
© 2008 NVIDIA
Corporation.

John Stone
Theoretical and Computational Biophysics Group, University of Illinois

Accelerating Computational Biology by
100x Using CUDA

© 2008 NVIDIA
Corporation.

GPU Computing

• Commodity devices, omnipresent in modern
computers

• Massively parallel hardware, hundreds of
processing units, throughput oriented design

• Support all standard integer and floating point
types

• Programming tools allow software to be
written in dialects of familiar C/C++ and
integrated into legacy software

• GPU algorithms are often multicore-friendly
due to attention paid to data locality and work
decomposition (e.g. MCUDA)

© 2008 NVIDIA
Corporation.

What Speedups Can GPUs Achieve?

• Single-GPU speedups of 8x to 30x vs. CPU
core are quite common

• Best speedups (100x!) are attained on codes
that are skewed towards floating point
arithmetic, esp. CPU-unfriendly operations
that prevent effective use of SSE or other
vectorization

• Amdahl’s Law can prevent legacy codes from
achieving peak speedups with only shallow
GPU acceleration efforts

© 2008 NVIDIA
Corporation.

Computational Biology’s Insatiable
Demand for Processing Power

• Simulations still fall short
of biological timescales

• Large simulations
extremely difficult to
prepare, analyze

• Order of magnitude
increase in performance
would allow use of more
sophisticated models

© 2008 NVIDIA
Corporation.

Fluorescence Microscopy
• 2-D reaction-diffusion

simulation used to predict
results of fluorescence
microphotolysis experiments

• Simulate 1-10 second
microscopy experiments, 0.1ms
integration timesteps

• Goal: <= 1 min per simulation
on commodity PC hardware

• Project home page:
http://www.ks.uiuc.edu/Research/microscope/

© 2008 NVIDIA
Corporation.

Fluorescence Microscopy (2)
• Challenges for CPU:

– Efficient handling of boundary conditions

– Large number of floating point operations per
timestep

• Challenges for GPU w/ CUDA:

– Hiding global memory latency, improving
memory access patterns, controlling register use

– Few arithmetic operations per memory
reference (for a GPU…)

© 2008 NVIDIA
Corporation.

Fluorescence Microscopy (3)
• Simulation runtime, software development

time:
– Original research code (CPU): 80 min

– Optimized algorithm (CPU): 27 min
• 40 hours of work

– SSE-vectorized (CPU): 8 min
• 20 hours of work

– CUDA w/ 8800GTX: 38 sec, 12 times faster than SSE!
• 12 hours of work, possible to improve further, but already

“fast enough” for real use

• CUDA code was more similar to the original than to the SSE
vectorized version – arithmetic is almost “free” on the GPU

© 2008 NVIDIA
Corporation.

Calculating Electrostatic Potential Maps

• Used in molecular
structure building,
analysis, visualization,
simulation

• Electrostatic potentials
evaluated on a uniformly
spaced 3-D lattice

• Each lattice point contains
sum of electrostatic
contributions of all atoms

© 2008 NVIDIA
Corporation.

Direct Coulomb Summation
• At each lattice point, sum potential

contributions for all atoms in the
simulated structure:

potential[j] += charge[i] / Rij

Atom[i]

Rij: distance
from lattice[j]

to Atom[i]
Lattice point j

being evaluated

© 2008 NVIDIA
Corporation.

Direct Coulomb Summation on the GPU

• GPU outruns a CPU core by 44x
• Work is decomposed into tens of thousands of independent

threads, multiplexed onto hundreds of GPU processor cores
• Single-precision FP arithmetic is adequate for intended

application
• Numerical accuracy can be further improved by

compensated summation, spatially ordered summation
groupings, or accumulation of potential in double-precision

• Starting point for more sophisticated algorithms

GPU Global Memory

GPU Thread Execution ManagerHost

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

© 2008 NVIDIA
Corporation.

Global Memory

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Direct Coulomb Summation on the GPU

Host

Atomic
Coordinates

Charges

© 2008 NVIDIA
Corporation.

Direct Coulomb Summation Runtime

GPU
underutilized

GPU fully utilized,
~40x faster than CPU

Accelerating molecular modeling applications with graphics processors.
J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J.

Comp. Chem., 28:2618-2640, 2007.

Lower
is better

© 2008 NVIDIA
Corporation.

Optimizing for the GPU

Atom[i]

Distances to
Atom[i]

• Increase arithmetic intensity, reuse in-register data by
“unrolling” lattice point computation into inner atom loop

• Each atom contributes to several lattice points, distances
only differ in the X component:
potentialA += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i]) …

© 2008 NVIDIA
Corporation.

Thread blocks:
64-256 threads

CUDA Block/Grid Decomposition

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials.

Skipping by half-warps
optimizes global mem. perf.

© 2008 NVIDIA
Corporation.

Direct Coulomb Summation Performance

CUDA-Simple:
14.8x faster,

33% of fastest
GPU kernel

CUDA-Unroll8clx:
fastest GPU kernel,

44x faster than CPU,
291 GFLOPS on

GeForce 8800GTX

GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
J. Phillips. Proceedings of the IEEE, 96:879-899, 2008.

CPU

© 2008 NVIDIA
Corporation.

Multi-GPU Direct Coulomb Summation
• Effective memory

bandwidth scales with
the number of GPUs
utilized

• PCIe bus bandwidth not a
bottleneck for this
algorithm

• 117 billion evals/sec
• 863 GFLOPS
• 131x speedup vs. CPU

core
• Power: 700 watts during

benchmark

Quad-core Intel QX6700
Three NVIDIA GeForce 8800GTX

© 2008 NVIDIA
Corporation.

Multi-GPU Direct Coulomb Summation

• 4-GPU (2 Quadroplex)
Opteron node at NCSA

• 157 billion evals/sec
• 1.16 TFLOPS
• 176x speedup vs.

Intel QX6700 CPU core
w/ SSE

NCSA GPU Cluster• 4-GPU (GT200)
• 241 billion evals/sec
• 1.78 TFLOPS
• 271x speedup vs.

Intel QX6700 CPU core
w/ SSE

http://www.ncsa.uiuc.edu/Projects/GPUcluster/

© 2008 NVIDIA
Corporation.

Cutoff Summation
• At each lattice point, sum potential

contributions for atoms within cutoff radius:
if (distance to atom[i] < cutoff)

potential += (charge[i] / r) * s(r)
• Smoothing function s(r) is algorithm dependent

Cutoff radius r: distance to
Atom[i]

Lattice point being
evaluated Atom[i]

© 2008 NVIDIA
Corporation.

Infinite vs. Cutoff Potentials
• Infinite range potential:

– All atoms contribute to all lattice points
– Summation algorithm has quadratic complexity

• Cutoff (range-limited) potential:
– Atoms contribute within cutoff distance to lattice

points
– Summation algorithm has linear time complexity
– Has many applications in molecular modeling:

• Replace electrostatic potential with shifted form
• Short-range part for fast methods of approximating full

electrostatics
• Used for fast decaying interactions (e.g. Lennard-Jones,

Buckingham)

© 2008 NVIDIA
Corporation.

Process atom bins
for current potential

map region

Cutoff Summation on the GPU

Atoms

Atoms spatially hashed into fixed-
size “bins” in global memory

Global memory

Constant memory

Bin-Region
neighborlist

Shared memory
Atom bin

Potential
map

regions

© 2008 NVIDIA
Corporation.

Using the CPU to Improve
GPU Performance

• GPU performs best when the work evenly
divides into the number of
threads/processing units

• Optimization strategy:
– Use the CPU to “regularize” the GPU workload
– Handle exceptional or irregular work units on

the CPU while the GPU processes the bulk of
the work

– On average, the GPU is kept highly occupied,
attaining a much higher fraction of peak
performance

© 2008 NVIDIA
Corporation.

GPU acceleration of cutoff pair potentials for molecular modeling applications.
C. Rodrigues, D. Hardy, J. Stone, K. Schulten, W. Hwu. Proceedings of the 2008

Conference On Computing Frontiers, pp. 273-282, 2008.

Cutoff Summation Runtime
GPU cutoff with

CPU overlap:
17x-21x faster than

CPU core

© 2008 NVIDIA
Corporation.

Hybrid of spatial and force decomposition:

•Spatial decomposition of atoms into cubes
(called patches)

•For every pair of interacting patches, create one
object for calculating electrostatic interactions

•Recent: Blue Matter, Desmond, etc. use
this idea in some form

NAMD Parallel Molecular Dynamics

• Designed from the beginning as a parallel program
• Uses the Charm++ idea:

– Decompose the computation into a large number of objects
– Have an Intelligent Run-time system (of Charm++) assign objects to

processors for dynamic load balancing with minimal communication

Kale et al., J. Comp. Phys. 151:283-312, 1999.

© 2008 NVIDIA
Corporation.

847 objects 100,000

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NAMD Overlapping Execution

© 2008 NVIDIA
Corporation.

Nonbonded Forces on G80 GPU
• Start with most expensive calculation: direct nonbonded interactions.
• Decompose work into pairs of patches, identical to NAMD structure.
• GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

© 2008 NVIDIA
Corporation.

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {
float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
float r2 = dx*dx + dy*dy + dz*dz;
if (r2 < cutoff2) {
float4 ft = texfetch(force_table, 1.f/sqrt(r2));
bool excluded = false;
int indexdiff = iatom.index - jatom[j].index;
if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {

indexdiff += jatom[j].excl_index;
excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);

}
float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
f *= f*f; // sigma^3
f *= f; // sigma^6
f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
float qq = iatom.charge * jatom[j].charge;
if (excluded) { f = qq * ft.w; } // PME correction
else { f += qq * ft.z; } // Coulomb
iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
iforce.w += 1.f; // interaction count or energy

}
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation

© 2008 NVIDIA
Corporation.

GPU kernels are launched asynchronously, CPU continues
with its own work, polling for GPU completion periodically.
Forces needed by remote nodes are explicitly scheduled to

be computed ASAP to improve overall performance.

NAMD Overlapping Execution with
Asynchronous CUDA kernels

© 2008 NVIDIA
Corporation.

• Simulations lead to better
understanding of the mechanics
of viral infections

• Better understanding of infection
mechanics at the molecular level
may result in more effective
treatments for diseases

• Since viruses are large, their
computational “viewing”
requires tremendous resources,
in particular large parallel
computers

• GPUs can significantly accelerate
the simulation, analyses, and
visualization of such structures

Molecular Simulations: Virology

© 2008 NVIDIA
Corporation.

STMV benchmark, 1M atoms,12A cutoff,
PME every 4 steps, running on

2.4 GHz AMD Opteron + NVIDIA Quadro FX 5600

NAMD Performance on
NCSA GPU Cluster, April 2008

© 2008 NVIDIA
Corporation.

NAMD Performance on
NCSA GPU Cluster, April 2008

• 5.5-7x overall application
speedup w/ G80-based GPUs

• STMV virus (1M atoms)
• Overlap with CPU
• Off-node results done first
• Infiniband scales well
• Plans for better performance

– Tune or port remaining work
– Balance GPU load

0

1

2

3

4

5

1 2 4 8 16 32 48

se
co

nd
s p

er
 st

ep

CPU only
with GPU
GPU

STMV Performance

2.4 GHz Opteron + Quadro FX 5600

fa
st

er

25.7 13.8 7.8

© 2008 NVIDIA
Corporation.

NAMD Performance on
GT200 GPU Cluster, August 2008

• 8 GT200s, 240 SPs @ 1.3GHz:
– 72x faster than a single CPU core
– 9x overall application speedup

vs. 8 CPU cores
– 32% faster overall than 8 nodes

of G80 cluster
– GT200 CUDA kernel is 54% faster
– ~8% variation in GPU load

• Cost of double-precision for
force accumulation is
minimal: only 8% slower than
single-precision

© 2008 NVIDIA
Corporation.

GPU Kernel Performance, May 2008
GeForce 8800GTX w/ CUDA 1.1, Driver 169.09

http://www.ks.uiuc.edu/Research/gpu/

Calculation / Algorithm Algorithm class Speedup vs. Intel
QX6700 CPU core

Fluorescence
microphotolysis

Iterative matrix /
stencil

12x

Pairlist calculation Particle pair distance
test

10-11x

Pairlist update Particle pair distance
test

5-15x

Molecular dynamics
non-bonded force calc.

N-body cutoff force
calculations

10x
20x (w/ pairlist)

Cutoff electron density sum Particle-grid w/ cutoff 15-23x

MSM short-range Particle-grid w/ cutoff 24x

MSM long-range Grid-grid w/ cutoff 22x

Direct Coulomb summation Particle-grid 44x

© 2008 NVIDIA
Corporation.

Lessons Learned

• GPU algorithms need fine-grained
parallelism and sufficient work to fully
utilize the hardware

• Fine-grained GPU work decompositions
compose well with the comparatively coarse-
grained decompositions used for multicore or
distributed memory programing

• Much of GPU algorithm optimization revolves
around efficient use of multiple memory
systems and latency hiding

© 2008 NVIDIA
Corporation.

Lessons Learned (2)

• The host CPU can potentially be used
to “regularize” the computation for
the GPU, yielding better overall
performance

• Amdahl’s Law can prevent applications
from achieving peak speedup with
shallow GPU acceleration efforts

• Overlapping CPU work with GPU can
hide some communication and
unaccelerated computation

© 2008 NVIDIA
Corporation.

Ongoing and Future Work

• Visualization of multi-million atom
biomolecular complexes
– Migrate structural geometry and volumetric

computations to the GPU
– GPU accelerated ray tracing, ambient occlusion

lighting, …

• GPU acceleration of long running molecular
dynamics trajectory analyses

• More opportunities available than time to
pursue them!

© 2008 NVIDIA
Corporation.

Acknowledgements
• Theoretical and Computational

Biophysics Group, University of Illinois at
Urbana-Champaign

• Prof. Wen-mei Hwu, Chris Rodrigues,
John Stratton, IMPACT Group, University
of Illinois at Urbana-Champaign

• The CUDA team at NVIDIA
• NVIDIA, NCSA (GPU clusters)
• NIH support: P41-RR05969

© 2008 NVIDIA
Corporation.

Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-
accelerated clusters. J. Phillips, J. Stone, K. Schulten.
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, (in press)

• GPU acceleration of cutoff pair potentials for molecular
modeling applications. C. Rodrigues, D. Hardy, J. Stone, K.
Schulten, W. Hwu. Proceedings of the 2008 Conference On
Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green,
J. Stone, J. Phillips. Proceedings of the IEEE, 96:879-899,
2008.

• Accelerating molecular modeling applications with graphics
processors. J. Stone, J. Phillips, P. Freddolino, D. Hardy, L.
Trabuco, K. Schulten. J. Comp. Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation
spectroscopy. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, K.
Schulten. Biophysical Journal, 93:4006-4017, 2007.

	John Stone�Theoretical and Computational Biophysics Group, University of Illinois
	GPU Computing
	What Speedups Can GPUs Achieve?
	Computational Biology’s Insatiable Demand for Processing Power
	Fluorescence Microscopy
	Fluorescence Microscopy (2)
	Fluorescence Microscopy (3)
	Calculating Electrostatic Potential Maps
	Direct Coulomb Summation
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation on the GPU
	Direct Coulomb Summation Runtime
	Optimizing for the GPU
	CUDA Block/Grid Decomposition
	Direct Coulomb Summation Performance
	Multi-GPU Direct Coulomb Summation
	Multi-GPU Direct Coulomb Summation
	Cutoff Summation
	Infinite vs. Cutoff Potentials
	Cutoff Summation on the GPU
	Using the CPU to Improve� GPU Performance
	Cutoff Summation Runtime
	NAMD Parallel Molecular Dynamics
	NAMD Overlapping Execution
	Nonbonded Forces on G80 GPU
	Slide Number 26
	NAMD Overlapping Execution with Asynchronous CUDA kernels
	Molecular Simulations: Virology
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �NCSA GPU Cluster, April 2008
	NAMD Performance on �GT200 GPU Cluster, August 2008
	GPU Kernel Performance, May 2008�GeForce 8800GTX w/ CUDA 1.1, Driver 169.09�http://www.ks.uiuc.edu/Research/gpu/
	Lessons Learned
	Lessons Learned (2)
	Ongoing and Future Work
	Acknowledgements
	Publications�http://www.ks.uiuc.edu/Research/gpu/

