,              
PME every 4 steps, running on

2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on 
NCSA GPU Cluster, April 2008
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NAMD Performance on 
NCSA GPU Cluster, April 2008

• 5.5-7x overall application 
speedup w/ G80-based GPUs

• STMV virus (1M atoms)
• Overlap with CPU
• Off-node results done first
• Infiniband scales well
• Plans for better performance

– Tune or port remaining work
– Balance GPU load
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NAMD Performance on 
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup 

vs. 8 CPU cores
– 32% faster overall than 8 nodes 

of G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for 
force accumulation is 
minimal: only 8% slower than 
single-precision
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GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel 
QX6700 CPU core

Fluorescence 
microphotolysis

Iterative matrix / 
stencil

12x

Pairlist calculation Particle pair distance 
test

10-11x

Pairlist update Particle pair distance 
test

5-15x

Molecular dynamics            
non-bonded force calc.

N-body cutoff force 
calculations

10x                       
20x (w/ pairlist)

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM short-range Particle-grid w/ cutoff 24x

MSM long-range Grid-grid w/ cutoff 22x

Direct Coulomb summation Particle-grid 44x
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Lessons Learned

• GPU algorithms need fine-grained 
parallelism and sufficient work to fully 
utilize the hardware

• Fine-grained GPU work decompositions 
compose well with the comparatively coarse-
grained decompositions used for multicore or 
distributed memory programing

• Much of GPU algorithm optimization revolves 
around efficient use of multiple memory 
systems and latency hiding
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Lessons Learned (2)

• The host CPU can potentially be used 
to “regularize” the computation for 
the GPU, yielding better overall 
performance

• Amdahl’s Law can prevent applications 
from achieving peak speedup with 
shallow GPU acceleration efforts

• Overlapping CPU work with GPU can 
hide some communication and 
unaccelerated computation
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Ongoing and Future Work

• Visualization of multi-million atom 
biomolecular complexes
– Migrate structural geometry and volumetric 

computations to the GPU
– GPU accelerated ray tracing, ambient occlusion 

lighting, …

• GPU acceleration of long running molecular 
dynamics trajectory analyses

• More opportunities available than time to 
pursue them!
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Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-
accelerated clusters.  J. Phillips, J. Stone, K. Schulten.  
Proceedings of the 2008 ACM/IEEE Conference on 
Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular 
modeling applications. C. Rodrigues, D. Hardy, J. Stone, K. 
Schulten, W. Hwu. Proceedings of the 2008 Conference On 
Computing Frontiers, pp. 273-282, 2008.

• GPU computing.  J. Owens, M. Houston, D. Luebke, S. Green, 
J. Stone, J. Phillips. Proceedings of the IEEE, 96:879-899, 
2008.

• Accelerating molecular modeling applications with graphics 
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. 
Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation 
spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K. 
Schulten. Biophysical Journal, 93:4006-4017, 2007. 
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